
Independent Additive Heuristics Reduce Search Multiplicatively

Teresa M. Breyer and Richard E. Korf
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

{tbreyer,korf}@cs.ucla.edu

Abstract

This paper analyzes the performance of IDA* using ad-
ditive heuristics. We show that the reduction in the num-
ber of nodes expanded using multiple independent addi-
tive heuristics is the product of the reductions achieved
by the individual heuristics. First, we formally state and
prove this result on unit edge-cost undirected graphs
with a uniform branching factor. Then, we empirically
verify it on a model of the 4-peg Towers of Hanoi prob-
lem. We also run experiments on the multiple sequence
alignment problem showing more general applicability
to non-unit edge-cost directed graphs. Then, we extend
an existing model to predict the performance of IDA*
with a single pattern database to independent additive
disjoint pattern databases. This is the first analysis of
the performance of independent additive heuristics.

Introduction

All heuristic search algorithms, including IDA* (Korf 1985),
use a heuristic evaluation function h to prune nodes. h(n)
estimates the lowest cost to get from node n to a goal state.
If h never overestimates this cost, it is admissible. If h(n) ≤
k(n, m)+h(m) for all states n and m, where k(n, m) is the
cost of a shortest path from n to m, h is consistent.

For many problems, a heuristic evaluation function can
be precomputed and stored in a lookup table called a pat-
tern database (PDB) (Culberson and Schaeffer 1998). For
example, for the Towers of Hanoi problem we choose a sub-
set of the discs, the pattern discs, and ignore the positions
of all other discs. For each possible configuration of the pat-
tern discs we store the minimum number of moves required
to solve this smaller Towers of Hanoi problem in the PDB.
In general, a state is defined by an assignment of values to
state variables and a pattern is a projection of a state from
the original problem space onto the pattern space. In case of
unit-cost operators, PDBs are constructed through a back-
ward breadth-first search from the goal pattern in the pattern
space. A perfect hash function maps each pattern to one en-
try in the PDB where the depth at which it is first generated
is stored. This is exactly the minimum number of moves re-
quired to reach the projection of the goal state, the goal pat-
tern, in the pattern space. During search we get the heuristic

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

estimate of a state by projecting it on the pattern space and
then using the perfect hash function to retrieve the pattern’s
entry in the PDB.

Under certain conditions it is possible to sum values from
several PDBs without overestimating the solution cost (Korf
and Felner 2002). For the Towers of Hanoi problem we can
partition the discs into disjoint sets and construct a PDB for
each of these sets. In general, if there is a way to partition all
state variables into disjoint sets of pattern variables so that
each operator only changes variables from one set, we can
add the resulting heuristic estimates without loosing admis-
sibility. We call the resulting PDBs additive and such a set
of PDBs disjoint. In general, we call heuristics that can be
added to get a better admissible heuristic additive heuristics.

A heuristic function can be characterized by its distribu-
tion. Given a population of states, the heuristic distribution
is the probability that a randomly and uniformly selected
state has a heuristic value less than or equal to x. The dis-
tribution over all states in the problem space graph is called
the overall distribution. In case of PDBs, this distribution
can be read directly from the PDB, if each pattern has the
same number of pre-images in the original problem space
(Holte and Hernádvölgyi 2004). For IDA* we use the equi-
librium distribution, which is the heuristic distribution over
all states at depth i in the brute-force search tree in the limit
of large i. These two distribution are not always the same.

Overview

First, we review an important result on the performance of
IDA* from Korf, Reid, and Edelkamp (2001). Secondly, we
define the property of independence for heuristics. Then,
we present the core result of this paper: The reduction in
the number of nodes expanded by IDA* using multiple in-
dependent additive heuristics is the product of the reductions
achieved by the individual heuristics. We formally state and
prove this result on unit edge-cost undirected graphs with
a uniform branching factor. We empirically verify it using
a model of the 4-peg Towers of Hanoi problem. Next, we
run experiments on the multiple sequence alignment prob-
lem showing more general applicability to non-unit edge-
cost directed graphs. Then, we extend Korf’s (2007) model
to predict the performance of IDA* with a single PDB to in-
dependent disjoint additive PDBs. Finally, we show that our
result does not extend immediately to dependent heuristics.

33

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)



Time Complexity of IDA*

Korf, Reid, and Edelkamp (2001) analyzed the time com-
plexity of IDA*. The number of nodes expanded by IDA*
for a search to depth d is approximately

E(N, d, P ) =

d∑

i=0

NiP (d − i) (1)

where Ni is the number of nodes at depth i in the brute-
force search tree, and P is the equilibrium distribution of
the heuristic function. The heuristic function is assumed to
be admissible and consistent. This model very accurately
predicts the actual number of nodes expanded by IDA*.

IDA* with Independent Consistent Additive

Heuristic Estimates

Independent Heuristics

Here we point out a property of heuristics that has not been
previously used. As already mentioned, a heuristic function
can be characterized by its distribution.

Definition 1. Two heuristics h1 and h2 are independent
if their distributions P1 and P2 are independent. In other
words, knowing h1(x) tells us nothing about h2(x).

Two equilibrium distributions are independent if and only
if the overall distributions are independent. Thus, we just
use the term distribution here, but the definition could be
stated using either. The heuristic distribution of the sum of
two independent heuristics is the convolution of their distri-
butions:

(P1 ∗ P2)(x) =

x∑

x1=0

Pr[X1 = x1](

x−x1∑

x2=0

Pr[X2 = x2])

where Pr[X1 = x1] is the probability that a random state
has h-cost x1 according to heuristic h1. The same definition
holds for h2. Examples of independent heuristics are the dis-
joint additive PDBs for the Towers of Hanoi problem. Each
disc can be assigned to any peg, independent of the loca-
tions of all other discs. Once we know which peg each disc
is located on, we also know its position on the peg because
discs are always ordered by size. Consequently, knowing the
value from one PDB tells us nothing about the value from
the second PDB. Additive heuristics are also used for the
sliding-tile puzzles. The number of moves required to get
a set of tiles, the pattern tiles, in their goal positions is an
admissible heuristic. Unlike in the Towers of Hanoi prob-
lem, non-pattern tiles are present, but indistinguishable. If
we only count moves of pattern tiles we can use disjoint sets
of pattern tiles to generate disjoint additive PDBs. For the 15
puzzle two disjoint sets of 7 and 8 tiles are often used. The
positions occupied by the 7 pattern tiles cannot be occupied
by the 8 pattern tiles. Thus, the resulting PDBs are not inde-
pendent even though the sets of pattern tiles are disjoint.

Unit Edge-Cost Undirected Graphs with Uniform
Branching Factor

Here we analyze the performance of independent additive
heuristics, given certain properties of the problem space

graph and the heuristic functions. First we look at the graph:

Assumption 1. Let the problem space graph be a tree with
unit edge costs and uniform brute-force branching factor b.

Thus, the brute-force search tree grows exponentially with
depth. In particular, there are bi nodes at depth i.

Secondly we look at properties of the heuristic functions:

Assumption 2. Let h1 and h2 be two integer valued heuris-
tics based on the exact cost of optimal solutions of relaxed
problems (Pearl 1984). Let h1 and h2 be additive and in-
dependent with equilibrium distributions P1 and P2, respec-
tively. Furthermore, in a search to cost d, IDA* expands a
fraction k1 of the nodes expanded by a brute-force search
when using h1 and a fraction k2 when using h2, in the limit
of large cost d.

Heuristics based on the exact cost of optimal solutions
of a relaxed problem are guaranteed to be admissible and
consistent. We use h1 and h2 being based on solutions of a
relaxed problem to show that the sum of heuristics h1 and
h2 is consistent. Furthermore, Korf, Reid, and Edelkamp
(2001) showed that fractions k1 and k2 always exist. Here
we only assume that these fractions have values k1 and k2.

Finally, here is our result given the above assumptions:

Theorem 1. Given a graph and h1 and h2 such that assump-
tions 1 and 2 hold, in the limit of large d, IDA* expands a
fraction k1k2 of the nodes expanded by a brute-force search
when using the sum of h1 and h2 in a search to cost d.

Proof Outline. The actual proof requires two pages, so we
only give an outline here. First, for a consistent heuristic,
the set of nodes expanded in a search to cost d is exactly the
set of nodes with f -cost less than or equal to d.

Korf, Reid, and Edelkamp (2001) showed that if the brute-
force search tree grows exponentially with branching factor
b, the ratio of the number of nodes expanded in a heuristic
search to cost d, divided by the nodes expanded in a search
to cost d− 1 is also b. We define F 1

i as the set of nodes with
f1(n) = g(n) + h1(n) = i. Thus, these sets F 1

i also grow
exponentially by a factor b as i increases.

We calculate the heuristic distribution of h2 over F 1
i .

Since h1 and h2 are independent, knowing a node’s h1-cost
does not tell us anything about its h2-cost, so the distribution
of h2 over F 1

i only depends on the distribution of g-costs
over F 1

i . We show that the heuristic distribution of h2 over
F 1

i converges to the equilibrium heuristic distribution P2.
Next, we assume we search a tree which has the same

structure as our brute-force search tree. Instead of its depth,
however, we assign each node its f1-cost. Then, we search
this tree using IDA* with h2 as the heuristic. Now in (1),
Ni = F 1

i , all states with f1-cost i, and the equilibrium
heuristic distribution P is the heuristic distribution over the
sets F 1

i as i goes to infinity. In the limit of large depth we
can replace Ni with bi and we have shown that P converges
to the equilibrium heuristic distribution P2. Using this we
can show that in a search to cost d, IDA* expands a fraction
k2 of the nodes with f1-cost less than or equal to d.

Putting it all together, IDA* expands a fraction k1k2 of
the nodes expanded by a brute-force search when using the
sum of heuristics h1 and h2 in a search to cost d.

34



8-disc PDB disjoint 8-8-disc PDB

Depth E(b, c, d, P ) E(b, c, d, P ∗ P ) k2 ·
∑

cbi

21 107,895,112 4,396 4,396
22 406,376,304 16,557 16,557
23 1,530,576,037 62,359 62,359
24 5,764,762,069 234,869 234,869
25 21,712,400,515 884,612 884,612
26 81,777,586,286 3,331,804 3,331,804
27 308,007,102,618 12,548,907 12,548,907
28 1,160,077,586,286 47,264,203 47,264,204
29 4,369,317,604,426 178,015,897 178,015,898

Table 1: Predicted Number of Nodes Expanded on our
Model of the 16-Disc Towers of Hanoi Problem using IDA*

Experimental Results

We used the 4-peg Towers of Hanoi problem for experiments
because its disjoint additive PDBs are independent. The
classic problem has only three pegs, with a simple recursive
optimal solution. For the 4-peg problem a recursive strategy
has been proposed as well, but, absent a proof, search is the
only way to verify optimality of this solution (Frame 1941;
Stewart 1941). IDA* generates a large number of duplicate
nodes and thus is not the algorithm of choice for this prob-
lem, but our result is for IDA*, and so we nevertheless ran
IDA*. We used the 4-peg 16-disc problem with a single 8-
disc PDB as well as the sum of two disjoint additive 8-disc
PDBs. The initial states are random configurations of the
discs, and the goal state has all discs on the goal peg.

We create a model of the Towers of Hanoi problem match-
ing assumptions 1 and 2: First, the actual problem does not
have a uniform branching factor. A state’s branching factor
depends on the number of occupied pegs, but there are many
more different types of states with different numbers of chil-
dren, grandchildren, or great-grandchildren etc. We define
two states to be of the same type if and only if they gener-
ate the same brute-force search tree below them, apart from
labels of nodes and edges. In the Towers of Hanoi problem,
two states are of the same type if they differ only by a permu-
tation of the pegs because any series of moves with the pegs
permutated has to leave the same number of pegs occupied
in both states. Thus, each type has at most 4! states.

In our model, we assume a uniform branching factor equal
to the asymptotic branching factor b, which is the number of
nodes expanded in a depth-first search to depth d divided
by the number of nodes expanded in a depth-first search to
depth d − 1, in the limit of large depths d. We do not al-
low moving the same disc twice, but we did not apply any
operator ordering. In this problem, using b underestimates
the number of nodes in the brute-force search tree. At shal-
low depths, b underestimates the actual branching factor, but
eventually b becomes very accurate. In particular, bi under-
estimates the number of nodes at depth i in the brute-force
search tree by some factor ci. As the ratio of numbers of
states at consecutive depths converges to b, ci converges to
a constant c. We numerically fit c so that cbd accurately ap-
proximates the number of states at large depths d.

Secondly, we approximate the equilibrium distribution by

Depth E(b, c, d, P ∗ P ) Experimental Error

21 4,396 2,178 101.83%
22 16,557 8,840 87.29%
23 62,359 35,579 75.27%
24 234,869 142,191 65.18%
25 884,612 564,685 56.66%
26 3,331,804 2,230,023 49.40%
27 12,548,907 8,762,686 43.21%
28 47,264,203 34,278,183 37.88%
29 178,015,897 133,549,960 33.30%

Table 2: Predicted and Actual Number of Nodes Expanded
on the 16-Disc Towers of Hanoi Problem using IDA*

the overall distribution. Computing the equilibrium distri-
bution requires computing the overall heuristic distribution
for each type of state as well as the equilibrium fraction of
nodes belonging to each type. Since there are so many types
of states, an exact derivation becomes computationally un-
feasible even for small problems.

Table 1 has our theoretical predictions. The first column
gives the search depth d. The second column has results
for a single 8-disc PDB generated by the 8 smallest discs.
E(b, c, d, P ) gives the predicted number of nodes expanded
where Ni = cbi and P is the overall heuristic distribution.
The last two columns use the sum of two disjoint additive
8-disc PDBs, generated by the smallest and largest 8 discs.
Here E(b, c, d, P ∗ P ) gives the predicted number of nodes
expanded where P ∗ P is the convolution of the overall
distributions of the two additive PDBs. Since any set of
8 different-sized discs generates the same PDB (Korf and
Felner 2007), we used only one PDB and thus both heuris-
tics have the same overall distribution P . The last column
gives the predicted number of nodes expanded using our the-
orem, the nodes in the brute-force search tree times k2. The

fraction k is calculated as E(b, c, d, P )/
∑d

i=0 cbi or the pre-
dicted number of nodes expanded by IDA* using one 8-disc
PDB from the second column, divided by the number of
nodes expanded by a brute-force search. The reduction frac-
tion k = 4.0742 · 10−5 is the same for both PDBs. Apart
from a small precision error, the theorem predicts the same
number of nodes expanded as E(b, c, d, P ∗P ) from the third
column. This shows that our theorem holds for this model.

Table 2 compares our theoretical predictions from our
model to empirical results on the actual problem. The first
column gives the search depth d. The second column gives
E(b, c, d, P∗P ) from Table 1. The third column gives exper-
imental results averaged over 100, 000 random initial states.
The optimal solution depth to move all discs from one peg
to another is 161, but the average solution depth for random
initial states is about 125. We ignore the goal state and con-
tinue search until the specified depth. The fourth column
gives the relative error of our prediction compared to exper-
imental results. The initially large error keeps decreasing
monotonically as d increases, and the depths d of our exper-
iments are still far from the average solution depth 125. One
major source of error is introduced when approximating the
equilibrium distributions by the overall distributions. Even

35



Depth Experimental E(N, d, Pc) Error E(N, d, P
(i)
c ) Error

10 81 127 57.4% 81 0.0%
11 298 477 60.0% 298 0.0%
12 1,100 1,788 62.6% 1,100 0.0%
13 4,063 6,703 65.0% 4,063 0.0%
14 15,031 25,122 67.2% 15,031 0.0%
15 55,672 94,152 69.1% 55,672 0.0%

Table 3: Number of Nodes Expanded by IDA* on the 8-Disc
Towers of Hanoi Problem using Two Disjoint 4 Disc PDBs

though both additive PDBs have the same overall distribu-
tions, their equilibrium distributions differ. Furthermore, the
branching factor in the original problem space converges
very slowly towards the asymptotic branching factor b be-
cause the larger discs are moved very infrequently. Thus, cbi

still overestimates the number of states at relevant depths i.

To verify that these are the only sources of error we ran
experiments on a smaller 4-peg Towers of Hanoi problem
with 8 discs and two PDBs generated by the smallest and
largest 4 discs. Again, both heuristics have the same overall
distributions, but different equilibrium distributions. Since
this is a very small problem, for each depth, we can de-
termine the exact fraction of states belonging to each type
of state and the overall distributions for each type of state

and then calculate the exact heuristic distributions P
(i)
1 and

P
(i)
2 for all depths i as the weighted sum of the overall dis-

tributions. This shows that the equilibrium probabilities of
low heuristic values are higher when using the smallest discs
as pattern discs than when using the largest discs, and even
higher in the overall distribution. Also, the heuristic dis-
tribution for the largest discs converges much more slowly
to the equilibrium distribution than the one for the smallest
discs because most moves move one of the smaller discs.

Table 3 has experimental results. The first column gives
the search depth. The second column gives the number of
nodes expanded averaged over all possible 65, 536 configu-
rations of the discs as initial states. The third column gives
the predicted number of nodes expanded using E(N, d, Pc)
from (1), where Ni is the exact number of states at depth i
and Pc = P1 ∗ P2 is the convolution of the overall distribu-
tions. The fourth column gives the relative error compared
to experimental results. The fifth column uses the convolu-

tion of the exact heuristic distributions P
(i)
c = P

(i)
1 ∗ P

(i)
2

for each depth to predict the number of nodes expanded. The
last column gives the relative error of this prediction.

One can notice that using the overall distributions P1 and
P2 introduces a significant error. The second column ruled
out the source of error that comes from approximating Ni

by cbi. Using cbi would have overestimated the number

of nodes expanded even further. The prediction using P
(i)
1 ,

P
(i)
2 and Ni in the fifth column accurately predicts the num-

ber of nodes expanded, which shows that we have identified
all the sources of error in Table 2.

Non-Unit Edge-Cost Directed Graphs with
Non-Uniform Branching Factor

To show the generality of the multiplicative effect of inde-
pendent additive heuristics on IDA*, we ran experiments
on the multiple sequence alignment problem, an important
problem in computational biology (Korf and Zhang 2000;
Hohwald, Thayer, and Korf 2003). DNA sequences are
represented by strings consisting of the characters A, T, C,
and G. Protein sequences are represented by strings chosen
from an alphabet of 20 amino acids. Alignment is achieved
by inserting gaps in the sequences so that similar regions
align when the sequences are compared. Here is an example
of a three-way DNA sequence alignment (Thayer 2003):

AGTTA-

AGCT-G

-GACAG

A cost function is used to evaluate the quality of an align-
ment. The cost of an alignment of two sequences is the sum
of the alignment costs of the characters in each column. The
simplest cost function assigns a penalty of zero if the two
characters are the same or both are gaps, one if they are dif-
ferent and two if there is a gap in one of the two sequences.
The alignment of the first two sequences from the multiple
sequence alignment above has cost 1 + 2 + 2 = 5.

The cost of a multiple sequence alignment is the sum of
all pairwise alignment costs, and is called the sum-of-pairs
cost. In our example the alignment of the second and third
and of the first and third sequence each has cost 6. Thus,
this alignment of all three sequences has cost 5 + 6 + 6 =
17. Based on this cost function, it is actually not an optimal
alignment. The optimal alignment has cost 10 with no gaps
inserted in any of the three sequences.

An easy to compute admissible heuristic is the pairwise
heuristic. It takes advantage of the fact that the cost of an op-
timal pairwise subalignment is always less than or equal to
the pairwise cost in a sum-of-pairs multiple sequence align-
ment. Therefore, the sum of all optimal pairwise subalign-
ment costs is an admissible heuristic function. In our exam-
ple, an optimal alignment of the first and second sequence
would have no gaps and thus cost two. These two sequences
also contribute a cost of two to the sum-of-pairs cost of the
optimal alignment, which has no gaps either.

The optimal pairwise subalignment costs are not always
independent. For example given three sequences, if we
know that in the first column the first and the second se-
quence have the same character and the second and the third
sequence have the same character, then the first and third
sequence must also have the same character. But our experi-
ments show that they are not highly correlated, and thus they
can be treated as independent additive heuristics.

During search, alignments are created incrementally. The
start state is an alignment of length zero, and all leaf nodes
of the brute-force search tree are full alignments of the
sequences. The sum-of-pairs cost of the already aligned
sequence prefixes is used as the g-cost, and the pairwise
heuristic of the unaligned postfixes is the h-cost.

36



Figure 1: Actual and Predicted Number of Nodes Expanded
Aligning 5 Random Sequences using IDA* with 0 to 4 Sub-
alignments of Two Sequences as Heuristics

Sequence alignment can also be formulated as the task of
finding a lowest-cost path through a directed hypercube. We
refer the reader to Needleman and Wunsch’s (1970) work.
Bounded Diagonal Search (BDS) (Thayer 2003) and Sweep-
A* (Zhou and Hansen 2003), the algorithms of choice for
this problem, search this graph and detect all duplicate
nodes, while IDA* searches the tree expansion of this graph
and generates a large number of duplicate nodes.

Experimental Results

We used 5 random sequences of length 50 over an alpha-
bet of 20 characters and the simple cost function described
above for our experiments. We ran IDA* even though it is
not the algorithm of choice for this problem, but our theo-
rem was derived for IDA* only. Figure 1 has a combina-
tion of experimental results and predicted numbers of nodes
expanded. The search depth is plotted on the x-axis, and
the number of nodes expanded in a search to that thresh-
old on the y-axis on a log scale. From top to bottom the
graphs represent an iterative-deepening depth-first search,
IDA* using one pairwise subalignment cost, the sum of two
pairwise subalignment costs, up to the sum of four pairwise
subalignment costs on the bottom. The lines only reflect ac-
tual experimental data until they cross approximately 1010

on the y-axis. Then we simply extended all lines to predict
the number of nodes expanded for deeper depths. We drew
a vertical line at the solution depth 474, which we deter-
mined using BDS. The intersections of all graphs with this
line gives the predicted number of nodes expanded using the
corresponding heuristic. They are all separated by the same
vertical distances on this log scale, which means a constant
multiplicative reduction in nodes expanded. Again, we were
able to show the multiplicative effect of independent addi-
tive PDBs, this time on a non-unit edge-cost directed graph.

IDA* with Pattern Databases

Here we analyze the performance of IDA* with PDBs using
only the brute-force branching factor, the size of the PDBs,
and the solution depth. First we review an existing model
using a single PDB, then we extend it to independent PDBs.

IDA* with a Single Pattern Database

Korf (2007) introduced a model for analyzing the perfor-
mance of IDA* with a single PDB that builds on (1). Ni,
the number of nodes at depth i in the brute-force search tree,
is approximated by bi, where b is the brute-force branching
factor. The equilibrium distribution P is approximated us-
ing b and the size s of the PDB. The forward and backward
branching factors of the problem space are assumed to be
equal and the graph is assumed to have a negligible number
of cycles. In particular, since PDBs are constructed through
a backward breadth-first search from the goal state, Korf as-
sumes that there is one node with h-cost 0, b nodes with
h-cost 1, b2 nodes with h-cost 2, etc., up to bm nodes with
maximum h-cost m, such that

∑m

i=0 bi ≥ s. In other words
this model only depends on the branching factor b, the size
of the PDB s, and the search depth d. The number of nodes
expanded by IDA* for a search to depth d is approximately

E(b, d, s) ≈
bd+1

b − 1
·
logb s + 1

s
(2)

This formula consists of the number of nodes expanded
by a brute-force search to depth d, times a reduction fraction
due to the heuristic.

IDA* with Independent Disjoint Additive Pattern
Databases on Unit Edge-Cost Undirected Graphs

Here we extend Korf’s (2007) theoretical analysis for IDA*
to the sum of two independent disjoint additive PDBs of size
s1 and s2, respectively. We assume without loss of gen-
erality that s1 ≤ s2. The forward and backward branch-
ing factors of the problem space are both assumed to be b.

Pr[X1 = x] equals bx

s1

for x ≤ m1, where m1 is the max-

imum h-cost in PDB 1. The equivalent definitions hold for
PDB 2.

Cumulative Equilibrium Heuristic Distribution

We assume independence of the individual PDBs. Thus, the
equilibrium distribution of the sum of the two disjoint addi-
tive PDBs is the convolution of the equilibrium distributions
of the individual PDBs. A heuristic estimate x is the sum of
two terms, one from each PDB, x1 and x2. Equivalently the
random variable X consists of the sum of X1 and X2. x1

always has to be less than or equal to m1, and x2 less than
or equal to m2. Thus, we have to look at different ranges for
x. As an example we look at P (x) for x ≤ m1:

P (x) =

x∑

i=0

Pr[X1 = i](

x−i∑

j=0

Pr[X2 = j])

We substitute Pr[X1 = i] = bi

s1

and Pr[X2 = i] = bi

s2

and

derive the cumulative heuristic distribution function using
simple algebraic transformations. For m1 < x ≤ m2 and
m1 ≤ m2 < x ≤ m1 + m2, P (x) can be derived similarly.

Number of Nodes Expanded

The number of nodes expanded by IDA* for a search to
depth d using the sum of two independent additive PDBs of

37



Depth Experimental Sampling Error Convolution Error

45 20,397 20,641 1.19% 4,802 76.46%
46 42,659 43,974 3.08% 10,231 76.02%
47 92,579 93,684 1.19% 21,797 76.48%
48 194,331 199,585 2.70% 46,438 76.10%
49 419,795 425,198 1.29% 98,932 76.43%
50 883,854 905,843 2.49% 210,767 76.15%

Table 4: Actual and Predicted Number of Nodes Expanded
by IDA* on 15 Puzzle with 7-8 Tile Disjoint Additive PDBs

size s1 and s2 can be derived from (1). We plug in the distri-
butions, which we calculate as mentioned above, for P (x)
as well as bi for Ni. Pascal’s second identity and simple
algebraic transformations yield for large values of b:

E(b, d, s1, s2) ≈
bd+1

(b − 1)
·
logb s1 + 1

s1
·
logb s2 + 1

s2
(3)

This shows that the nodes expanded by IDA* for a search to

depth d are a fraction
log

b
s1+1

s1

· log
b

s2+1
s2

of the nodes ex-

panded by a brute-force search. This fraction is the product
of the fractions from (2) when using a single database of size
s1 or s2, respectively, as shown by Korf (2007).

IDA* with Dependent Additive Heuristics

Here we investigate whether our result holds for correlated
heuristics as well. The heuristic distribution of the sum of
several additive heuristics can be computed using random
sampling or, in case of independence, by taking the convo-
lution of the individual distributions. We already mentioned
the 7-tile and 8-tile disjoint additive PDBs for the 15 puzzles
as an example of dependent additive heuristics.

Experimental results are shown in Table 4. The first col-
umn gives the search depth. The second column gives the
average number of nodes expanded by IDA* over 100, 000
random initial states. The third column gives the number
of nodes expanded predicted by (1). For the equilibrium
heuristic distribution we randomly sample 10 billion states
and differentiate by the position of the blank. The fourth
column gives the relative error of this analysis compared to
experimental results. The fifth column gives the predicted
number of nodes expanded when computing the equilibrium
distribution using the convolution of the overall distribu-
tions. Again, we differentiate by the position of the blank.
The last column gives the relative error of this analysis com-
pared to experimental results. Table 4 shows that the con-
volution underestimates the number of nodes expanded by
more than 75% because the convolution underestimates the
probabilities of small heuristic values. A very small error
in the probabilities of small heuristic values blows up into a
big error in the predicted number of nodes expanded because
in (1) these probabilities are multiplied by the largest Ni.
The probabilities of very large heuristic values are underes-
timated as well, but they only matter at low search depths.
Thus, they do not introduce a big error. Summarizing, we
cannot assume independence to perform analysis on depen-
dent additive heuristics, and we showed an example where
assuming independence introduces a significant error.

Conclusion

We presented the first results analyzing the performance of
independent additive heuristics. First, we proved a multi-
plicative effect in the reduction of nodes expanded when us-
ing independent additive heuristics on unit edge-cost undi-
rected graphs with a uniform branching factor. We experi-
mentally verified this result using a model of the 4-peg Tow-
ers of Hanoi problem. Then, we empirically showed more
general applicability to non-unit edge-cost directed graphs
using the multiple sequence alignment problem. Finally, we
extended Korf’s (2007) model to predict the performance of
IDA* with a single PDB to independent additive PDBs.

Acknowledgment

This research was supported by NSF grant No. IIS-
0713178.

References

Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.

Frame, J. S. 1941. Solution to advanced problem 3918.
American Mathematical Monthly 48:216–217.

Hohwald, H.; Thayer, I.; and Korf, R. E. 2003. Compar-
ing best-first search and dynamic programming for optimal
multiple sequence alignment. In IJCAI, 1239–1245.

Holte, R. C., and Hernádvölgyi, I. T. 2004. Steps towards
the automatic creation of search heuristics. Technical Report
TR04-02, University of Alberta, Edmonton, Alberta.

Korf, R. E., and Felner, A. 2002. Disjoint pattern database
heuristics. Artif. Intell. 134(1–2):9–22.

Korf, R. E., and Felner, A. 2007. Recent progress in heuris-
tic search: A case study of the four-peg Towers of Hanoi
problem. In IJCAI-07, 2324–2329.

Korf, R. E., and Zhang, W. 2000. Divide-and-conquer fron-
tier search applied to optimal sequence alignment. In AAAI-
00, 910–916.

Korf, R. E.; Reid, M.; and Edelkamp, S. 2001. Time
complexity of Iterative-Deepening-A*. Artif. Intell. 129(1–
2):199–218.

Korf, R. E. 1985. Iterative-Deepening-A*: An optimal ad-
missible tree search. In IJCAI-85, 1034–1036.

Korf, R. E. 2007. Analyzing the performance of pattern
database heuristics. In AAAI-07, 1164–1170.

Needleman, S. B., and Wunsch, C. D. 1970. A general
method applicable to the search for similarities in the amino
acid sequence of two proteins. Mol. Biol. 48(3):443–453.

Pearl, J. 1984. Heuristics. Reading, MA: Addison-Wesley.

Stewart, B. 1941. Solution to advanced problem 3918.
American Mathematical Monthly 48:217–219.

Thayer, I. 2003. Methods for optimal multiple sequence
alignment. Master’s thesis, UCLA, Los Angeles, CA.

Zhou, R., and Hansen, E. A. 2003. Sweep A*: Space-
efficient heuristic search in partially ordered graphs. In
ICTAI-03, 427.

38




