
Dealing with Infinite Loops, Underestimation,
and Overestimation of Depth-First Proof-Number Search

Akihiro Kishimoto
Department of Mathematical and Computing Sciences

Graduate School of Information Science and Engineering
Tokyo Institute of Technology

PRESTO, Japan Science and Technology Agency, Japan
Email:kishimoto@is.titech.ac.jp

Abstract

Depth-first proof-number search (df-pn) is powerful
AND/OR tree search to solve positions in games. However,
df-pn has a notorious problem of infinite loops when applied
to domains with repetitions. Df-pn(r) cures it by ignoring
proof and disproof numbers that may lead to infinite loops.

This paper points out that df-pn(r) has a serious issue of un-
derestimating proof and disproof numbers, while it also suf-
fers from the overestimation problem occurring in directed
acyclic graph. It then presents two practical solutions to these
problems. While bypassing infinite loops, the threshold con-
trolling algorithm (TCA) solves the underestimation problem
by increasing the thresholds of df-pn. The source node detec-
tion algorithm (SNDA) detects the cause of overestimation
and modifies the computation of proof and disproof numbers.

Both TCA and SNDA are implemented on top of df-pn to
solve tsume-shogi (checkmating problem in Japanese chess).
Results show that df-pn with TCA and SNDA is far superior
to df-pn(r). Our tsume-shogi solver is able to solve several
difficult positions previously unsolved by any other solvers.

Introduction

Developing efficient AND/OR tree search has been a funda-
mental topic in AI, because solving complex AND/OR trees
is required for problem-solving procedures. Such an exam-
ple is to find a winning way from a given position in games.

Research in solving tsume-shogi (checkmating problem
in Japanese chess) has produced a variety of powerful
domain-independent AND/OR tree search techniques (Seo,
Iida, and Uiterwijk 2001; Nagai 2002). In particular, suc-
cessful ideas behind depth-first proof-number search (df-pn)
(Nagai 2002) have been adapted to other games, including
checkers (Schaeffer et al. 2007), and the life and death prob-
lem in the game of Go (Kishimoto and Müller 2005).

Df-pn is an enhanced reformulation of best-first proof-
number search (PNS) (Allis, van der Meulen, and van den
Herik 1994) in a depth-first manner. A leaf node to expand
next is selected by Allis’ proof and disproof numbers, an es-
timated difficulty to find a win or loss. The df-pn search is
controlled by the thresholds of proof and disproof numbers.

If the search space is a tree, df-pn is equivalent to
PNS with preserving good properties of reducing mem-

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ory requirement and interior node re-expansions. However,
the search space of many games is directed acyclic graph
(DAG), or even directed cyclic graph (DCG). While df-pn is
still a pragmatic choice, several issues must be addressed.

The infinite loop problem is an essential problem causing
df-pn never to solve a position even in infinite time. Al-
though df-pn(r) (Kishimoto 2005) cures this issue, we ad-
dress that df-pn(r) suffers from underestimating proof and
disproof numbers. The overestimation problem is caused by
counting proof and disproof numbers of the same node many
times, and has been addressed previously in (Schijf 1993;
Müller 2003; Seo, Iida, and Uiterwijk 2001). Both over-
estimation and underestimation delay searching promising
nodes and increase the search effort by a large margin.

This paper presents techniques to handle the three afore-
mentioned problems. Its contributions are synthesis of df-pn
with two novel methods and a demonstration of the promise
of our approach in solving difficult tsume-shogi instances.

The rest of this paper is organized as: Starting with a de-
scription of tsume-shogi, we review related work. Our new
algorithms are then described, followed by experimental re-
sults, and conclusions with outlines of further work.

Tsume-Shogi as a Testbed of AI Research

Shogi (Japanese chess) is a game with 15 million players and
the history of over 400 years. Not only there are a few hun-
dred human professional players but also an annual world
computer shogi championship has been held for 20 years to
determine the best of over 40 participating programs1.

As in chess the goal of shogi is to capture the king. How-
ever, unlike in chess, captured pieces can be later reused by
dropping one of them on the board (Hosking 1996). Because
of this rule, shogi has a larger average branching factor than
chess (80 - 100 versus 35). Developing strong shogi pro-
grams has been an important subject of game-playing (Scha-
effer 2001; Iida, Sakuta, and Rollason 2002).

Tsume-shogi is the checkmating problem where the at-
tacker checks the king and the defender escapes. The at-
tacker is the first player. To solve tsume-shogi, the attacker
must find at least one winning move, while all the moves
responded by the defender must be proven to be check mate.

1
http://www.computer-shogi.org/index_e.

html

108

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

Tsume-shogi is an ideal domain to investigate ideas on
AND/OR tree search, because there are many difficult in-
stances composed by tsume-shogi creators for hundreds of
years. Searching over a thousand of depth (ply) is often re-
quired to find solutions. Besides, specialized tsume-shogi
search engines are incorporated into most shogi programs,
because checkmating attacks plays a crucial role in shogi.

Related Work and Problem Descriptions

Depth-First Proof-Number Search

Let a proof be a win for the attacker (OR node) and a dis-
proof be a win for the defender (AND node). Df-pn (Na-
gai 2002) leverages proof and disproof numbers pn(n) and
dn(n) (Allis, van der Meulen, and van den Herik 1994) to
estimate a difficulty of finding a proof or disproof of node n.

pn(n) is the minimum number of leaf nodes that must
be proven to find a proof for n in a currently generated tree.
dn(n) is the minimum number of leaf nodes to be disproven
to find a disproof for n. pn(n) = 0 and dn(n) = ∞ are set
for proven terminal node n, while pn(n) = ∞ and dn(n) =
0 for disproven terminal node. pn(n) = dn(n) = 1 is set
for unproven leaf. Let n1, n2, · · · , nk be children of interior
node n. Since only one proven child suffices to prove an OR
node, while all children must be proven to prove an AND
node (and vice versa for disproof). pn(n) and dn(n) are:

• For OR node n, pn(n) = mini=1,···,k pn(ni) and

dn(n) =
∑k

i=1
dn(ni).

• For AND node n, pn(n) =
∑k

i=1
pn(ni) and dn(n) =

mini=1,···,k dn(ni).

As in PNS, df-pn expands a leaf node (called a most-
promising node) reached from the root by selecting a child
with the smallest proof number at each OR node, and a child
with the smallest disproof number at each AND node. Un-
like PNS, df-pn does so by using two thresholds: thpn(n)
for proof numbers and thdn(n) for disproof numbers.

At the root r, thpn(r) and thdn(r) are initialized to ∞.
Whenever df-pn reaches n from its parent p, or backtracks to
n after expanding n’s descendants, it computes pn(n) and
dn(n) by using proof and disproof numbers of n’s children.
pn(n) and dn(n) are cached in the transposition table for
reuse. If pn(n) ≥ thpn(n) or dn(n) ≥ thdn(n) holds,
df-pn backtracks to p. Otherwise, it selects a child n1 with
the smallest (dis)proof number at OR (AND) node n. Let
n2 be a child with the second smallest (dis)proof number at
OR (AND) node n. Df-pn searches n1 with the following
thresholds indicating the condition in which either n1 or n
is no longer on the path to reach a most-promising node:

• For OR node n, thpn(n1) = min(thpn(n),pn(n2) + 1)
and thdn(n1) = thdn(n) − dn(n) + dn(n1).

• For AND node n, thpn(n1) = thpn(n) − pn(n) +
pn(n1) and thdn(n1) = min(thdn(n),dn(n2) + 1).

Df-pn continues these procedures until finding a solution.

The Infinite Loop Problem and Df-pn(r)

When standard df-pn is applied to DCG, it has a fundamental
problem of causing infinite loops. Although (Nagai 2002)

Figure 1: An example showing that df-pn loops forever,
adapted from (Kishimoto and Müller 2008)

does not mention the existence of this problem2, (Kishi-
moto 2005) confirms it occurs in many domains including
Go, checkers, and shogi. Besides, (Kishimoto and Müller
2008) prove that df-pn loops forever when searching a DCG
in Figure 1. Df-pn must expand P to prove A. However,
this never occurs, because df-pn keeps selecting two paths
(a) A → C → F → H → L → N and (b) A → C → G →

J → O, and always satisfies thdn(N) ≤ dn(N) = dn(O)
via (a) and thdn(O) ≤ dn(O) = dn(H) + dn(P) via (b).

Df-pn(r) is a practical method to handle infinite loops
(Kishimoto and Müller 2003; Kishimoto 2005). pn(n) for
OR node and dn(n) for AND node are computed in a stan-
dard way. Because adding (dis)proof numbers from an an-
cestor to a node is intuitively bad, df-pn(r) detects this case
by computing minimal distance md(n), the length of the
shortest path from the root to node n (see md in Figure 1).
Df-pn(r) classifies n’s children c into two types: c is nor-
mal if md(n) < md(c). Otherwise c is old. If at least
one unproven normal child exists, all old children are ig-
nored to compute dn(n) for OR node n. Otherwise, dn(n)
is set to the maximum of disproof numbers of all old chil-
dren. pn(n) for AND node n is analogously treated.

In Figure 1, df-pn(r) computes dn(O) = dn(P) for un-
proven P and H , because H is old and P is normal at O.

The Underestimation and Overestimation
Problems

Although (Kishimoto 2005) shows that df-pn(r) is effective
in Go and checkers, we point out that it often underestimates
(dis)proof numbers, as shown in the left example in Figure
2. Df-pn(r) computes dn(D) = dn(E) for unproven E and
F , because F is D’s old child. However, more reasonable is
dn(D) = dn(E) + dn(F), because both E and F must be
disproven to disprove D.

Moreover, both df-pn and df-pn(r) overestimate proof and
disproof numbers. In the right example in Figure 2, the

2Despite our best effort, it is not possible to compare our solu-
tion with Nagai’s “solution”. Nagai also writes several Japanese ar-
ticles on tsume-shogi. However, the infinite loop problem is never
described, although it would be impossible to develop a strong
solver without handling it.

109

Figure 2: An example of the problems of underestimation
(left) and overestimation (right)

true value of dn(G) should be equal to dn(J). How-
ever, computing dn(G) counts dn(J) twice, derived by
dn(G) = dn(H)+dn(I) = dn(J)+dn(J) = 2×dn(J).

Previous Work on the Overestimation Problem

The overestimation problem occurs only when computing
pn for AND node and dn for OR node. In the other cases,
pn(n) and dn(n) are computed in a standard way.

Since overestimation also occurs in PNS, a few solutions
are presented but are specific to PNS (Allis 1994; Schijf,
Allis, and Uiterwijk 1994; Müller 2003). An exact method
in (Schijf 1993) is unfortunately impractical even for tic-tac-
toe, due to high computational overhead.

In Figure 2, let us call J a destination node, which has
more than one parent, and G a source node of destination
node nd, which is nd’s first ancestor merged into by tracing
back different paths starting at nd. (Nagai 2002) presents a
method to detect a source node ns and takes the maximum of
(dis)proof numbers of ns’s children to compute pn(ns) (or
dn(ns)), instead of summing up them. In his method, each
transposition table (TT) entry of node n has one pointer to
one parent p. When df-pn reaches n via p, p is saved in n’s
TT entry. Then, if df-pn reaches n via another parent q, it
indicates that n is a destination node and there may exist a
source node ns that counts pn(n) or dn(n) more than once.
ns is detected by checking if one of the ancestors obtained
by recursively traversing pointers from n in the TT is merged
into ns, which is also on the path of the current df-pn search.

In Figure 2, assume that J points to H and H points
to G in the TT, because df-pn previously reaches J via
G → H → J . Then, if df-pn reaches J via G → I → J ,
Nagai’s method detects that J has a different parent I , which
is not stored in J’s TT entry (i.e., H). G is detected as a
source node by traversing J → H and then H → G in
the TT, and G is on path G → I → J . Nagai’s method
then sets pn(G) = max(dn(H),dn(I)) = dn(J) accu-
rately. However, this approach underestimates dn(A), be-
cause it considers A to be a source and computes dn(A) =
max(dn(B),dn(C),dn(F)) = max(dn(B),dn(E) +
dn(F),dn(F)) = max(dn(B),dn(E) + dn(F)). The
true value of dn(A) should be dn(B) + dn(E) + dn(F).

Let b be the number of unproven children and n1, · · ·nk

be children of node n. Weak proof-number search (WPNS)
(Ueda et al. 2008), which is a refinement to (Okabe 2005),
modifies pn(n) and dn(n) in the following way:

• For OR node n, dn(n) = maxi=1,···,k dn(ni) + b − 1.

• For AND node n, pn(n) = maxi=1,···,k pn(ni) + b − 1.

WPNS avoids counting dn(J) twice to compute dn(G)
in Figure 2, at the price of slightly overestimating dn(G) to
dn(J)+1 and reusing the proof and disproof numbers in the
TT less frequently than df-pn. Also, WPNS underestimates
proof and disproof numbers, because most of the (dis)proof
numbers at interior nodes are assumed to be 1.

Our Solutions

This section describes two practical algorithms to overcome
the issues of previous approaches.

The Threshold Controlling Algorithm

Df-pn(r) tries to break the termination condition at node
n that has an unproven old child by decreasing pn(n) or
dn(n). This way, it reaches a leaf, avoiding infinite loops.
In contrast, the Threshold Controlling Algorithm (TCA),
breaks the termination condition by increasing the thresh-
olds at n. This way, TCA tries to reach a leaf to expand.

The underestimation problem of df-pn(r) is caused by ig-
noring old children determined by md(n), although md(n)
does not always indicate the existence of infinite loops. TCA
computes pn(n) and dn(n) in a standard way. TCA there-
fore cures underestimation in Figure 2. dn(D) = dn(E) +
dn(F) in TCA while dn(D) = dn(E) in df-pn(r).

To overcome infinite loops, TCA leverages the minimal
distance as a criterion of increasing thresholds. When TCA
enters n and computes pn(n) and dn(n) by retrieving the
TT entries of n’s children, it checks if any unproven child of
n is old. If n has no unproven old child, the standard df-pn
procedure is performed (this will be modified later). Other-
wise, TCA resets the thresholds to max(thpn(n),pn(n) +
1) and max(thdn(n),dn(n) + 1). With the increased
thresholds, pn(n) < thpn(n) and dn(n) < thdn(n) hold.
TCA therefore expands n and selects the best child n1 - i.e.,
one with the smallest proof number at OR node and one
with smallest disproof number at AND node. TCA adjusts
thpn(n1) and thdn(n1) in a standard way except that they
are based on the increased thresholds.

Assume that TCA increases thpn(n) and thdn(n) at
node n that has an unproven old child, selects the best child
c at n, and enters c. thpn(c) and thdn(c) are also increased
even if c has only unproven normal children. This is to avoid
infinite loops caused by the case where TCA immediately
backtracks to n from c by satisfying the termination condi-
tion at c. TCA continues the procedure of increasing thresh-
olds until either expanding a leaf, or detecting a new cyclic
path. Expanding a leaf reduces the unexplored search space.
If a new cycle is detected, (Kishimoto and Müller 2004) cor-
rectly saves a (dis)proof in the TT, and the (dis)proof is prop-
agated back. This also reduces the unexplored space. When
TCA backtracks to n, it makes progress in finding a solu-
tion. Therefore, after TCA recomputes pn(n) and dn(n),
the previously increased thresholds are reused to determine
if TCA still needs to re-search n.

Figure 3 presents the pseudo-code of df-pn with TCA. In
particular, see lines marked by (*) to clarify the difference
between standard df-pn and TCA. Note that inc flag is a
flag to determine if TCA increases thpn and thdn.

110

DFPNwithTCA(n, thpn, thdn, inc flag) {
if (n is a terminal node) { handle n and return; }
first time = true;
while (1) {

(*) /* determine whether thpn and thdn are increased. */
(*) if (n is a leaf) inc flag = false;
(*) if (n has an unproven old child) inc flag = true;
(*) expand and compute pn(n) and dn(n);
(*) if (first time && inc flag) {
(*) /* increase thresholds */
(*) thpn = max(thpn, pn(n) + 1);
(*) thdn = max(thdn, dn(n) + 1);
(*) }

if (pn(n) ≥ thpn || dn(n) ≥ thdn)
break; // termination condition is satisfied

(*) first time= false;
find the best child n1 and second best child n2;
if (n is an OR node) { /* set new thresholds */

thpn child = min(thpn, pn(n2) + 1);
thdn child = thdn - dn(n) + dn(n1);

else {
thpn child = thpn - pn(n) + pn(n1);
thdn child = min(thdn, dn(n2) + 1);

}
DFPNwithTCA(n1, thpn child, thdn child, inc flag);

}
save pn(n) and dn(n) in TT.

}

Figure 3: Pseudo code of df-pn with TCA

One might argue that increasing thresholds may result in
exploring the larger search space that may not efficiently
help prove or disprove the root. However, the threshold con-
trol scheme of TCA is based on the observation that most
nodes have only normal children. As we will see in the next
section, TCA empirically performs better than df-pn(r).

The Source Node Detection Algorithm

Because TCA does not ignore old children, the overestima-
tion problem tends to occur more frequently than in df-pn(r).
The Source Node Detection Algorithm (SNDA) overcomes
this problem by generalizing Nagai’s method, while avoid-
ing underestimation that appears in his method, and comput-
ing (dis)proof numbers more accurately than WPNS.

As in (Nagai 2002), SNDA contains one pointer to one
parent in each TT entry. SNDA detects a source node ns in
the same way. However, unlike in Nagai’s method, each TT
entry contains the fixed number N of moves.

Assume that c1 and c2 are ns’s children created by re-
spectively making moves m1 and m2 at ns. SNDA detects
that ns is a source node leading to a destination node nd, if
ns and c1 are on the path currently taken by df-pn search,
c2 is reached by a recursive procedure of traversing parent
pointers starting from nd, and the pointer in c2’s TT entry
points to ns. m1 and m2 are then saved in the TT entry of
ns, because they eventually lead to nd. If another move m3

is detected at ns, m3 is additionally saved in ns’s TT entry,

as long as less than N moves are retained.

Let n1, · · · , nl be n’s children obtained by making moves
in the TT entry of n, and nl+1, · · ·nk be other children of n.
SNDA computes pn(n) and dn(n) as follows:

dn(n) = max
i=1,···,l

dn(ni) +
k∑

j=l+1

dn(nj) (OR node)

pn(n) = max
i=1,···,l

pn(ni) +

k∑

j=l+1

pn(nj) (AND node)

In Figure 2, SNDA saves moves A → C and A → F in
A’s TT entry when detecting that A is a source node of F .
dn(A) is now accurately computed because:

dn(A) = max(dn(C),dn(F)) + dn(B)

= max(dn(D),dn(F)) + dn(B)

= max(dn(E) + dn(F),dn(F)) + dn(B)

= dn(E) + dn(F) + dn(B)

Also, dn(G) = dn(J) is derived by SNDA.

Implementation Details

As in (Kishimoto and Müller 2003), TCA updates the mini-
mal distance of node n if n has only unproven old children.

There are several choices when implementing SNDA. We
choose the best possible one, based on the results obtained
by our preliminary implementations.

In the worst case, the complexity of operations to traverse
pointers is equal to the maximum search depth of all previ-
ous search. Moreover, this checking process is performed
whenever SNDA detects a destination node nd reached via
a parent that is not in nd’s TT entry. This is because many
paths to nd exist as well as whether a source node ns exists
or not is determined only by comparing a node on the cur-
rent path of depth-first search with a set of nodes obtained by
traversing the pointers in the TT. Since detecting ns incurs
intensive computations, we incorporate a strategy in (Nagai
2002). This strategy checks if pn(nd) or dn(nd) is involved
in computing pn(ns) or dn(ns). If nd is not involved, the
procedure of detecting ns is immediately terminated.

Assume that move m is saved in ns’s TT entry. While m
was a cause of overestimating pn(ns) or dn(ns) in previ-
ous iterations, it may be unrelated to overestimating pn(ns)
or dn(ns) in the next iteration. One choice is to remove
m from the TT entry in this case. However, m is preserved
once m is saved in the TT entry in our implementation, be-
cause removing m returned larger (dis)proof numbers, and
degraded the performance. Similarly, the implementation
retains the parent pointer once it is saved in the TT entry.

Each TT entry contains at most 10 moves within a total
of 64 bit integer, which is possible due to a small average
branching factor (about 5) in tsume-shogi. The move in-
dexes obtained by sorting moves are saved in the TT entry
to have consistent results for the identical node via different
paths. If more than 10 moves exist causing overestimation,
10 best moves are selected by shogi-specific knowledge.

111

Experimental Results

Setup of Experiments

Many state-of-the-art techniques are integrated with all of
our implementations including (Kawano 1996; Seo 1999;
Nagai 2002; Kaneko et al. 2005; Kishimoto and Müller
2004; 2005). Overestimation is sometimes easily detected,
such as the case where both players keep capturing pieces at
a certain square on the board. These are handled by shogi-
specific techniques. The remaining overestimation problem
is hard to detect by shogi-specific knowledge.

Unlike (Ueda et al. 2008), our WPNS implementation
includes an evaluation function h(n) based on the material
balance to heuristically initialize proof and disproof num-
bers at leaf node. Therefore, we slightly change the com-
putation of WPNS to add (b − 1) × h(n), instead of adding
(b − 1) to pn(n) or dn(n). This modification improves
WPNS by a large margin. Additionally, h(n) is incorporated
into all the versions.

78 notoriously difficult tsume-shogi instances composed
by tsume-shogi creators are selected from (Kato 2009), in-
cluding ones that turned out to have no mating sequence
or shorter unexpected solutions, because many of them are
still non-trivial. The solution lengths range between 300 and
1525 ply. The instances involve complicated DAG and cy-
cles that occur after tsume-shogi solvers search over tens of
ply. Moreover, the test suite includes several instances that
have not been solved by any other tsume-shogi solver 3.

Our experiments were run on a 2.66GHz Xeon L5410
with 6MB L2 cache with the time limit of 50,000 seconds
(about 13.9 hours) per instance with a 2GB transposition ta-
ble. We prepare several versions to compare performance.

Results

Table 1 summarizes the number of unsolved instances. The
table confirms that df-pn with TCA solves more instances
than df-pn(r). TCA solves 40 instances more quickly than
df-pn(r) of 63 instances solved by both versions.

A typical observed example showing that df-pn(r) fails in
solving instances due to underestimation is explained with
the help of Figure 4. Assume that B must be proven to prove
the root, C has two unproven children D and E, which are
typically created by moving kings in two directions, and E
is old because of a shorter path via F , which is typically
created by moving a promoted bishop or rook. Because df-
pn(r) underestimates pn(C) = pn(D) by ignoring E, it
selects C at A and delays expanding B. In contrast, TCA
selects B because pn(C) = pn(D) + pn(E) > pn(D).

Due to the overestimation problem caused by DAG, df-pn
with TCA occasionally suffers from a phenomenon in which

3(Nagai 2002) claims that his solver solved all instances with
solution lengths of over 300 ply, which were available at the year
of 2002. Not only quite a few difficult instances are later composed
by tsume-shogi creators, but also Nagai’s remarkable results are
unfortunately known to be unreproducible, partly due to a lack of
descriptions on the infinite loop problem. For example, although
(Okabe 2005) develops one of the best solvers, his solver cannot
still solve at least 6 instances in our test suite. Moreover, neither the
source nor executable code of Nagai’s solver is publicly available.

Table 1: The number of problems unsolved by each method

Algorithm Num. unsolved

df-pn(r) 14

df-pn(r) + SNDA 20

df-pn + TCA 8

df-pn + TCA + NAGAI 4

df-pn + TCA + WPNS 1

df-pn + TCA + SNDA 1

Figure 4: A typical case of underestimation on df-pn(r)

the (dis)proof number at the root exceeds a large integer
value(=200,000,000), which is defined as ∞ in our imple-
mentation to represent proof and disproof numbers within
32 bit integer. Of 8 unsolved instances, TCA is unable to
solve 5 instances because of the phenomenon. This demon-
strates that it is necessary to handle overestimation.

Interestingly, while including a method to detect overesti-
mation (i.e., NAGAI, WPNS, or SNDA) improves the solv-
ing ability of df-pn with TCA, df-pn(r) with SNDA solves
much fewer instances than standard df-pn(r). We observed
that df-pn(r) with SNDA occasionally suffers from severer
underestimation and results in poor performance. For ex-
ample, df-pn(r) happens to accurately compute dn(A) =
dn(B) + dn(E) + dn(F) for unproven B, E, and F in
Figure 2, because dn(D) = dn(E). With SNDA, df-pn(r)
underestimates dn(A) = dn(B)+max(dn(C),dn(F)) =
dn(B) + max(dn(E),dn(F)), because SNDA detects the
existence of source node A from destination F .

In Table 1, it is not surprising to confirm that SNDA is
better than NAGAI to be integrated with df-pn + TCA, be-
cause SNDA extends NAGAI. However, WPNS with df-pn
+ TCA solves the same set of instances solved by SNDA.
In most cases, WPNS achieves comparable performance to
SNDA. Of 77 problems solved by both, SNDA solves 38
problems more quickly, while WPNS solves 39 problems
more quickly. On average, the node expansion rate with
WPNS is about 37% larger than that with SNDA.

Table 2: Execution time (seconds) on the hardest problems
for df-pn + TCA + WPNS to solve

Instance TCA + WPNS TCA + SNDA Solution Length

Meta-Shinsekai 45,356 7,298 941

Sekitoba 18,545 7,241 525

Megalopolis 48,907 13,590 515

However, when instances become extremely hard to
solve, SNDA is more important. Tables 2 and 3 show the

112

Table 3: Node expansions on the hardest problems for df-pn
+ TCA + WPNS to solve.

Instance TCA + WPNS TCA + SNDA

Meta-Shinsekai 7,775,332,911 1,045,623,765

Sekitoba 3,260,072,126 1,048,715,194

Megalopolis 7,479,994,586 853,059,521

hardest instances for df-pn + TCA + WPNS. SNDA solves
these instances 2.5-6.2 times more quickly than WPNS, be-
cause WPNS expands 3.1-8.8 times more nodes than SNDA.
In solving Meta-Shinsekai, while WPNS is expected to un-
derestimate proof numbers, SNDA returns smaller proof
numbers than WPNS on several positions located on the so-
lution sequence in our analysis. One hypothesis is that slight
overestimation of proof numbers in WPNS is accumulated
when proof numbers are backed up to the root with very
long sequence, and eventually becomes non-negligible4.

One important note is that both SNDA and WPNS must be
integrated with TCA. While SNDA and WPNS often avoid
the infinite loop problem by making proof and disproof num-
bers smaller, they do not always handle infinite loops. If
we switch off TCA, the number of unsolved instances is in-
creased to 7 for both df-pn + SNDA and df-pn + WPNS.
Of 7 unsolved instances, each version seems to be unable to
solve 5 instances because of the infinite loop problem.

To the best of our knowledge, three instances (“Mega-
lopolis” (modified version, solution length of 515 ply),
“Journey to Jupiter” (411 ply), and “Atlantis” (951 ply)) are
newly solved only by our solver (13,590 seconds, and 5,481
seconds, and 210 seconds by df-pn + TCA + SNDA). Also,
our solver solves all the problems that are solved by Nagai’s
solver but that remain unsolved by any other solvers. Such
examples include Meta-Shinsekai and Sekitoba in Table 2.

Conclusions and Future Work

This paper presents practical solutions to handle infinite
loops, underestimation, and overestimation occurring in
depth-first proof-number search. Promising results are ob-
tained in solving notoriously difficult tsume-shogi problems.

One obvious research direction is to apply TCA and
SNDA to other domains. Tsume-Go is an ideal domain, be-
cause the best solver is based on df-pn(r) (Kishimoto and
Müller 2005). Also, because our TCA also improves WPNS,
which has an advantage of the faster node expansion rate
than SNDA, a hybrid approach of SNDA and WPNS is
another research possibility. Finally, as an open question,
(Kishimoto and Müller 2008) describes that df-pn(r) is a
strong candidate for guaranteeing the completeness on solv-
ing any finite DCG. Our remedy for infinite loops is also a
candidate to investigate theoretical completeness properties.

4Solving Meta-Shinsekai and Megalopolis builds a DAG as in
the right example in Figure 2 with many layers. They are typically
created by a few moves on defender’s promoted pawns and king.

Acknowledgments

Finacial support was provided by the JST PRESTO pro-
gram. We would like to thank Tomoyuki Kaneko and Martin
Müller for their beneficial comments.

References
Allis, L. V.; van der Meulen, M.; and van den Herik, H. J. 1994.
Proof-number search. Artificial Intelligence 66(1):91–124.

Allis, L. V. 1994. Searching for Solutions in Games and Artificial
Intelligence. Ph.D. Dissertation, University of Limburg.

Hosking, T. 1996. The Art of Shogi. The Shogi Foundation.

Iida, H.; Sakuta, M.; and Rollason, J. 2002. Computer shogi.
Artificial Intelligence 134(1-2):121–144.

Kaneko, T.; Tanaka, T.; Yamaguchi, K.; and Kawai, S. 2005. Df-
pn with fixed-depth search at frontier nodes (in Japanese). In 10th
Game Programming Workshop, 1–8.

Kato, T. 2009. Tsume-shogi toy box: List of tsume-
shogi problems with very long solution sequences (in Japanese).
http://www.ne.jp/asahi/tetsu/toybox/kenkyu/cholist.htm.

Kawano, Y. 1996. Using similar positions to search game trees. In
Games of No Chance, volume 29 of MSRI Publications, 193–202.

Kishimoto, A., and Müller, M. 2003. Df-pn in Go: Application
to the one-eye problem. In Advances in Computer Games Many
Games, Many Challenges, 125–141.

Kishimoto, A., and Müller, M. 2004. A general solution to the
graph history interaction problem. In AAAI’04, 644–649.

Kishimoto, A., and Müller, M. 2005. Search versus knowledge for
solving life and death problems in Go. In AAAI-05, 1374–1379.

Kishimoto, A., and Müller, M. 2008. About the completeness of
depth-first proof-number search. In Computers and Games 2008,
volume 5131 of Lecture Notes in Computer Science, 146–156.

Kishimoto, A. 2005. Correct and Efficient Search Algorithms in the
Presence of Repetitions. Ph.D. Dissertation, University of Alberta.

Müller, M. 2003. Proof-set search. In Computers and Games,
volume 2883 of Lecture Notes in Computer Science, 88–107.

Nagai, A. 2002. Df-pn Algorithm for Searching AND/OR Trees
and Its Applications. Ph.D. Dissertation, University of Tokyo.

Okabe, F. 2005. Application of the route branch number for solving
tsume shogi problems (in Japanese). In 10th Game Programming
Workshop, 9–16.

Schaeffer, J.; Burch, N.; Björnsson, Y.; Kishimoto, A.; Müller, M.;
Lake, R.; Lu, P.; and Sutphen, S. 2007. Checkers is solved. Science
317(5844):1518–1522.

Schaeffer, J. 2001. A gamut of games. AI Magazine 2(3):29–46.

Schijf, M.; Allis, L. V.; and Uiterwijk, J. W. H. M. 1994. Proof-
number search and transpositions. ICCA Journal 17(2):63–74.

Schijf, M. 1993. Proof-number search and transpositions. Master’s
thesis, University of Leiden.

Seo, M.; Iida, H.; and Uiterwijk, J. W. H. M. 2001. The PN∗-
search algorithm: Application to tsume-shogi. Artificial Intelli-
gence 129(1-2):253–277.

Seo, M. 1999. On effective utilization of dominance relations in
tsume-shogi solving algorithms (in Japanese). In 8th Game Pro-
gramming Workshop, 137–144.

Ueda, T.; Hashimoto, T.; Hashimoto, J.; and Iida, H. 2008. Weak
proof-number search. In Computers and Games 2008, volume
5131 of Lecture Notes in Computer Science, 157–168.

113

