
The Tree Representation of Feasible Solutions for the TSP
with Pickup and Delivery and LIFO Loading

Dejian Tu and Songshan Guo
Department of Computer Science, School of Information Science and Technology,

Sun Yat-Sen University, Guangzhou, Guangdong, PR China (510275)
tudejian@gmail.com, issgssh@mail.sysu.edu.cn

Hu Qin and Wee-Chong Oon and Andrew Lim
Department of Management Sciences, City University of Hong Kong,

Tat Chee Ave, Kowloon Tong, Hong Kong
{tigerqin, weecoon, lim.andrew}@cityu.edu.hk

Abstract

The feasible solutions of the traveling salesman prob-
lem with pickup and delivery (TSPPD) are represented
by vertex lists in existing literature. However, when the
TSPPD requires that the loading and unloading oper-
ations must be performed in a last-in-first-out (LIFO)
manner, we show that its feasible solutions can be rep-
resented by trees. Consequently, we develop a variable
neighbourhood search (VNS) heuristic for the TSPPD
with last-in-first-out loading (TSPPDL) involving sev-
eral search operators based on the tree data structure.
Experiments show that our VNS heuristic is superior to
the current best heuristics for TSPPDL in terms of both
solution quality and computing time.

Introduction

In the traveling salesman problem with pickup and deliv-
ery (TSPPD), there is a set of n demands, denoted by
R = {1, . . . , n}, each of which is composed of a pickup
vertex and a delivery vertex. Let P = {1+, . . . , n+} be the
set of pickup vertices and D = {1−, . . . , n−} be the set of
delivery vertices. Vertex 0+ and 0− represent the exit from
and the entrance to the depot, respectively. The TSPPD is
defined on a complete and undirected graph G = (V, E, d),
where V = P∪D∪{0+, 0−} is the vertex set; E = {(x, y) :
x, y ∈ V, x 6= y} is the edge set; and d(x, y) denotes the
non-negative distance between vertex x and y. The objec-
tive of the TSPPD is to find a shortest Hamiltonian tour on
G, starting from vertex 0+ and ending at vertex 0−, for a ve-
hicle with unlimited capacity, subject to the precedence con-
straint that each pickup vertex is visited before its associated
delivery vertex. In most existing literature on the TSPPD,
feasible solutions are represented by lists (or sequences) of
vertices.

This study addresses a variant of the TSPPD in which
loading and unloading operations must be performed in a
last-in-first-out (LIFO) manner; this problem is referred to as
the TSPPD with LIFO loading (TSPPDL). The TSPPDL has
been considered a more complex problem than the TSPPD
because both the precedence and LIFO constraints must be

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

checked to ensure solution feasibility. In this paper, we show
that there we can represent feasible solutions of TSPPDL
using a tree, which greatly simplifies this problem. As a re-
sult, we were able to build upon the Variable Neighbourhood
Search (VNS) heuristic proposed by (Carrabs, Cordeau, and
Laporte 2007), which is the best existing approach for TSP-
PDL at the time of this writing; we reproduce four of the
original operators using the tree representation, and also in-
troduce three new operators. Our new heuristic outperforms
the original in terms of both solution quality and computa-
tion time.

Existing Research

The TSPPDL was first mentioned by (Ladany and Mehrez
1984). However, they neither formulate it mathematically
nor propose solution procedures except for enumeration.

(Carrabs, Cerulli, and Cordeau 2007) introduced a
branch-and-bound algorithm that applies an additive lower
bound technique proposed by (Fischetti and Toth 1989); this
technique is able to solve all instances with 15 requests and
several instances with 21 requests. Currently, the best exact
algorithm for the TSPPDL is the branch-and-cut algorithm
described in (Cordeau et al. 2010), which is based on the
fundamental component from the commercial integer pro-
gramming solver ILOG CPLEX; it is able to handle most
instances with up to 17 requests in less than 10 minutes, and
several instances with 25 requests within 1 hour.

For the generation of near-optimal solutions for the
large instances widely encountered in practice, the best
approaches so far have made use of efficient heuristics.
(Cassani and Righini 2004) developed a greedy heuristic
and a variable neighbourhood descent (VND) algorithm
which combines four types of exchange operators. (Carrabs,
Cordeau, and Laporte 2007) built on this work by devis-
ing a variable neighbourhood search (VNS) heuristic which
included the four exchange operators along with four new
operators. They compared the VND and VNS heuristics
by solving instances with up to 375 requests; the computa-
tional results showed that at the expense of more computing
time, the VNS heuristic produces significantly better solu-
tions than the VND heuristic. Both implementations repre-
sented feasible solutions by vertex lists.

191

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

The Tree Representation of Feasible Tours

In this section, we describe the tree representation of feasible
tours for the TSPPDL, which is the primary contribution of
this study. In particular, a feasible tour for the TSPPDL can
be represented as an ordered tree (i.e., there is an order for
the children of each tree node) with |R|+1 nodes, where the
root node is labeled 0 and the remaining nodes are labeled
some permutation of {1, ..., |R|}; we call a tree of this type a
TSPPDL tree. By representing solutions using this tree, the
feasibility of the solution is automatically guaranteed.

Figure 1(a) shows an example of a TSPDDL tree. The
dashed arrows in Figure 1(b) pictorially shows how this or-
dered tree can be converted into a tour that automatically re-
spects the precedence and LIFO constraints of the TSPPDL;
this is similar to a preorder traversal of the tree, where the
pickup vertex is instantiated when its node is first encoun-
tered, and the delivery vertex is instantiated when the node
is last encountered. The conversion procedure is provided in
Algorithm 1, which runs in O(n) time.

Figure 1: The tree representation of a feasible TSPPDL tour

We now define some terminology and notation. In this
study we distinguish between the terms node and vertex: we
specify that node refers to a TSPPDL tree node correspond-
ing to a request in R, and vertex refers to the pickup or de-
livery vertex in V . We also define a tour as the vertex list
representing a solution of the TSPPDL. Furthermore, we use
the notation TSx

, x ∈ R to denote the subtree in T rooted at
the node corresponding to request x. Finally, we will refer
to TSPPDL trees simply as trees.

To show the correctness of our tree representation, we

Algorithm 1 Converting a TSPPDL tree into a feasible tour

1: INPUT: An ordered tree T ;
2: Initialize the current node x← node 0;
3: Initialize the current tour S ← ∅;
4: Execute recursive procedure DFS(T, S, x), defined as:
5: DFS(T, S, x)
6: {
7: Append x+ to the tail of S;
8: while node x has unvisited children do
9: y← the leftmost unvisited child of node x;

10: Invoke DFS(T, S, y);
11: end while
12: Append x− to the tail of S;
13: }
14: Return S;

make use of the following property that is derived directly
from the definition of TSPPDL:

Property 1 Let S be a tour and pos(x) be the position
of vertex x in S. The tour S is feasible to the TSPPDL
if and only if any two requests (x+, x−) and (y+, y−)
in S, x 6= y, satisfy one of the following four condi-
tions: (1) pos(x+) < pos(y+) < pos(y−) < pos(x−);
(2) pos(y+) < pos(x+) < pos(x−) < pos(y−); (3)
pos(x+) < pos(x−) < pos(y+) < pos(y−); (4)
pos(y+) < pos(y−) < pos(x+) < pos(x−).

Theorem 1 Let T be a TSPPDL tree. The tour generated
from T using Algorithm 1 is a feasible solution to the TSP-
PDL.

Proof. Any node in the tree can be seen as the root of
a subtree. Consider any two subtrees TSx

and TSy
in the

tree, x 6= y. (1) If TSy
⊂ TSx

, then the generated tour

must have pos(x+) < pos(y+) < pos(y−) < pos(x−),
which satisfies condition 1 of Property 1; (2) If TSx

⊂ TSy
,

then the generated tour must have pos(y+) < pos(x+) <
pos(x−) < pos(y−), which satisfies condition 2 in Prop-
erty 1; (3) If TSy

∩ TSx
= ∅, then all requests in sub-

tree TSx
must be fulfilled either before or after requests in

TSy
, and accordingly the generated tour must have either

pos(x+) < pos(x−) < pos(y+) < pos(y−) or pos(y+) <
pos(y−) < pos(x+) < pos(x−), which satisfies either con-
dition 3 or 4 in Property 1. Since the relative positions of any
two subtrees TSx

and TSy
in the tree must belong to one of

the above three possibilities, and each possibility must sat-
isfy one of the four conditions described in Property 1, the
theorem holds. �

To convert a feasible tour into a tree, a reverse procedure
is presented in Algorithm 2, which is the inverse of Algo-
rithm 1 and also runs in O(n) time.

Compared to the list representation, the advantages
brought about by the tree representation are threefold.
Firstly, when any tree-based search heuristic is applied to
the TSPPDL, the feasibility of the solution is automatically
guaranteed, which makes the development and implementa-
tion of tree-based search heuristics much simpler and more
direct. Secondly, we can derive more search operators based

192

Algorithm 2 Converting a feasible tour into a TSPPDL tree

1: INPUT: A feasible tour S;
2: Let node(v) be the node associated with vertex v ∈ S;
3: Initialize the current vertex vcurrent ← 0+;
4: Initialize stack Q← ∅;
5: Initialize the current tree T ← ∅;
6: while vcurrent is not 0− do
7: if vcurrent is 0+ then
8: Push vcurrent into Q;
9: else if vcurrent ∈ P then

10: Insert node(vcurrent) into T as the rightmost child
of node(top(Q));

11: Push vcurrent into Q;
12: else
13: Pop the top element of Q;
14: end if
15: vcurrent ← the successor of vcurrent;
16: end while
17: Return T ;

on the tree representation compared to the list representa-
tion, which enables search heuristics to explore the feasible
regions of the TSPPDL more thoroughly. Thirdly, the TSP-
PDL only deals with the one-vehicle case without consider-
ing factors such as the capacity of the vehicle nor the time
window for pickup and delivery. Extensions of the TSPPDL
to handle variations such as limited capacity or multiple ve-
hicles can be naturally handled using the tree representation;
the same cannot be said for the vertex list representation,
which already requires complex implementations for the ba-
sic problem.

To the best of our knowledge, (Carrabs, Cordeau, and
Laporte 2007) is the current best search heuristic for the
TSPPDL. In that paper, ensuring the feasibility of solutions
generated by operations caused much added complexity and
computational effort because the vertex list representation
offers no inherent assurance of feasibility. In comparison,
we reproduce the four basic operators they employed using
the tree representation in a comparatively simple and natu-
ral manner. Additionally, we introduce three new operators
that are derived naturally from the tree representation and
would have been difficult to reproduce using the vertex list
representation. We will refer to the original VNS heuristic
as VNS-List, while our heuristic will be called VNS-Tree.

Variable Neighbourhood Search Algorithm

Variable neighbourhood search (VNS) was introduced by
(Mladenović and Hansen 1997) for solving complex com-
binatorial and global optimization problems. Many VNS-
based heuristics have been successfully applied to a variety
of problems, e.g., the TSP; the p-median problem; the multi-
source Weber problem; and the minimum sum-of-squares
clustering problem (Hansen and Mladenović 2001).

In this section, we define the seven search operators for
our VNS heuristic, each transforming a given TSPPDL tree
T into a new one T ′. As each of the trees corresponds
to a feasible tour, these operators can be viewed as func-

tions changing a feasible tour S to another feasible tour S′.
Hence, there is no need to consider the feasibility of solu-
tions when applying these operators.

Basic Operators

There are four basic search operators in our VNS heuris-
tic: subtree-swap; node-swap; subtree-relocate; and node-
relocate. These operators have exactly the same effect
as the block-exchange; couple-exchange; relocate-block;
and relocate-couple basic operators described in (Carrabs,
Cordeau, and Laporte 2007), respectively, differing only
in the data structure used to represent the solutions. Sim-
ilar operators have also been utilized to deal with other
problems, although they were all applied to vertex lists
rather than trees (Taillard et al. 1997; Li and Lim 2003;
Bent and Van Hentenryck 2004).

It is apparent, however, that using the tree representa-
tion greatly simplifies the implementation of these operators
compared to the vertex list representation. The subtree-swap
operator selects two subtrees and swaps their positions; the
node-swap operator swaps two nodes; the subtree-relocate
operator moves a subtree of T to a different position.

The node-relocate operator is slightly more complex.
Given a feasible tour S, the operation removes a request
(x+, x−) from S such that a new tour S′ is created. Then,
the vertices x+ and x− are inserted separately into S′ while
preserving feasibility. The example in Figure 2 demonstrates
how to perform this operation on a tree T . First, node x is
removed from T and its children are linked to its parent node
(Figure 2(b)) such that a new tree T ′ is created. Next, x is
inserted into T ′, e.g., as the second child of node 0 as shown
in Figure 2(c); this is equivalent to fixing the position of x+

in S′ such that it follows vertex 1− in the corresponding tour.
Suppose x now has β right siblings; the set of all possible
positions of x− in S′ is equivalent to relocating the 0, . . . , β
right siblings of x as the children of x (Figure 2(c–f)).

In fact, we make use of the multi-relocate refinement in-
troduced in the original VNS-List implementation in place
of node-relocate, which stores all improving node reloca-
tions in a list, executes the best relocation, and then performs
the other relocations in the list if they are still valid. This
speeds up the node-relocate operator in practice, although
the asymptotic running time remains O(n3).

New Operators

We introduce three new operators in VNS-Tree, all of which
were aided in their design by the tree representation.

The ATSP operator views a set of subtrees of a node as an
instance of the asymmetric TSP, and searches for the optimal
order of the children of all nodes; we adapted the Random-
ized Arbitrary Insertion (RAI) algorithm proposed by (Brest

and Žerovnik 2005) for this purpose. Our ATSP operation is
given as follows. Let the ordered set of child subtrees for a
node x in a tree T be C(x) = {c1, c2, ..., c|C(x)|}, such that
all ck are subtrees. If the number of such subtrees is small
(|C(x)| ≤ 7), we simply enumerate all possible orderings
and select the one that results in the shortest tour.

If |C(x)| ≥ 8, we use an adapted RAI algorithm as fol-
lows. First, randomly remove from C(x) a sequential subset

193

Figure 2: (a) The initial tree. (b) The new tree created after
removing node x. (c)–(f) The new tree created by relocating
node x.

C′(x), i.e., C′(x) = {ci, ci+1, ..., cj}, 1 ≤ i ≤ j ≤ |C(x)|.
Then, a component subtree in C′(x) is randomly selected
and reinserted into T as a child of x at the position result-
ing in the shortest tour; this is repeated for all component
subtrees in C′(x). The resultant solution is retained if it im-
proves on the best solution found so far. This removal and
reinsertion process is performed a total of n2 times.

The crossover operator is inspired by the crossover oper-
ation in genetic algorithms. It is performed on two trees T1

and T2, which are called the primary and secondary tree re-
spectively. First, we randomly remove a subtree TS from T1

and eliminate all edges in TS to generate a graph consisting
of a tree T ′

1 = T1 − TS and a set of individual nodes VS .
Then, all the nodes in VS are inserted into T ′

1 to construct a
new tree T ′ abiding by the rule that each node in VS must
have the same parent in both T ′ and T2.

Figure 3 provides an example of the crossover process.
Given the two trees T1 and T2 in Figures 3(a) and (b), the
randomly selected subtree TS is selected and removed from
T1, resulting in the graph T ′

1 shown in Figure 3(c). Since the
parent of node 1 in T2 is node 3, the operation inserts node
1 into the graph as the child of node 3 (Figure 3(d)). The
same criterion is used to insert nodes 2 and 3 into the graph,
resulting in the final tree T ′ shown in Figure 3(f).

Finally, the perturbation operator randomly removes a
subtree, and then greedily reinserts all the component nodes
in the subtree back into the original solution. Given a tree
T , we randomly select a node x and remove the subtree TSx

from T , resulting in the partial solution T ′ = T − TSx
. A

node in TSx
is randomly selected and reinserted into T ′ at

the position resulting in the shortest tour; this is repeated for
all nodes in TSx

.

Variable Neighbourhood Search Heuristic

In our VNS-Tree heuristic, we maintain an array of solu-
tions called population with pop size elements. In the first
iteration, we generate a random solution Sbest. The popula-
tion array is then initialized by performing the perturbation
operation on Sbest pop size times.

For each of these solutions, we first perform the opera-
tions node-swap; subtree-swap; subtree-relocate; and multi-

Figure 3: (a) T1; (b) T2; (c) The graph consisting of T ′
1 and

a set of nodes VS ; (d)–(f) Insertion of VS nodes into T ′
1.

relocate in that order, restarting from the first operation
whenever an improvement occurs. Next, we perform the
ATSP operation. Then, for every pair of solutions we per-
form the crossover operation. Finally, we replace Sbest with
the best solution in the population array if it is superior; this
marks an improving iteration. An iteration ends after we per-
form the perturbation operation on the elements in the popu-
lation array; we repeat the process until max nonimproving
consecutive non-improving iterations occurs.

At this point, the population array is reinitialized by per-
forming the perturbation operation on Sbest pop size times,
and the search is performed again. This is done a total of
max iter times, whereupon the algorithm returns Sbest.

Computational Experiments

We compared our VNS-Tree heuristic to the VNS-List
heuristic over 96 TSPPDL instances in two categories
(Types 1 and 2). The Type 1 data set was introduced in
the original publication for the VNS-List heuristic; this data
set was yielded from six TSP instances taken from TSPLIB
(Reinelt 1991), which is a standard test suite for the TSP.
For each of these TSP instances, subsets of vertices were se-
lected with 25; 51; 75; 101; 251; 501; and 751 vertices, and
the requests were randomly generated; we extended this test
set by creating an additional test case with 1001 vertices for
each instance. This generates 48 test instances.

The Type 2 data set was constructed using optimal TSP
tours. To obtain this data set, we used the Type 1 vertex
sets. We first find an optimal TSP tour STSP for the ver-
tex set by running the Concorde TSP solver (Applegate et
al. 2005). Next, we randomly construct a feasible TSPPDL
tour, denoted by STSPPDL. Finally, we attach the label of
each vertex in STSPPDL to its counterpart in STSP . In this
way, we are able to generate 48 TSPPDL test instances with
known optimal solutions.

The authors of VNS-List kindly supplied us with their
source code, which was implemented in C. Our VNS-Tree
algorithm was implemented in C++. Both algorithms were

194

VNS-List VNS-Tree
Instance Size Cost Time (s) Cost Time (s) Gap(%)

fnl4461 501 71,604.0 335.78 68,876.6 337.74 3.81
751 118,949.3 1,514.76 114,030.0 1,360.74 4.14

1001 171,559.5 7,124.89 166,489.8 3,265.75 2.96

brd14051 501 52,959.0 339.31 50,369.9 391.21 4.89
751 85,922.1 1,887.44 82,983.1 1,366.43 3.42

1001 122,619.7 7,771.57 118,675.4 3,327.25 3.22

d18512 501 52,539.5 355.10 49,544.7 417.09 5.70
751 84,205.5 1,823.17 80,734.1 1,319.35 4.12

1001 122,925.8 7,051.67 118,675.4 3,328.77 3.46

d15112 501 954,071.7 325.23 926,331.2 395.52 2.91
751 1,350,704.7 1,545.95 1,311,002.1 1,252.89 2.94

1001 1,656,088.1 7,354.25 1,602,127.4 3,368.20 3.26

nrw1379 501 60,669.8 349.62 58,441.8 377.83 3.67
751 105,495.7 1,668.71 101,737.7 1,407.51 3.56

1001 161,465.0 6,511.14 155,471.9 2,930.06 3.71

pr1002 501 486,090.5 343.58 470,294.5 387.89 3.25
751 816,215.3 1,560.94 788,885.5 1,363.88 3.35

1001 1,159,345.6 7,636.01 1,122,976.0 3,099.81 3.14

Table 1: Performance Comparison Between VNS-List and VNS-Tree Based on Type 1 Data Set

run on a Linux server with 3 GB memory and Intel Xeon(R)
2.66 GHz processor. VNS-Tree has 3 parameters, which
we fixed after some preliminary experimentation as fol-
lows: max iter = 50; max nonimproving = 15; and
pop size = 10. Each instance was solved ten times, and the
average tour costs and computing times were reported.

For the sake of brevity, we only provide the detailed re-
sults for the three largest instances with 501; 751; and 1001
vertices for each test set. For all the smaller instances with
25; 51; 75; 101; and 251 vertices, VNS-Tree produces
equivalent or better solutions than VNS-List, and the gap
in performance increases with problem size.

Table 1 gives the results for the Type 1 data set, where the
last column gives the percentage gap between the solution
values of VNS-Tree and VNS-List. The results show that
VNS-Tree was able to find better solutions than VNS-List
over all instances; the average percentage improvement is
2.56%. In fact, VNS-Tree found better final solutions than
VNS-List for 40 out of the 48 instances, and produced the
same solutions as VNS-List for the remainder; the eight in-
stances where VNS-Tree did no better than VNS-List are
small instances with either 25 or 51 vertices.

Table 2 presents the results for the Type 2 data set, where
the second column gives the length of the optimal solution
for each instance. The results show that the VNS-Tree al-
gorithm was able to find optimal solutions for 40 out of the
48 instances, including all the instances with 251 vertices or
fewer (not shown); furthermore, for the 8 instances where
the optimal solution was not found (highlighted in bold), the
difference from optimal is less than 0.5%. In contrast, VNS-
List was only able to solve 20 out of the 48 instances; all
of these instances had 101 or fewer vertices. The average

improvement of VNS-Tree over VNS-List for this test set is
5.06%, and the results suggest that the gap will increase as
the size of the problem instances increases.

For both test cases, our implementation of VNS-Tree runs
faster than VNS-List as the size of the problem instances
increases. However, this is likely to be only by a constant
factor since the asymptotic running time for both algorithms
is O(n3). In any case, our results suggest that VNS-Tree
runs no slower than VNS-List while producing significantly
better solutions.

Conclusions and Future Work

The main contribution of this study is the tree representa-
tion of feasible solutions for the TSPPDL. By using this
data structure, the feasibility of the solution is automatically
guaranteed, which aids greatly in both the design and im-
plementation of search operators for the problem. We re-
produced the basic search operators using the tree structure
and designed several new operators for a VNS heuristic for
the problem; experimental results revealed that our heuristic
outperforms the previous best VNS-List heuristic.

This work opens up new directions of research for the
TSPPDL. A major failing of the vertex representation is the
need to ensure solution feasibility. This makes the imple-
mentation of certain techniques, e.g., genetic algorithms or
simulated annealing, difficult or impossible. In contrast, the
tree representation naturally lends itself to such approaches;
in fact, the crossover operator used in VNS-Tree can be em-
ployed for the same purpose in an evolutionary algorithm.
The tree data structure can also be considered for other
problems involving pickup and delivery with the LIFO con-
straint, including the addition of capacity constraints; multi-

195

VNS-List VNS-Tree
Instance Size Optimal Solution Cost Time (s) Cost Time (s) Gap(%)

fnl4461 501 21,818.0 23,559.5 350.50 21,818.0 156.26 7.39
751 30,079.0 33,373.2 3,482.52 30,079.0 412.80 9.87

1001 40,161.0 48,290.8 14,853.43 40,229.6 937.92 16.69

brd14051 501 14,853.0 15,559.4 426.64 14,853.0 140.25 4.54
751 22,115.0 25,186.8 3,464.85 22,118.1 383.29 12.18

1001 32,141.0 35,593.5 7,660.13 32,153.8 938.86 9.66

d18512 501 14,853.0 15,917.5 408.17 14,853.0 141.15 6.69
751 22,115.0 24,328.8 3,145.05 22,115.0 405.24 9.10

1001 32,141.0 39,109.4 11,310.67 32,293.9 962.63 17.43

d15112 501 271,463.0 291,305.2 356.82 271,519.3 156.94 6.79
751 334,413.0 375,759.5 2,738.65 334,413.0 422.89 11.00

1001 385,358.0 493,592.7 8,213.00 387,128.7 1,069.67 21.57

nrw1379 501 18,598.0 21,543.3 452.43 18,598.0 158.62 13.67
751 29,228.0 32,666.4 2,469.73 29,280.0 423.76 10.37

1001 40,518.0 49,314.8 7,415.68 40,518.0 982.51 17.84

pr1002 501 134,803.0 153,012.7 315.94 134,803.0 140.34 11.90
751 195,752.0 204,241.7 2,558.34 195,752.0 362.62 4.16

1001 258,231.0 329,492.0 11,857.80 258,270.9 861.49 21.62

Table 2: Performance Comparison Between VNS-List and VNS-Tree Based on Type 2 Data Set

ple vehicles; and time windows.

References

Applegate, D.; Bixby, R.; Chvátal, V.; and
Cook, W. 2005. Concorde tsp solver.
http://www.tsp.gatech.edu/concorde/index.html.

Bent, R., and Van Hentenryck, P. 2004. A two-stage hy-
brid local search for the vehicle routing problem with time
windows. Transportation Science 38(4):515–530.

Brest, J., and Žerovnik, J. 2005. A heuristic for the asym-
metric traveling salesman problem. In Proceedings of The
6th Metaheuristics International Conference, 145–150.

Carrabs, F.; Cerulli, R.; and Cordeau, J.-F. 2007. An ad-
ditive branch-and-bound algorithm for the pickup and de-
livery traveling salesman problem with lifo or fifo load-
ing. INFOR: Information Systems and Operational Re-
search 45(4):223–238.

Carrabs, F.; Cordeau, J.-F.; and Laporte, G. 2007. Variable
neighborhood search for the pickup and delivery traveling
salesman problem with lifo loading. INFORMS Journal on
Computing 19(4):618–632.

Cassani, L., and Righini, G. 2004. Heuristic algorithms for
the tsp with rear-loading. In 35th Annual Cong. Italian Oper.
Res. Soc. (AIRO XXXV).

Cordeau, J.-F.; Iori, M.; Laporte, G.; and Salazar González,
J. J. 2010. A branch-and-cut algorithm for the pickup and
delivery traveling salesman problem with lifo loading. Net-
works 55(1):46–59.

Fischetti, M., and Toth, P. 1989. An additive bounding pro-

cedure for combinatorial optimization problems. Operations
Research 37(2):319–328.

Hansen, P., and Mladenović, N. 2001. Variable neighbor-
hood search: Principles and applications. European Journal
of Operational Research 130(3):449–467.

Ladany, S. P., and Mehrez, A. 1984. Optimal routing
of a single vehicle with loading and unloading constraints.
Transportation Planning and Technology 8(4):301–306.

Li, H., and Lim, A. 2003. Local search with annealing-like
restarts to solve the vrptw. European Journal of Operational
Research 150(1):115–127.

Mladenović, N., and Hansen, P. 1997. Variable neigh-
borhood search. Computers and Operations Research
24(11):1097–1100.

Reinelt, G. 1991. Tsplib— traveling salesman problem li-
brary. ORSA Journal on Computing 3(4):376–384.

Taillard, E.; Badeau, P.; Gendreau, M.; Guertin, F.; and
Potvin, J. Y. 1997. A tabu search heuristic for the vehi-
cle routing problem with soft time windows. Transportation
Science 31(2):170–186.

196

