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Abstract 
The rigorous theoretical analyses of algorithms for #SAT 
have been proposed in the literature. As we know, previous 
algorithms for solving #SAT have been analyzed only 
regarding the number of variables as the parameter. 
However, the time complexity for solving #SAT instances 
depends not only on the number of variables, but also on the 
number of clauses. Therefore, it is significant to exploit the 
time complexity from the other point of view, i.e. the 
number of clauses. In this paper, we present algorithms for 
solving #2-SAT and #3-SAT with rigorous complexity 
analyses using the number of clauses as the parameter. By 
analyzing the algorithms, we obtain the new worst-case 
upper bounds O(1.1892m) for #2-SAT and O(1.4142m) for 
#3-SAT, where m is the number of clauses. 

Introduction  
Propositional model counting or #SAT is the problem of 
computing the number of models for a given propositional 
formula, i.e., the number of distinct truth assignments to 
variables for which the formula evaluates to true. 
Nowadays, efficient model counting algorithms have 
opened up a range of applications. For example, various 
probabilistic inference problems can be translated into 
model counting problems (cf. Park 2002; Sang et al. 2005). 
#SAT problem can be viewed as a generalization of the 
well-known canonical NP-complete problem of 
Propositional Satisfiability (SAT), which has been well 
studied. Actually, model counting has been proved to be 
#P-complete, harder than standard SAT problems (Bacchus 
et al. 2003). Therefore, improvements in exponential time 
bounds are crucial in determining the size of model 
counting problem that can be solved. Even a slight 
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improvement from O(ck) to O((c- )k) may significantly 
increase the size of the problem being tractable. 

Recently, tremendous efforts have been made on 
efficient #SAT algorithms with complexity analyses. By 
introducing independent clauses and combining formulas, 
Dubois (1991) presented a #SAT algorithm which ran in 
O(1.6180n) for #2-SAT and O(1.8393n) for #3-SAT, where 
n is the number of variables of a formula. Based on a more 
elaborate analysis of the relationship among the variables, 
Dahllof et al. (2002) presented algorithms running in 
O(1.3247n) for #2-SAT and O(1.6894n) for #3-SAT. Furer 
et al. (2007) presented an algorithm performing in 
O(1.246n) for #2-SAT by using a standard reduction. 
Further improved algorithms in (Kutzkov 2007) presented 
a new upper time bound for the #3-SAT (O(1.6423n)), 
which is the best upper bound so far. 

Different from complexity analyses regarding the 
number of variables as the parameter, Hirsch (2000) 
introduced a SAT algorithm with a time bound O(1.239m), 
where m is the number of clauses of a formula. An 
improved algorithm for SAT with an upper bound 
O(1.234m) was proposed in (Masaki 2005). Skjernaa (2004) 
presented an algorithm for Exact Satisfiability with a time 
bound O(2m). Bolette (2006) addressed an algorithm for 
Exact Satisfiability with a time bound O(m!).  

Similar to the SAT problem, the time complexity of 
#SAT problem is calculated based on the size of the #SAT 
instances, which depends not only on the number of 
variables, but also on the number of clauses. Therefore, it 
is significant to exploit the time complexity from the other 
point of view, i.e. the number of clauses. However, so far 
all algorithms for solving #SAT have been analyzed based 
on the number of variables. And to our best knowledge, it 
is still an open problem that analyzes the #SAT algorithm 
with the number of clauses as the parameter. 

The aim of this paper is to exploit new upper bounds for 
#2-SAT and #3-SAT using the number of clauses as the 
parameter. We provide algorithms for solving #2-SAT and 
#3-SAT respectively. The algorithm for #2-SAT employs a 
new principle, i.e. the five-vertex principle, to simplify 
formulae. This allows us to eliminate variables whose 
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degree is 3, and therefore improves the efficiency of the 
algorithm. In addition, by transforming a formula into a 
constraint graph, we propose some detailed analyses 
between the adjacent variables in the constraint graph, 
which provides us theoretical foundations for choosing 
better variables to branch. By analyzing the algorithm, we 
obtain the worst-case upper bound O(1.1892m) for #2-SAT. 
For the algorithm solving #3-SAT, we adopt a different 
strategy, first simplifying the 3-clause formulae into 2-
clause formulae, then solving these 2-clasue formulae by 
the algorithm for #2-SAT. To demonstrate that this 
strategy is efficient, we give a deep analysis and obtain the 
worst-case upper bound O(1.4142m) for #3-SAT. 

Problem Definitions 
We now describe the definitions that will be used in this 
paper. A literal is either a Boolean variable x or its 
negation x. If a literal is l, the negation of the literal is l. 
A clause is a disjunction of literals which doesn’t contain a 
complementary pair x and x simultaneously. A 2-clause 
is the clause that contains exactly two literals. A 3-clause is 
the corresponding clause. The length of a clause C is the 
number of literals in it. A clause C is a unit clause if the 
length of the clause is 1. We call the literal in the unit 
clause is the unit literal. A k-SAT formula F in 
Conjunction Normal Form (CNF) is a conjunction of 
clauses, each of which contains exactly k literals. Any 
Boolean variable xi in F can take a value true or false. A 
truth assignment for F is a map that assigns each variable a 
value. The satisfying assignment, called model, is the truth 
assignment that makes F evaluated to true. The 
propositional model counting or #SAT problem is to 
determine the number of satisfying assignments for a 
formula. #2-SAT is the problem of computing the number 
of satisfying assignments of a 2-SAT formula and #3-SAT 
is the corresponding problem for a 3-SAT formula. 

A formula F in CNF can be expressed as an undirected 
graph called constraint graph. In the constraint graph G, 
the vertexes are the variables of F and the edges between 
two vertexes if the corresponding variables appear together 
in some clause of F. The degree of a vertex is the number 
of edges incident to the vertex. The degree of a Boolean 
variable x, represented by (x), is the degree of the 
corresponding vertex. The degree of a formula F, denoted 
by (F), is the maximum degree of variables in F. We say 
a formula is a cycle or a path whenever the constraint 
graph forms a cycle or a path. We define M(F) as the 
number of models of the formula F, m as the number of 
clauses in F, and n as the number of variables F contains. 

After specifying the definitions, we present some basic 
rules for solving #SAT problem. Suppose constraint graph 
G can be partitioned into disjoint components G1 and G2 
where there is no edge connecting a vertex in G1 to a 
vertex in G2, i.e. the variables corresponding to vertexes in 
G1 and G2 are mutually disjoint. Let F1 and F2 be the sub-
formulae of F corresponding to the two components G1 and 
G2. Then, 

M(F)=M(F1) M(F2) (1)

Given a formula F, the basic strategy of Davis-Putnam-
Logemann-Loveland (DPLL) computing the models of F is 
to arbitrarily choose a variable x that appears in F. Then, 

M(F)=M(F x)+M(F x) (2)

In order to determine the number of models of F l, we 
adopt the unit literal rule which assigns the unit literal true. 
The result of the unit literal rule, denoted by lF , can be 
obtained by (1) removing all clauses containing the literal l 
from F, and (2) deleting all occurrences of l from the 
other clauses. However, when we apply the unit literal rule 
to the two sub-formulae F x and F x, variables that 
appear in F may not appear in the simplified version xF  
and xF , which may make M(F x) and M(F x) 
wrong. For example, let F=x y z and we choose x to 
branch, then 

When the sub-formula F x is simplified by the unit 
literal rule, variable y and z are eliminated. Thus, 
M( xF )=1. When the same rule is applied to F and F x, 
we obtain M(F)=7 and M( xF )=3. It is obvious that 
M(F)  M(F x)+M(F x). Therefore, we introduce a 
variable set R to record the eliminated variables, which we 
will give a detailed description in the next section. 

The Complexity Measure 
In this subsection, we explain how we compute the 
complexity of our algorithms. At first, we give a notion 
called branching tree. The branching tree (Hirsch 2000) is 
a hierarchical tree structure with a set of nodes, each of 
which is labeled with a formula. Suppose a node is labeled 
with a formula F, then its sons are labeled with the sub-
formulae F1, F2, … , Fj, each of which is obtained by 
assigning a value to one of variables in F. From the 
definition we can see that the process of constructing a 
branching tree is the same as the process of executing 
DPLL-style algorithms, therefore, we use the branching 
tree to estimate the time complexity. 
     In the branching tree, every node has a branching vector. 
Let us consider a node labeled with F0 and its children 
nodes labeled with F1, F2, …, Fk. The branching vector of 
the node labeled with F0 is (r1, r2,…, rk), where ri=f(F0)-
f(Fi) ( f(F0) is the number of clauses of F0). The value of 
the branching vector of a node, called branching number 
( (r1, r2,…, rk)), is obtained from the positive root of the 
following equation.  

1

i

k
r

i
x =1 (4)

We define the maximum branching number of nodes in the 
branching tree as the branching number of the branching 
tree, expressed by max (r1, r2,…, rk). The branching 
number of a branching tree has an important relationship 

M(F)=M(F x)+M(F x) (3)
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with the running time (T(m)) of DPLL-style algorithms. At 
first, we assume that the running time of DPLL-style 
algorithms performing on each node is in polynomial time. 
Then we obtain the following inequality. 

T(m) (max  (r1, r2,…, rk)) m poly(F) 

= (max T(m-ri))m poly(F) 
1

k

i

(5)

where m is the number of clauses in the formula F, ploy(F) 
is the polynomial time executing on the node F, and 

 (r1, r2,…, rk)= T(m-ri) 
1

k

i

(6)

In addition, if a #SAT problem recursively solved by the 
DPLL-style algorithms, the time required doesn’t increase, 
for 

1

k

i
T(mi) T(m) where m = mi 

1

k

i

(7)

where m is the number of clauses, mi is the number of 
clauses in the sub-formula Fi (1 i k) of the  formula F. 
Note that when analyzing the running time of our 
algorithms, we ignore the polynomial factor so that we 
assume that all polynomial time computations take O(1) 
time in this paper. 

Algorithm for #2-SAT 
In this section, we present the algorithm MC2 for #2-SAT 
and prove an upper bound O(1.1892m). Firstly we address 
some preliminaries used in this part. 

Preliminaries 
We begin the subsection by specifying some notions 
similar to that proposed in (Dahllöf et al.2002). {x1, x2} 
represents a formula which is composed of the variables x1 
and x2. Given a formula F expressed as a constraint graph 
G and a vertex x, LF(x) is the number of vertexes which are 
not only adjacent to x but also adjacent to other vertexes 
not in the neighborhood of x, i.e., 

LF(x)= { ( , ) ( ) ( ) { }}G Gu u v G u N x v N x x  (8)

where u and v are vertexes, (u, v) is an edge, and NG(x) is 
the neighborhood of x in the constraint graph G. When 
LF(x)=1, the unique variable corresponding to the vertex is 
denoted by U(x), just as Figure1 describes. 

Helpful Function and Principle 
The subsection discusses some functions and principles 
used for simplifying the formulae. The first function unit(F, 
l) in Figure 2 is to record the variables which appear in the 
unit clauses after assigning the literal l true. var(l) denotes 
the variable forming the literal l. The second function (F, 
R, l) in Figure 3 recursively executes the unit literal rule. 
The function takes as input the formula F, a variable set R 
recording the eliminated variables, and a literal l being 
assigned true. The detailed process of the function is 
presented as follows. (1) Remove all clauses containing 
literal l from F; (2) Delete all occurrences of the negation 
of literal l from the other clauses; (3) Perform the process 
as far as possible. Finally, the function returns a simplified 
formula and a new set R. 
 
 
 
 
 
 

 
Figure 2: Function unit 

 
 
 
 
 
 
 
 
 

 

Function (F, R, l) 
1. If there exists a clause l l1  l2 ...  ln in F, 

remove l l1  l2 ...  ln from F. 
2. If there exists a clause l l’1  l’2 ...  l’k in F, 

remove l from l l’1  l’2 ...  l’k. 
3. Update the variable set R and the formula F. 
4. Do (F, R, l) until F doesn’t contain  l and l. 
5. Return F and R.

Function unit(F, l) 
1. If F is empty, return V= . 
2. If there exists a clause l l’, add var(l’) to V. 
3. Do unit(F, l) until it never adds variables into V. 
4. Return V. 

Figure1: A constraint graph where LF(x)=1; the solid 
lines indicate the end point variables of each solid line 
appear together in some clause of F; the dashed lines 
indicate the end points variables of each dashed line 
may appear together in some clause of F. 

Figure 3: Function  

Now we concentrate on the introduction of the five-
vertex principle whose applicable condition is described in 
Figure 4. Supposing in a 2-SAT formula F, one of the 
maximum degree variables is x and the neighborhood of x 
in the constraint graph G is y, z, w, …, where 

(y) (z) (w) … 

five-vertex principle. If (1) (F)=3 and LF(x)=2, and 
(2) (y)+ (z) (w)=5, then 

M(F)= M(F1 x) M( F2 x)
M(F1 x) M(F2 x) 

(9)

where F1={x, w} and F2= F/F1. 
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Algorithm MC2(F, R) 

Case 1: F has an empty clause. return 0. 

Case 2: F is empty. return 2 R . 

Case 3: n 4. return MC (F). 

Case 4: F consists of disjoint components F1, F2. 
   return MC2 (F1, R) MC2 (F2, R).  

Case 5: (F) 2. 
1. If F is a path, choose x to be a variable that can 

splits F into paths of lengths  and/ 2nThe aim of the principle is to remove F1 such that F 
doesn’t contain the variables whose degree is 3. And since 
F1 only contains two variables, it can be solved in 
polynomial time by exhaustive search. In fact, if (x)=3 
and LF(x)=2, then (y) + (z) (w) 5. This is because 
if LF(x)=2, then (y) 2 and (z) 2. And if (x)=3 
and (y) (z) (w), then (w)=1. Therefore, when 

(x)=3 and LF(x)=2, (y)+ (z) (w) 5. 

Algorithm MC2 for Solving #2-SAT 
The algorithm MC2 for #2-SAT is based on the DPLL 
algorithm for satisfiablility modified to count all the 
satisfying assignments. The basic idea of the algorithm is 
to choose a variable and recursively count the number of 
satisfying assignments where the variable is true and the 
variable is false. We propose the framework of our 
algorithm MC2 for #2-SAT in Figure 5. The algorithm 
employs a new principle to simplify formulae, i.e. the five-
vertex principle. This allows us to eliminate variables 
whose degree is 3 in a formula, and therefore improve the 
efficiency of the algorithm. In addition, by transforming a 
formula into a constraint graph, we analyze the relationship 
between the adjacent variables in the constraint graph, 
which can choose better variables to branch. Note that in 
the algorithm MC(F) is a function that solves the #2-SAT 
by exhaustive search. As we all know, if a #2-SAT is 
solved by exhaustive search, it will spend a lot of time. 
However, when the number of variables that the formula F 
contains is so few, it may run in polynomial time. 
Therefore, we use the function MC(F) only when the 
number of variables isn’t above 4, which can guarantee the 
exhaustive search runs in polynomial time. In addition, 
since the operation on each node is the function (F, R, l) 
running in polynomial time, we analyze the algorithm in 
Theorem 1 using the complexity measure described above. 

/ 2n . 
2. If F is a cycle, choose x arbitrary. 
return MC2( (F, R, {x}))+ MC2( (F, R, { x})). 

Case 6: (F)=3 and (x)=3, where NF(x)={y, z, w} 
and (y) (z) (w) 

1. If LF(x)=1, return 
MC2( (F, R, {U(x)}))+ MC2( (F, R, { U(x)})).

2. If LF(x)=2 and (y)+ (z) (w)=5, return 
MC2( (F1,R,{x})) MC2( (F2,R,{x}))  
MC2( (F1, R, { x})) MC2( (F2, R, { x})), 
where F1={x, w} and F2= F/F1. 

3. Otherwise, return 
MC2( (F, R, {x}))+MC2( (F, R, { x})) . 

Case 7: (F) 4. Pick a variable x such that (x)=4. 
return MC2( (F, R, {x}))+ MC2( (F, R, { x})). 

Figure 5: MC2 Algorithm 

Figure 4: A constraint graph where (x)=3, 
LF(x)=2 and (y)+ (z) (w)=5 

Theorem 1. Algorithm MC2 runs in O(1.1892m), where m 
is the number of clauses. 

Proof. Let us analyze the algorithm case by case. 
Case 1, 2, and 3: These cases run in O(1). 
Case 4: This case doesn’t increase the time needed. 
Case 5.1: When x is fixed a value, it splits F into two 

paths and the clauses containing x or x  are removed. The 
worst case is only two clauses containing x or x. Since 

any two connected variables may form four clauses, we 
have T(m) 4T( / 2m -2), i.e. T(m) O( 4 )=O(m2). 2logm

Case 5.2: When any variable is fixed a value, it can split 
F into a path which case 5.1 is met. Therefore, we also 
have T(m) O(m2). 

Case 6.1: Since LF(x)=1, (U(x)) 2. When U(x)=true, 
every clause containing U(x) is removed and U(x) is 
removed from clauses. Then every clause containing U(x) 
can be also removed by function . Therefore, the current 
formula contains at least two clauses less than F. In 
addition, when U(x) is fixed a value, x forms a component 
containing three variables which meets the case 3. So we 
have T(m)=2T(m-4) because the same situation is 
encountered when U(x)=false. This case takes O(1.1892m) 
time. 

Case 6.2: Figure 4 describes this case. Since F1={x, w}, 
the number of satisfying assignments of F1 can be counted 
in O(1) by using MC (F). In fact, the same process is 
carried out until (F) 2, i.e. case 5 is met. Therefore, we 
have T(m) O(m2). 
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Case 6.3: In this case, LF(x) 2 and (y)+ (z) (w) 
6. The neighborhood of variable x is y, z, and w. Since 

LF(x) 2, at least two of them are not just related to 
variable x. If we give a fix value to x, at least three clauses 
are removed. And simultaneously the clauses containing y 
or z or w may be removed by function . Let S=Unit(F, 
x) { y, z, w } and S’=Unit(F, x) { y, z, w }. Then we 
have T(m) = T(m-3- S )+ T(m-3- 'S ). Since (y)+ (z) 

(w) 6, S + 'S 3. Therefore, the worst case is when 
T(m)=T(m-3)+T(m-6) with solution O(1.1740m). 

Case 7: Since (x)=4, at least four clauses can be 
removed if x is fixed a value. Therefore, we have 
T(m)=2T(m-4) with solution O(1.1892m). 

In total, MC2 runs in O(1.1892m) time. 

Algorithm for #3-SAT 
In this section, we present our algorithm MC3 for solving 
#3-SAT and provide an upper bound O(1.4142m).  

Algorithm MC3 for Solving #3-SAT 
Algorithm MC3 for #3-SAT is also based on the DPLL 
algorithm for satisfiablility modified to count all the 
satisfying assignments. We firstly present a notion used in 
this part. The frequency of a variable xi in a formula F is 
the number of clauses in F that xi appears in. Then we 
propose the framework of the algorithm MC3 in Figure 6. 
The main idea of the algorithm is to choose the maximum 
frequency variable in all the 3-clauses to branch so that the 
input 3-clause formula is simplified into 2-clause formulae. 
Then we recursively count the number of satisfying 
assignments of these simplified 2-clauses by the algorithm 
MC2. In the algorithm MC3, there is a helpful function 

(F, R, l) which has been described in the algorithm MC2.  

In fact, the algorithm MC3 splits the search space into 
two parts. At first, it explores partial search tree until the 3-
clause formula is transformed into 2-clause formulae. Then 
the algorithm MC2 explores the complete search tree for 
the 2-clause formulae. Thus, the size of the search space of 
the MC3 is equal to the DPLL-style algorithm which 
explores the complete search tree for an n-variable formula. 

Therefore, the algorithm MC3 also can be solved in 
polynomial space. In addition, from the discussions above, 
we know that the algorithm MC2 can be solved rapidly. 
And the process of the transformation from 3-clause 
formula into 2-clause formulae is not difficult. As a result, 
the algorithm MC3 improves the efficiency of solving the 
#3-SAT problem in a sense. In the next subsection, we will 
address the detailed complexity analysis about the 
algorithm MC3. 

Complexity Analysis 
In this subsection, we explain how to compute the 
complexity of the algorithm MC3. As we have already 
described, we also use the branching tree to estimate the 
time complexity. However, the difference between the 
complexity analysis of the algorithm MC3 and the others is 
that we only employ the branching tree to estimate time 
using in the process of the transformation from 3-clause 
formula into 2-clause formulae. When we acquire the time 
complexity of the simplified 3-clause formula, the time 
complexity of the algorithm MC3 is easy to obtain by 
making use of the time complexity of the algorithm MC2. 
The detailed proof will be presented in Theorem 2. 

Theorem 2. Algorithm MC3 runs in O(1.4142m) , where m 
is the number of clauses. 

Proof. Let us analyze the algorithm in detail. 
Case 1 and 2 can solve the problems completely. These 

cases run in O(1). 
Case 3 doesn’t increase the time needed. 
In Case 4, the maximum frequency of variables in 3-

clauses is at least 2. Because if the maximum frequency of 
variables in 3-clauses is 1, it means that the frequencies of 
all the variables in 3-clauses are 1. Then the formula F is 
mutually disjoint which case 3 is met. Thus, when x is 
fixed a value, every clause containing x(or x) is either 
removed or simplified as 2-clauses. Since the maximal 
frequency of variables is at least 2, at least two clauses are 
removed when we give a fix value to x. Therefore, we have 
T(m) = 2T(m-2) with solution O(1.4142m). 

Algorithm MC3(F, R) 
Case 1: F has an empty clause. return 0. 
Case 2: F is empty. return 2 R . 
Case 3: F consists of disjoint components F1, F2. 
return MC3 (F1, R) MC3 (F2, R).  
Case 4: If there exist 3-clauses in F, pick the maximum 
frequency variable x in all the 3-clauses. 
 return MC3 ( (F, R, {x}))+ MC3 ( (F, R, { x})). 
Case 5: Otherwise, return MC2(F, R). 

In Case 5, the formula only contains 2-clauses. We know 
that the algorithm MC2 runs in O(1.1892m). 

In total, the upper bound for the algorithm MC3 is 
O(1.4142m). 

Conclusion 
This paper addresses the worst-case upper bound for #2-
SAT and #3-SAT problems with the number of clauses as 
the parameter. The algorithms presented are both DPLL-
style algorithms. In order to improve the algorithms, we 
put forward a new five-vertex principle to simplify the 
formulae. After a skillful analysis of these algorithms, we 
obtain the worst-case upper bound O(1.1892m) for #2-SAT 
and O(1.4142m) for #3-SAT. 

Figure 6: MC3 Algorithm 
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