
New Worst-Case Upper Bound for #2-SAT and #3-SAT
with the Number of Clauses as the Parameter

Junping Zhou1,2, Minghao Yin2,3*, Chunguang Zhou1

1College of Computer Science and Technology, Jilin University, Changchun, P. R. China, 130012
2College of Computer, Northeast Normal University, Changchun, P. R. China, 130117

3Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Changchun, P. R. China 130012
zhoujp08@mails.jlu.edu.cn, mhyin@nenu.edu.cn, cgzhou@jlu.edu.cn

Abstract
The rigorous theoretical analyses of algorithms for #SAT
have been proposed in the literature. As we know, previous
algorithms for solving #SAT have been analyzed only
regarding the number of variables as the parameter.
However, the time complexity for solving #SAT instances
depends not only on the number of variables, but also on the
number of clauses. Therefore, it is significant to exploit the
time complexity from the other point of view, i.e. the
number of clauses. In this paper, we present algorithms for
solving #2-SAT and #3-SAT with rigorous complexity
analyses using the number of clauses as the parameter. By
analyzing the algorithms, we obtain the new worst-case
upper bounds O(1.1892m) for #2-SAT and O(1.4142m) for
#3-SAT, where m is the number of clauses.

Introduction
Propositional model counting or #SAT is the problem of
computing the number of models for a given propositional
formula, i.e., the number of distinct truth assignments to
variables for which the formula evaluates to true.
Nowadays, efficient model counting algorithms have
opened up a range of applications. For example, various
probabilistic inference problems can be translated into
model counting problems (cf. Park 2002; Sang et al. 2005).
#SAT problem can be viewed as a generalization of the
well-known canonical NP-complete problem of
Propositional Satisfiability (SAT), which has been well
studied. Actually, model counting has been proved to be
#P-complete, harder than standard SAT problems (Bacchus
et al. 2003). Therefore, improvements in exponential time
bounds are crucial in determining the size of model
counting problem that can be solved. Even a slight

*Please correspond the author (Dr. Minghao Yin, mhyin@nenu.edu.cn)
for any theoretical problems of this paper.
 Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

improvement from O(ck) to O((c-)k) may significantly
increase the size of the problem being tractable.

Recently, tremendous efforts have been made on
efficient #SAT algorithms with complexity analyses. By
introducing independent clauses and combining formulas,
Dubois (1991) presented a #SAT algorithm which ran in
O(1.6180n) for #2-SAT and O(1.8393n) for #3-SAT, where
n is the number of variables of a formula. Based on a more
elaborate analysis of the relationship among the variables,
Dahllof et al. (2002) presented algorithms running in
O(1.3247n) for #2-SAT and O(1.6894n) for #3-SAT. Furer
et al. (2007) presented an algorithm performing in
O(1.246n) for #2-SAT by using a standard reduction.
Further improved algorithms in (Kutzkov 2007) presented
a new upper time bound for the #3-SAT (O(1.6423n)),
which is the best upper bound so far.

Different from complexity analyses regarding the
number of variables as the parameter, Hirsch (2000)
introduced a SAT algorithm with a time bound O(1.239m),
where m is the number of clauses of a formula. An
improved algorithm for SAT with an upper bound
O(1.234m) was proposed in (Masaki 2005). Skjernaa (2004)
presented an algorithm for Exact Satisfiability with a time
bound O(2m). Bolette (2006) addressed an algorithm for
Exact Satisfiability with a time bound O(m!).

Similar to the SAT problem, the time complexity of
#SAT problem is calculated based on the size of the #SAT
instances, which depends not only on the number of
variables, but also on the number of clauses. Therefore, it
is significant to exploit the time complexity from the other
point of view, i.e. the number of clauses. However, so far
all algorithms for solving #SAT have been analyzed based
on the number of variables. And to our best knowledge, it
is still an open problem that analyzes the #SAT algorithm
with the number of clauses as the parameter.

The aim of this paper is to exploit new upper bounds for
#2-SAT and #3-SAT using the number of clauses as the
parameter. We provide algorithms for solving #2-SAT and
#3-SAT respectively. The algorithm for #2-SAT employs a
new principle, i.e. the five-vertex principle, to simplify
formulae. This allows us to eliminate variables whose

217

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

degree is 3, and therefore improves the efficiency of the
algorithm. In addition, by transforming a formula into a
constraint graph, we propose some detailed analyses
between the adjacent variables in the constraint graph,
which provides us theoretical foundations for choosing
better variables to branch. By analyzing the algorithm, we
obtain the worst-case upper bound O(1.1892m) for #2-SAT.
For the algorithm solving #3-SAT, we adopt a different
strategy, first simplifying the 3-clause formulae into 2-
clause formulae, then solving these 2-clasue formulae by
the algorithm for #2-SAT. To demonstrate that this
strategy is efficient, we give a deep analysis and obtain the
worst-case upper bound O(1.4142m) for #3-SAT.

Problem Definitions
We now describe the definitions that will be used in this
paper. A literal is either a Boolean variable x or its
negation x. If a literal is l, the negation of the literal is l.
A clause is a disjunction of literals which doesn’t contain a
complementary pair x and x simultaneously. A 2-clause
is the clause that contains exactly two literals. A 3-clause is
the corresponding clause. The length of a clause C is the
number of literals in it. A clause C is a unit clause if the
length of the clause is 1. We call the literal in the unit
clause is the unit literal. A k-SAT formula F in
Conjunction Normal Form (CNF) is a conjunction of
clauses, each of which contains exactly k literals. Any
Boolean variable xi in F can take a value true or false. A
truth assignment for F is a map that assigns each variable a
value. The satisfying assignment, called model, is the truth
assignment that makes F evaluated to true. The
propositional model counting or #SAT problem is to
determine the number of satisfying assignments for a
formula. #2-SAT is the problem of computing the number
of satisfying assignments of a 2-SAT formula and #3-SAT
is the corresponding problem for a 3-SAT formula.

A formula F in CNF can be expressed as an undirected
graph called constraint graph. In the constraint graph G,
the vertexes are the variables of F and the edges between
two vertexes if the corresponding variables appear together
in some clause of F. The degree of a vertex is the number
of edges incident to the vertex. The degree of a Boolean
variable x, represented by (x), is the degree of the
corresponding vertex. The degree of a formula F, denoted
by (F), is the maximum degree of variables in F. We say
a formula is a cycle or a path whenever the constraint
graph forms a cycle or a path. We define M(F) as the
number of models of the formula F, m as the number of
clauses in F, and n as the number of variables F contains.

After specifying the definitions, we present some basic
rules for solving #SAT problem. Suppose constraint graph
G can be partitioned into disjoint components G1 and G2
where there is no edge connecting a vertex in G1 to a
vertex in G2, i.e. the variables corresponding to vertexes in
G1 and G2 are mutually disjoint. Let F1 and F2 be the sub-
formulae of F corresponding to the two components G1 and
G2. Then,

M(F)=M(F1) M(F2) (1)

Given a formula F, the basic strategy of Davis-Putnam-
Logemann-Loveland (DPLL) computing the models of F is
to arbitrarily choose a variable x that appears in F. Then,

M(F)=M(F x)+M(F x) (2)

In order to determine the number of models of F l, we
adopt the unit literal rule which assigns the unit literal true.
The result of the unit literal rule, denoted by lF , can be
obtained by (1) removing all clauses containing the literal l
from F, and (2) deleting all occurrences of l from the
other clauses. However, when we apply the unit literal rule
to the two sub-formulae F x and F x, variables that
appear in F may not appear in the simplified version xF
and xF , which may make M(F x) and M(F x)
wrong. For example, let F=x y z and we choose x to
branch, then

When the sub-formula F x is simplified by the unit
literal rule, variable y and z are eliminated. Thus,
M(xF)=1. When the same rule is applied to F and F x,
we obtain M(F)=7 and M(xF)=3. It is obvious that
M(F) M(F x)+M(F x). Therefore, we introduce a
variable set R to record the eliminated variables, which we
will give a detailed description in the next section.

The Complexity Measure
In this subsection, we explain how we compute the
complexity of our algorithms. At first, we give a notion
called branching tree. The branching tree (Hirsch 2000) is
a hierarchical tree structure with a set of nodes, each of
which is labeled with a formula. Suppose a node is labeled
with a formula F, then its sons are labeled with the sub-
formulae F1, F2, … , Fj, each of which is obtained by
assigning a value to one of variables in F. From the
definition we can see that the process of constructing a
branching tree is the same as the process of executing
DPLL-style algorithms, therefore, we use the branching
tree to estimate the time complexity.
 In the branching tree, every node has a branching vector.
Let us consider a node labeled with F0 and its children
nodes labeled with F1, F2, …, Fk. The branching vector of
the node labeled with F0 is (r1, r2,…, rk), where ri=f(F0)-
f(Fi) (f(F0) is the number of clauses of F0). The value of
the branching vector of a node, called branching number
((r1, r2,…, rk)), is obtained from the positive root of the
following equation.

1

i

k
r

i
x =1 (4)

We define the maximum branching number of nodes in the
branching tree as the branching number of the branching
tree, expressed by max (r1, r2,…, rk). The branching
number of a branching tree has an important relationship

M(F)=M(F x)+M(F x) (3)

218

with the running time (T(m)) of DPLL-style algorithms. At
first, we assume that the running time of DPLL-style
algorithms performing on each node is in polynomial time.
Then we obtain the following inequality.

T(m) (max (r1, r2,…, rk)) m poly(F)

= (max T(m-ri))m poly(F)
1

k

i

(5)

where m is the number of clauses in the formula F, ploy(F)
is the polynomial time executing on the node F, and

 (r1, r2,…, rk)= T(m-ri)
1

k

i

(6)

In addition, if a #SAT problem recursively solved by the
DPLL-style algorithms, the time required doesn’t increase,
for

1

k

i
T(mi) T(m) where m = mi

1

k

i

(7)

where m is the number of clauses, mi is the number of
clauses in the sub-formula Fi (1 i k) of the formula F.
Note that when analyzing the running time of our
algorithms, we ignore the polynomial factor so that we
assume that all polynomial time computations take O(1)
time in this paper.

Algorithm for #2-SAT
In this section, we present the algorithm MC2 for #2-SAT
and prove an upper bound O(1.1892m). Firstly we address
some preliminaries used in this part.

Preliminaries
We begin the subsection by specifying some notions
similar to that proposed in (Dahllöf et al.2002). {x1, x2}
represents a formula which is composed of the variables x1
and x2. Given a formula F expressed as a constraint graph
G and a vertex x, LF(x) is the number of vertexes which are
not only adjacent to x but also adjacent to other vertexes
not in the neighborhood of x, i.e.,

LF(x)= { (,) () () { }}G Gu u v G u N x v N x x (8)

where u and v are vertexes, (u, v) is an edge, and NG(x) is
the neighborhood of x in the constraint graph G. When
LF(x)=1, the unique variable corresponding to the vertex is
denoted by U(x), just as Figure1 describes.

Helpful Function and Principle
The subsection discusses some functions and principles
used for simplifying the formulae. The first function unit(F,
l) in Figure 2 is to record the variables which appear in the
unit clauses after assigning the literal l true. var(l) denotes
the variable forming the literal l. The second function (F,
R, l) in Figure 3 recursively executes the unit literal rule.
The function takes as input the formula F, a variable set R
recording the eliminated variables, and a literal l being
assigned true. The detailed process of the function is
presented as follows. (1) Remove all clauses containing
literal l from F; (2) Delete all occurrences of the negation
of literal l from the other clauses; (3) Perform the process
as far as possible. Finally, the function returns a simplified
formula and a new set R.

Figure 2: Function unit

Function (F, R, l)
1. If there exists a clause l l1 l2 ... ln in F,

remove l l1 l2 ... ln from F.
2. If there exists a clause l l’1 l’2 ... l’k in F,

remove l from l l’1 l’2 ... l’k.
3. Update the variable set R and the formula F.
4. Do (F, R, l) until F doesn’t contain l and l.
5. Return F and R.

Function unit(F, l)
1. If F is empty, return V= .
2. If there exists a clause l l’, add var(l’) to V.
3. Do unit(F, l) until it never adds variables into V.
4. Return V.

Figure1: A constraint graph where LF(x)=1; the solid
lines indicate the end point variables of each solid line
appear together in some clause of F; the dashed lines
indicate the end points variables of each dashed line
may appear together in some clause of F.

Figure 3: Function

Now we concentrate on the introduction of the five-
vertex principle whose applicable condition is described in
Figure 4. Supposing in a 2-SAT formula F, one of the
maximum degree variables is x and the neighborhood of x
in the constraint graph G is y, z, w, …, where

(y) (z) (w) …

five-vertex principle. If (1) (F)=3 and LF(x)=2, and
(2) (y)+ (z) (w)=5, then

M(F)= M(F1 x) M(F2 x)
M(F1 x) M(F2 x)

(9)

where F1={x, w} and F2= F/F1.

219

Algorithm MC2(F, R)

Case 1: F has an empty clause. return 0.

Case 2: F is empty. return 2 R .

Case 3: n 4. return MC (F).

Case 4: F consists of disjoint components F1, F2.
 return MC2 (F1, R) MC2 (F2, R).

Case 5: (F) 2.
1. If F is a path, choose x to be a variable that can

splits F into paths of lengths and/ 2nThe aim of the principle is to remove F1 such that F
doesn’t contain the variables whose degree is 3. And since
F1 only contains two variables, it can be solved in
polynomial time by exhaustive search. In fact, if (x)=3
and LF(x)=2, then (y) + (z) (w) 5. This is because
if LF(x)=2, then (y) 2 and (z) 2. And if (x)=3
and (y) (z) (w), then (w)=1. Therefore, when

(x)=3 and LF(x)=2, (y)+ (z) (w) 5.

Algorithm MC2 for Solving #2-SAT
The algorithm MC2 for #2-SAT is based on the DPLL
algorithm for satisfiablility modified to count all the
satisfying assignments. The basic idea of the algorithm is
to choose a variable and recursively count the number of
satisfying assignments where the variable is true and the
variable is false. We propose the framework of our
algorithm MC2 for #2-SAT in Figure 5. The algorithm
employs a new principle to simplify formulae, i.e. the five-
vertex principle. This allows us to eliminate variables
whose degree is 3 in a formula, and therefore improve the
efficiency of the algorithm. In addition, by transforming a
formula into a constraint graph, we analyze the relationship
between the adjacent variables in the constraint graph,
which can choose better variables to branch. Note that in
the algorithm MC(F) is a function that solves the #2-SAT
by exhaustive search. As we all know, if a #2-SAT is
solved by exhaustive search, it will spend a lot of time.
However, when the number of variables that the formula F
contains is so few, it may run in polynomial time.
Therefore, we use the function MC(F) only when the
number of variables isn’t above 4, which can guarantee the
exhaustive search runs in polynomial time. In addition,
since the operation on each node is the function (F, R, l)
running in polynomial time, we analyze the algorithm in
Theorem 1 using the complexity measure described above.

/ 2n .
2. If F is a cycle, choose x arbitrary.
return MC2((F, R, {x}))+ MC2((F, R, { x})).

Case 6: (F)=3 and (x)=3, where NF(x)={y, z, w}
and (y) (z) (w)

1. If LF(x)=1, return
MC2((F, R, {U(x)}))+ MC2((F, R, { U(x)})).

2. If LF(x)=2 and (y)+ (z) (w)=5, return
MC2((F1,R,{x})) MC2((F2,R,{x}))
MC2((F1, R, { x})) MC2((F2, R, { x})),
where F1={x, w} and F2= F/F1.

3. Otherwise, return
MC2((F, R, {x}))+MC2((F, R, { x})) .

Case 7: (F) 4. Pick a variable x such that (x)=4.
return MC2((F, R, {x}))+ MC2((F, R, { x})).

Figure 5: MC2 Algorithm

Figure 4: A constraint graph where (x)=3,
LF(x)=2 and (y)+ (z) (w)=5

Theorem 1. Algorithm MC2 runs in O(1.1892m), where m
is the number of clauses.

Proof. Let us analyze the algorithm case by case.
Case 1, 2, and 3: These cases run in O(1).
Case 4: This case doesn’t increase the time needed.
Case 5.1: When x is fixed a value, it splits F into two

paths and the clauses containing x or x are removed. The
worst case is only two clauses containing x or x. Since

any two connected variables may form four clauses, we
have T(m) 4T(/ 2m -2), i.e. T(m) O(4)=O(m2). 2logm

Case 5.2: When any variable is fixed a value, it can split
F into a path which case 5.1 is met. Therefore, we also
have T(m) O(m2).

Case 6.1: Since LF(x)=1, (U(x)) 2. When U(x)=true,
every clause containing U(x) is removed and U(x) is
removed from clauses. Then every clause containing U(x)
can be also removed by function . Therefore, the current
formula contains at least two clauses less than F. In
addition, when U(x) is fixed a value, x forms a component
containing three variables which meets the case 3. So we
have T(m)=2T(m-4) because the same situation is
encountered when U(x)=false. This case takes O(1.1892m)
time.

Case 6.2: Figure 4 describes this case. Since F1={x, w},
the number of satisfying assignments of F1 can be counted
in O(1) by using MC (F). In fact, the same process is
carried out until (F) 2, i.e. case 5 is met. Therefore, we
have T(m) O(m2).

220

Case 6.3: In this case, LF(x) 2 and (y)+ (z) (w)
6. The neighborhood of variable x is y, z, and w. Since

LF(x) 2, at least two of them are not just related to
variable x. If we give a fix value to x, at least three clauses
are removed. And simultaneously the clauses containing y
or z or w may be removed by function . Let S=Unit(F,
x) { y, z, w } and S’=Unit(F, x) { y, z, w }. Then we
have T(m) = T(m-3- S)+ T(m-3- 'S). Since (y)+ (z)

(w) 6, S + 'S 3. Therefore, the worst case is when
T(m)=T(m-3)+T(m-6) with solution O(1.1740m).

Case 7: Since (x)=4, at least four clauses can be
removed if x is fixed a value. Therefore, we have
T(m)=2T(m-4) with solution O(1.1892m).

In total, MC2 runs in O(1.1892m) time.

Algorithm for #3-SAT
In this section, we present our algorithm MC3 for solving
#3-SAT and provide an upper bound O(1.4142m).

Algorithm MC3 for Solving #3-SAT
Algorithm MC3 for #3-SAT is also based on the DPLL
algorithm for satisfiablility modified to count all the
satisfying assignments. We firstly present a notion used in
this part. The frequency of a variable xi in a formula F is
the number of clauses in F that xi appears in. Then we
propose the framework of the algorithm MC3 in Figure 6.
The main idea of the algorithm is to choose the maximum
frequency variable in all the 3-clauses to branch so that the
input 3-clause formula is simplified into 2-clause formulae.
Then we recursively count the number of satisfying
assignments of these simplified 2-clauses by the algorithm
MC2. In the algorithm MC3, there is a helpful function

(F, R, l) which has been described in the algorithm MC2.

In fact, the algorithm MC3 splits the search space into
two parts. At first, it explores partial search tree until the 3-
clause formula is transformed into 2-clause formulae. Then
the algorithm MC2 explores the complete search tree for
the 2-clause formulae. Thus, the size of the search space of
the MC3 is equal to the DPLL-style algorithm which
explores the complete search tree for an n-variable formula.

Therefore, the algorithm MC3 also can be solved in
polynomial space. In addition, from the discussions above,
we know that the algorithm MC2 can be solved rapidly.
And the process of the transformation from 3-clause
formula into 2-clause formulae is not difficult. As a result,
the algorithm MC3 improves the efficiency of solving the
#3-SAT problem in a sense. In the next subsection, we will
address the detailed complexity analysis about the
algorithm MC3.

Complexity Analysis
In this subsection, we explain how to compute the
complexity of the algorithm MC3. As we have already
described, we also use the branching tree to estimate the
time complexity. However, the difference between the
complexity analysis of the algorithm MC3 and the others is
that we only employ the branching tree to estimate time
using in the process of the transformation from 3-clause
formula into 2-clause formulae. When we acquire the time
complexity of the simplified 3-clause formula, the time
complexity of the algorithm MC3 is easy to obtain by
making use of the time complexity of the algorithm MC2.
The detailed proof will be presented in Theorem 2.

Theorem 2. Algorithm MC3 runs in O(1.4142m) , where m
is the number of clauses.

Proof. Let us analyze the algorithm in detail.
Case 1 and 2 can solve the problems completely. These

cases run in O(1).
Case 3 doesn’t increase the time needed.
In Case 4, the maximum frequency of variables in 3-

clauses is at least 2. Because if the maximum frequency of
variables in 3-clauses is 1, it means that the frequencies of
all the variables in 3-clauses are 1. Then the formula F is
mutually disjoint which case 3 is met. Thus, when x is
fixed a value, every clause containing x(or x) is either
removed or simplified as 2-clauses. Since the maximal
frequency of variables is at least 2, at least two clauses are
removed when we give a fix value to x. Therefore, we have
T(m) = 2T(m-2) with solution O(1.4142m).

Algorithm MC3(F, R)
Case 1: F has an empty clause. return 0.
Case 2: F is empty. return 2 R .
Case 3: F consists of disjoint components F1, F2.
return MC3 (F1, R) MC3 (F2, R).
Case 4: If there exist 3-clauses in F, pick the maximum
frequency variable x in all the 3-clauses.
 return MC3 ((F, R, {x}))+ MC3 ((F, R, { x})).
Case 5: Otherwise, return MC2(F, R).

In Case 5, the formula only contains 2-clauses. We know
that the algorithm MC2 runs in O(1.1892m).

In total, the upper bound for the algorithm MC3 is
O(1.4142m).

Conclusion
This paper addresses the worst-case upper bound for #2-
SAT and #3-SAT problems with the number of clauses as
the parameter. The algorithms presented are both DPLL-
style algorithms. In order to improve the algorithms, we
put forward a new five-vertex principle to simplify the
formulae. After a skillful analysis of these algorithms, we
obtain the worst-case upper bound O(1.1892m) for #2-SAT
and O(1.4142m) for #3-SAT.

Figure 6: MC3 Algorithm

221

Acknowledgement
This work was fully supported by the National Natural
Science Foundation of China (Grant No. 60673099,
60803102, 60773097, and 60873146).

References
Bacchus, F., Dalmao S., and Pitassi T.. 2003. Algorithms
and complexity results for #SAT and Bayesian inference.
In FOCS’03, 340 351.
Bolette Ammitzboll Madsen. 2006. An algorithm for exact
satisfiability analysed with the number of clauses as
parameter. Information Processing Letters 97(1): 28-30.
Dahllöf V., Jonsson P., Wahlström M.. 2002. Counting
satisfying assignments in 2-SAT and 3-SAT. In 8th
COCOON, 535–543.
Dubois O.. 1991. Counting the number of solutions for
instances of satisfiability. Theoretical Comput. Sci. 81(1):
49-64.
Konstantin Kutzkov. 2007. New upper bound for the #3-
SAT problem. Information Processing Letters 105(1): 1-5.
Hirsch E. A.. 2000. New Worst-Case Upper Bounds for
SAT. J. Auto. Reasoning 24(4): 397-420.
Masaki Yamamoto. 2005. An improved O(1.234m)-time
deterministic algorithm for SAT. In 16th ISAAC, volume
3827 of LNCS, 644-653.
Park J.D.. 2002. MAP complexity results and
approximation methods. In 18th UAI, 388-396.
Fürer M., Prasad Kasiviswanathan S.. 2007. Algorithms for
counting 2-SAT solutions and colorings with applications.
In 3rd AAIM, 47-57.
Sang T., Beame P., and Kautz H.A.. 2005. Performing
Bayesian inference by weighted model counting. In 20th
AAAI, 475-482.
Skjernaa B.. 2004. Exact algorithms for variants of
satisfiability and colouring problems. PhD thesis,
Department of Computer Science, Aarhus University.

222

