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Abstract

Collusion is a major unsolved security problem in
online bridge: by illicitly exchanging card informa-
tion over the telephone, instant messenger or the like,
cheaters can gain huge advantages over honest play-
ers. It is very hard if not impossible to prevent collu-
sion from happening. Instead, we motivate an AI-based
detection approach and discuss its challenges. We chal-
lenge the AI community to create automated methods
for detecting collusive traces left in game records with
an accuracy that can be achieved by human masters.

Introduction

Contract bridge is a four-person card game played between
two partnerships. Unlike chess, in which all pieces are on
the board and known to each side, bridge is a game with
hidden information. A player knows only a subset of 52
cards in the process of bidding and card play. She cannot
tell any card or intention to her partner other than through
predefined, publicly-known conventions to convey informa-
tion. Information exchanged in this legitimate way is usually
imperfect, and it may be plausible or wrong. However, col-
lusive cheaters can grab huge advantages over honest players
through exchanging unauthorised information such as cards
held by each other to eliminate uncertainty caused by imper-
fect information.

Collusion in bridge occurs largely within a partnership,
but a player can also collude with a kibitzer who observes
the game, or with another player at a different table – e.g.
in duplicate bridge, where a partnership is compared with
other pair(s) playing the exact same hands under the same
conditions, and final scores are calculated by comparing one
pair’s score to that of the other pair(s).

In face-to-face bridge, one has to stealthily pass card in-
formation to his or her collusive partner through spoken or
body language. Online cheaters exploit out-of-band com-
munication channels such as telephones and instant messen-
gers, instead. The motives for people to cheat in face-to-face
bridge more or less remain in its online counterpart. For
example, there are regular and popular online tournaments
(e.g. at Okbridge.com) that are sanctioned by American
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Contract Bridge League, meaning that these tournaments
award official masterpoints, which are valid for climbing
ACBL’s rank ladder to achieve well-respected titles such as
Life Master. On the other hand, playing bridge online makes
it much easier to cheat than in face-to-face bridge. Cheaters
collude for their personal gains (in whatever forms), but ruin
the game experience of other people.

The common practice of detecting collusion in face-to-
face tournaments is a committee review approach, which
relies on a team of experienced human experts to analyse
a complete record of game play after the fact. However,
this approach is time-consuming and expensive, and can-
not be scaled to handle thousands of games played online
everyday in an effective but economic way. On the other
hand, common security mechanisms for mitigating collu-
sion do not work well in online bridge, either (Yan 2003a;
2003b). As such, although managers of online bridge com-
munities have been aware of the problem for long, currently
they still largely depend on tips from players whether some-
body is cheating.

AI appears to be the last resort to this collusion problem,
which to the best of our knowledge has not yet been stud-
ied in this community. In this paper, we challenge AI re-
searchers to create automated means that detects collu-
sive play in bridge at human master level. This challenge
is highly related to, but not the same as, the problem of cre-
ating a bridge program that is consistently as good as human
experts. We expect this challenge to stimulate some funda-
mental AI research. Potentially such research will also con-
tribute to turning online bridge into a testbed for studying
collusive human behaviours, which is otherwise difficult to
observe in other contexts such as bid-rigging in procurement
auctions (Bajari and Summers 2002).

The outline of this paper is as follows. We first compare
honest and collusive play in bridge. Next, we discuss the
feasibility of automated collusion detection in bridge – we
will outline a possible way to do this, and discuss how to
evaluate its performance and progress. We then discuss open
problems in the form of a research agenda that groups the
problems into near- and longer-term types. We also discuss
how to make our approach more sophisticated. Following a
review of related work, we conclude the paper.
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How collusion matters

We compare an honest game with a collusive one as follows.
Honest play (based on incomplete information)
Bidding. Each player knows 25% of the cards (which is

perfect information), and can deduce from each bid made by
others some additional information, which is imperfect.

Card Play. There is no further information until the open-
ing lead. When dummy’s hand is revealed, the three others
all know 50% perfect information, and each can also de-
duce additional imperfect information from bids made by
others. For example, declarer can know precisely the high
cards of each suit held by her opponent side, and estimate
high card points (HCP)1 and suit distribution2 of each oppo-
nent. Moreover, each player may deduce from each played
trick some information that is either imperfect or perfect.

Collusive play (based on complete information; we as-
sume that North and South collude, and each knows all the
cards held by the other.)

Bidding. Either East or West knows from her own hand
25% perfect information, while both North and South know
50%. Both North and South precisely know all their suit
combinations3, which is crucial for both bidding and card
play. Moreover, either North or South may get more infor-
mation from each bid made by opponents than what oppo-
nents can deduce from bids made by North or South. For
example, since both North and South know high cards held
by the opponents together in each suit, it is easier for them to
deduce the card or suit distribution in each opponent’s hand.

Card Play. There is no further information until the open-
ing lead. When North and South are declarer and dummy,
they might appear to get no further advantage from collusion
after the opening lead. However, the truth is that they can get
more information than they (or any honest opponent) should
have, either directly or by converting some information from
imperfect to perfect with the aid of each played trick. When
North and South are defenders, their information advantage
is tremendous. For example, one of them can easily draw
a perfect opening lead to an entry4 held by the other. Ad-
ditionally, once dummy’s hand is revealed, both North and
South know 100% perfect information.

Clearly, colluding players have an unfair information ad-
vantage. Capable cheaters can almost always achieve a best
possible result for each deal if they choose to do so. More-
over, a cheater need not know all cards held by his or her
colluding partner; it is often sufficient for them to exchange
only the “mission-critical” information.

Automated Detection of Suspicious Play

We consider each action (a bid or card play) in a game as
a decision made based on collectable information. Thus,

1The sum of A, K, Q and J each calculated with a predefined
weight.

2Number of cards in each suit. For example, one may have a
4432 suit distribution.

3A suit combination means a partnership’s combined holding in
one suit.

4A card that can win a trick and thereby gain the lead for its
holder.

each player has a decision-making sequence left in the game
record. Denote by Sw the decision-making sequence of a
player who has access to unauthorised information, and by
So the decision-making sequence when she plays the same
hand but without access to this information. If Sw = So

is true for all the games she has played, then there are no
grounds to accuse her game play. Otherwise, collusive play
theoretically could be detected by comparing these two se-
quences. That is, human decisions based on partial infor-
mation are unlikely to be always the same as those based
on more complete information. This echoes the rationale
behind the committee review approach, namely, if players
persistently gain through collusion, it is very likely for them
to leave traces in their play.

All this appears to suggest that it is feasible to design an
automated approach that utilises inference techniques devel-
oped in AI (in particular the computer bridge) community to
detect collusive traces in bridge play. The core of such a de-
sign can be an inference engine (IE), which takes a complete
record of each game as its input and analyses the bidding and
play of each partnership. Actions that are based on a deci-
sion deemed too good to be drawn from partial information
will be detected as suspicious play.

Collusive cheaters might leave traces in almost any part of
the play, and it would be ideal to detect all the traces. How-
ever, we propose to initially focus on the following critical
places:

• Contract bid: the higher contract a partnership have suc-
cessfully made, the higher reward they get.

• Penalty double bid, which squeezes maximum reward
from defeating an unrealistic contract of opponents.

• Opening lead: which is the first and sometimes a unique
chance to defeat a contract.

The reasons for such an initial focus are as follows. First,
these three scenarios are representative, and we have ob-
served that many online cheaters often cash their collusive
advantages at these critical places. Second, this reduces the
problem’s complexity so that useful progress can be made
within a manageable timescale. It is technically more com-
plicated to detect other collusive play than these three sce-
narios.

We outline as follows how to detect a suspicious contract
bid, opening lead, or penalty double.

Contract or opening lead oriented detection

An algorithm for detecting a suspicious contract bid or open-
ing lead can be as follows - for the latter, additional expert
knowledge about opening leads is needed for inference.

• The IE first identifies in the game record the real action
α, either a contract bid or opening lead. It then generates
Ah, a set of action candidates for α as in honest play.
Note: a computer bridge program just has to work out
only a single best candidate for each action; however, Ah

may include multiple candidates, since for example all the
candidates might be of equal quality.

• The engine also generates Ac, a set of action candidates
for α as in collusive play. Often, Ac can be decided
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largely by the combined hands of a partnership that is sus-
pected to have colluded. Although cheaters exchanging
only mission-critical information do not need to know all
cards held by each other, the set of their collusive actions
is typically a subset of Ac.

• If (α ∈ Ac) ∧ (α /∈ Ah), then a suspicious signal will
be triggered. That is, if information that one can collect
from his or her own hand and from others’ bids cannot
justify the contract bid or opening lead, the suspicion of
collusion will be raised.

The following example shows how a suspicious con-
tract bid could be detected using the above approach. In
this example, each player followed the Goren bidding sys-
tem (Goren 1986). However, It is not a prerequisite for all
players to use the same convention to make collusion detec-
tion work.

North: ♠AKJ643 ♥92 ♦75 ♣KQ3

SOUTH WEST NORTH EAST

Pass 1♥ Double 2♥
2♠ Pass Pass Pass

South: ♠Q52 ♥864 ♦AJT86 ♣54

• The IE reads the bid sequence b1 = Pass, ..., b8 = Pass
and recognises South having bid b5 =2♠ as the contract.

• Generates Ah, a set of candidate contract bids for b5 as in
honest play, by following the steps described below.

IE does a bidding inference from the view of South. For
example, it may generate an inference set from each bid
bi (i = 2, 3, 4): one for b2, interpreting that West is with
13 or more HCPs and has 5 or more hearts; one for b3,
interpreting that North has 13 or more HCPs, 3 or less
hearts but other longer suits; and one for b4, interpreting
that East has 6 or more HCPs, and 3 or more hearts.

By combining the above inferences with general bridge
knowledge and cards held by South, IE recognises that
North has 2 or less hearts, and b3 meant to force South to
bid his best suit. Thus, it generates a candidate set Ah =
{3♦}, having only one recommendation.

• Does another bidding inference that is similar to the one
given above but with all cards held by North also as part
of input, and then generates Ac ={2♠}, a set of candidate
bids for collusive play.

• Since b5 /∈ Ah but b5 ∈ Bc, a suspicious bid is detected.

North’s double in this example was not a good bid, but
it is unlikely for South to recognise this mistake in honest
play. (This example was taken from a real, online session.
Some changes could have been made to make it better, but
I decided to keep it as is to present a real-life example. A
better example could also be created through imagination.)

Penalty double oriented detection

A typical collusion scenario involving with a penalty double
is like the following. There is no clue, from the bidding se-
quence and cards held in one hand, that a too high contract is
bid by opponents, but because of collusion, a cheater is sure

that his or her side has enough tricks to defeat the contract,
and thus a penalty double is bid.

A double following a contract bid is not necessarily a
penalty double, but instead requests a partner to make an
opening lead in a particular suit. So there is a need to dif-
ferentiate a penalty double from a lead-directing one. We
assume that a penalty double has been recognised – for ex-
ample, the opening leader’s double bid made after the con-
tract bid must be a penalty bid – or alerted5 by its bidder as
required by the game rules. Thus, an automated detection of
collusive penalty double can work as follows.

• Locates the contract bid, and calculates nb, the number of
tricks required to defeat the contract. Denoting by nM
the contract, we have nb = 8 − n.

• Does a bidding inference from the view of the player p
who has made the penalty double bid, and uses these in-
ferences and her own hand to calculate the number of her
winning tricks, nh.

• Does another bidding inference from the view of p, but
with both hands of cards held by her partnership as input.
Then combines these results and both hands to calculate
nc, the number of winning tricks of this partnership.

• If nh < nb ≤ nc, then collusion suspicion is raised.

Evaluation

It is unlikely that cheaters will voluntarily admit that they are
cheating, and therefore we do not expect them to help with
the evaluation of a cheat detection system. Instead, we can
rely on wisdoms drawn from the committee review. Namely,
by comparing the results of an automated detection system
with conclusions drawn by human experts about the same
set of game records, we can evaluate the performance of a
detection scheme, and tune its implementation to enhance
its efficiency. To this end, a benchmark data set collecting a
set of representative cases of collusive play will be valuable.

The same bid or card play may have a different explana-
tion under different conventions. However, to analyse the
bidding and play sequence with the very convention that
players have used is essential to the detection accuracy, and
it can simplify the design of the AI engine. Therefore, it is
necessary to record each deal together with the exact con-
ventions that it is played. A simple way to do this is to an-
notate each alerted bid or card play with its corresponding
convention. For example, a double bid can be recorded as
Dble/Lightner, meaning a lead-directing double by follow-
ing the Lightner convention.

A common format for benchmark data agreed by the com-
munity will facilitate data collection and exchange, and a
shared benchmark data set will make it possible to soundly
compare results achieved by different research teams, and to
measure future progress.

To simplify the research probem to make initial progress,
it is sensible to stick to one bidding convention at first, rather
than try to deal with them all. For the same reason, we do
not need to use genuine online games at first. We can set

5The game rules require players to draw opponents’ attention to
bids and play that follow unusual conventions.
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up our own double-blind experiment in which some partner-
ships are asked to cheat and others to play honestly and then
see if we can detect the cheats. Using genuine online game
records could cause much time and technical overheads that
are unnecessary for the initial stage of research.

It is also useful to set a realistic goal for the research of
automated collusion detection. Some collusion might re-
main undetectable, e.g. when cheaters are strong players
who know what could cause suspicion, and what could be
explained away.

Research Problems and Agenda

Bid inference is key to the collusion detection approach out-
lined above. The following bidding inference methods have
been explored for computer bridge.

• Explicit inference, which simulates human thinking be-
haviours by explicitly representing inferences. This ap-
proach has been widely used, e.g. in (Green 1995;
Hutton-squire 1997; MacLeod 1989; Stanier 1975; Quin-
lan 1979), but achieved only mixed success (Frank 1997).

• Quantitative reasoning, which handles inferencing by us-
ing quantitative adjustments to hand evaluations. In this
approach, each hand is assigned a number of points P
representing its strength. P will be adjusted according
to other players bids. A next bid for a player is based
on rules associated with his or her current P value. This
method was innovated by the COBRA system (Lindelof
1983), and claimed impressive performance.

• Borel simulation, which is a Monte Carlo-like simulation
and first adopted by GIB (Ginsberg 1999; 2001), one of
the strongest bridge programs at the time. The method
works as follows. At each point in the bidding, the pro-
gram constructs a set D of deals consistent with the bid-
ding so far, and it queries a large database of bidding rules
to find all plausible candidate bids. For each candidate
bid, the rest of the bidding process is projected using the
same database, and then the play of the resulting contract
is simulated for each deal d ∈ D in a double-dummy way.
The candidate bid that leads to the best averaged result
will be chosen by the program.

• Hypothetical reasoning was explored in (Ando and Ue-
hara 2001; Ando, Kobayashi, and Uehara 2003).

• Machine learning methods were introduced in the recent
years. For example, the Monte Carlo sampling method
was combined with a learning algorithm to achieve a
promising result (Amit and Markovitch 2006). A neu-
ral network approach was showed to be able to effectively
bid no trump hands (DeLooze and Downey 2007).

However, it is unclear yet which of the above approaches
can achieve the best collusion detection, whether they can be
combined to achieve an even better result, or a new approach
is called for. A study of each approach, together with a rea-
sonablely sized proof-of-concept implementation of a few
selected approaches, can be an immediate next step. Other
near-term research can include:

• It is unknown but interesting which, among contract,
opening lead and penalty double oriented cheat detection,
is most effective, and which most reliable.

Static lead rules (Granovetter 1999) compiled by Matthew
Granovetter, a well-known bridge expert and author, have
proved to work very well in practice. It is a good first step
to use these rules to detect suspect opening leads.

• At a high level, collusion detection in bridge is simi-
lar to intrusion detection that has been extensively stud-
ied in computer security. The main difference is the ex-
pert knwoledge, but the basic idea of detecting the dif-
ference between normal and abnormal behavior is simi-
lar. Therefore, it is interesting to explore whether secu-
rity researchers working on intrusion detection can find
in collusion detection another application for their tech-
niques. Similarly, how will the study of collusion detec-
tion in bridge inform intrusion detection researchers?

The detection approach outlined in the previous section is
intuitive, but not sophisticated enough. For example, there
are at least the following additional aspects to the problem
of collusion detection.

• The skill level of a player should be taken into considera-
tion. When a beginning player, a medium-level player or
a top player plays the same hand, their play can be sig-
nificantly different. However, their play can all be honest,
and reasonable if judged according to their skill level.

Therefore, modeling human bridge players can be impor-
tant to collusion detection. Furthermore, we will need an
accurate ranking system for contract bridge. The mas-
terpoint system used by the American Contract Bridge
League does not accurately rate the current skills of a
player, and somehow measures how long and how often
she or he has played. The rating systems used by some
online bridge are better, but still can be improved.

• There is a statistical property in collusion detection. It is
imprudent to label a player as cheater once one suspicious
play or two is detected, since such a suspicion is only an
indication of illogical play, and it could be the result of
collusion, lucky play (e.g., a lucky guess or gamble, or a
mistake like misclicking a bid or card), or even honest but
imaginative play of a genius. When an isolated suspicious
play is examined, there is no precise way to conclude that
it is exclusively the result of collusion.

But when we also consider the dimension of time – it is
highly unlikely that one will be always lucky; anyway, be-
ing lucky means a small probabilistic event – and the skill
level of players, the problem will become more tractable.
Some further discussions can be found in (Yan 2003a).

Some longer-term open problems include:

• How to effectively detect suspicious signals hidden in
other bids, or further card play beyond the opening lead?
Or they simply do not matter (much)?

• Computer bridge, in particular its bidding techniques, has
not yet matured enough to compete with human mas-
ters (Ginsberg 1999; 2001). It appears that there is also
a gap between state-of-the-art AI techniques and the level

1513



of AI maturity sufficient to meet the expectation of collu-
sion detection at the human master level. However, how
big is this gap? Will this AI-based cheat detection ap-
proach be able to come close to and eventually outperform
the capability of human experts?

Quantifying the effectiveness of this AI-based approach
is important. Even if it turns out to be unlikely to pro-
duce an automated solution at the human master level, a
modest system could still serve as an effective screening
mechanism, probably significantly reducing the number
of cases requiring the attention of human experts.

It is also of academic interest to study how the techniques
required for collusion detection will differ from those that
eventually enable an expert-level bridge program.

• Is there an automated collusion detection approach that is
radically different from the one discussed in this paper?

• When a detecting method is publicly known, it would be
probable for skilled cheaters to evade detection, e.g. by
adjusting their bids or card play to disguise their collu-
sion. This appears to be an inherent problem for all collu-
sion detectors, but could lead to the following research: it
would be interesting to study the co-evolution dynamics
of detection algorithms and collusive behaviour in online
bridge, and study whether these dynamics give insights to
understand collusion and its mitigation in other contexts.

To answer all the above questions, we suggest to focus on
duplicate bridge first. Rubber bridge is another type of com-
petitive play of contract Bridge, where a rubber ends when
a side has won two games – one game in this context means
100 or more trick points scored on one deal. Rubber bridge
has its own rules and the running score would be needed to
detect cheating – placing a deal out of context is dangerous.
For example, when a partnership executes a tactic of “losing
a battle to win the war”, their bidding and play in a single
deal may appear to be ridiculously illogical. However, these
can be entirely reasonable when the deal is examined in a
rubber. As such, automated collusion detection in rubber
bridge might be more complicated than in duplicates.

Related Work

Computer bridge has been an area of a rich history, with the
aim of designing an expert-level bridge-playing program.

Bidding in computer bridge, which is most relevant to this
paper, was reviewed in the previous section. Other compo-
nents of a bridge program such as declarer play, defence,
and double-dummy solver were reviewed in (Frank 1997;
Ginsberg 2001; Amit and Markovitch 2006).

Strong bridge-playing programs on the market include
Jack Bridge6, Wbridge57, Bridge Baron – its key techniques
were reported in (Smith, Nau, and Throop 1998) – and
GIB (Ginsberg 1999; 2001). The first two programs are
rumoured to use similar techniques as in GIB (Norvig and
Russel 2009). However, none of these four programs is yet
a consistent expert-level player.

6
http://www.jackbridge.com

7
http://www.wbridge5.com

Modelling human players can be central to the problem
of collusion detection. But it appears that modelling a hu-
man player is more difficult than developing a good com-
puter player, and the skill level of current best programs is
not good enough yet to enable them being directly used to
model strong human players.

To the best of our knowledge, collusion detection in
bridge was first discussed in my PhD thesis (Yan 2003a).
The present paper is the first public discussion of this topic,
but due to space limit, some details remain in (Yan 2003a).

The most relevant topics in computer security include in-
trusion detection (Denning 1987), which has grown into a
big body of literature since 1986, and online games secu-
rity (Yan and Choi 2002; Yan and Randell 2005).

Conclusion

The problem of collusion detection in online bridge is both
interesting and difficult. It is representative of a more gen-
eral class of problems – detecting the use of prohibited
information in decision making. For example, detecting
bid-rigging in procurement auctions, detecting insider stock
trading, detecting employment, loan, or housing discrimina-
tion, detecting racial profiling, and even detecting jury tam-
pering are all real societal problems that have characteristics
in common with the game challenge proposed here. As such,
real progress on this challenge would likely have a broader
impact on a class of useful and important problems.

In general, determining whether collusion has taken place
in bridge requires determining whether bids/plays are ratio-
nal given the available information, or whether they are un-
usually “lucky”. This is a statistical property, and rational
play is also a function of the skill levels and strategies of the
players. As a result, there is no single right answer for what
constitutes “correct” bidding/play, making it much more dif-
ficult to recognize “incorrect” bidding/play. The collusion
detection approach outlined in this paper might not be able
to completely solve the problem. However, it is a reasonable
first step and should serve to stimulate useful discussion and
research, even if a full solution to the challenge is currently
beyond reach.
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