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Abstract

Search based solvers for Quantified Boolean Formulas (QBF)
have adapted the SAT solver techniques of unit propagation
and clause learning to prune falsifying assignments. The
technique of cube learning has been developed to help them
prune satisfying assignments. Cubes, however, have not been
able to achieve the same degree of effectiveness as clauses.
In this paper we demonstrate how a circuit representation for
QBF can support the propagation of dual truth values. The
dual values support the identical techniques of unit propa-
gation and clause learning, except now it is satisfying as-
signments rather than falsifying assignments that are pruned.
Dual value propagation thus exploits the circuit represen-
tation and the duality of QBF formulas so that the same
effective SAT techniques can now be used to prune both
falsifying and satisfyingly assignments. We show empiri-
cally that dual propagation yields significant performance im-
provements and advances the state of the art in QBF solving.

Introduction
Quantified Boolean Formulas (QBF) are an extension of
SAT in which universally quantified variables are added to
the (implicitly) existentially quantified variables of SAT. De-
termining the truth of a QBF is a PSPACE-Complete prob-
lem, and thus a much wider range of problems can be poly-
nomially encoded in QBF than in SAT. This means that an
effective QBF solver could have a very wide range of prac-
tical applications, and makes developing such a solver a re-
search problem with great potential for practical impact. Al-
though more research still needs to be done, modern solvers
have already reached the point where some problems can be
more efficiently solved when encoded as QBF than as SAT
(Mangassarian et al. 2007). In this paper we make further
progress on this research goal by presenting a technique that
improves the performance of state of the art QBF solvers.

A QBF formula has the form ~Q.φ where ~Q is a sequence
of universally (∀) and existentially (∃) quantified variables,
and φ is a propositional formula over those variables. Let
φ|x=0 (φ|x=1) be the reduction of φ by the assignment x =
0 (x = 1) computed by replacing the variable x with the
constant 0/false (1/true) followed by simplifying. The truth
of a QBF formula is defined recursively: ∃x~Q.φ is true iff
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either ~Q.φ|x=0 or ~Q.φ|x=1 is true, and ∀x~Q.φ is true iff both
~Q.φ|x=0 and ~Q.φ|x=1 are true. We assume that all of the
variables in φ are contained in ~Q. Hence φ will eventually
be reduced to the constant 1 or 0: ~Q.1 is always true and
~Q.0 is always false. A SAT formula, which asks whether
or not there exists a setting of the variables that makes the
formula true, is thus a QBF formula in which ~Q consists
only of existential variables.

Many QBF solvers are based on the same technique of
backtracking search (DPLL) used for solving SAT. Search
based QBF solvers have successfully adapted the powerful
techniques of unit propagation and clause learning that are
at the core of modern SAT solvers. These techniques are
very successful at identifying and steering the solver away
from assignments that force φ to be false, and at learning
new clauses when φ is falsified so as to detect similar as-
signments that must also falsify φ.

QBF solvers, however, face the equally important task of
not wanting to waste time exploring assignments that force
the formula to be true. For example, if ~Q.φ has a prefix of
k universally quantified variables, ∀u1, . . . ,∀uk, the above
definition of truth implies that each of the 2k different as-
signments to the ui must yield a reduction of ~Q.φ that is
true. Clearly, it is intractable to check each of these assign-
ments. Instead a QBF solver must have mechanisms that al-
low it to identify and avoid assignments that force the QBF
to be true, and that learn new information when the QBF
is truthified so as to detect similar assignments that must
also truthify the QBF. The technique of Cube learning has
been developed to accomplish this (Zhang and Malik 2002;
Giunchiglia, Narizzano, and Tacchella 2002). However,
cube learning is not as effective at pruning the truthifying
assignments as clause learning is at pruning the falsifying
assignments.

Although most QBF solvers have employed a clausal rep-
resentation (CNF) for φ, the body of the QBF, Goultiaeva,
Iverson, and Bacchus (2009) have presented a solver that
uses a circuit representation for φ and shown that it has a
number of advantages over CNF. They have also shown that
unit propagation and clause learning can be fully realized
even though φ is represented as a circuit and not as a set
of clauses. Cube learning can also be performed. However,
although the circuit representation yields better cubes than
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produced with a CNF representation, in their system cube
learning is still not as effective as clause learning.

In this paper we show how the circuit representation can
be further exploited by propagating a dual set of values
through it. These dual values allow us to prune truthifying
assignments with the same techniques used to prune falsify-
ing assignments, allowing the solver to prune both types of
assignments equally effectively. The result is a significant
improvement in performance.

We have modified the circuit based QBF solver of (Goulti-
aeva, Iverson, and Bacchus 2009) to include the propagation
of dual values. Our experiments verify its improved perfor-
mance. We have also tested our new solver against other
state of the art QBF solvers, and our experiments demon-
strate that our technique improves the state of the art in QBF
solving on an number of different benchmarks.

Background
A circuit representation of a QBF ~Q.φ involves represent-
ing the propositional formula φ as a boolean circuit utiliz-
ing AND, OR and NOT gates and lines from gate outputs
to gate inputs. The quantified variables of ~Q are the inputs
to the circuit. The output line of each gate is labeled with
a new variable. Formally, these variables behave as exis-
tentially quantified variables scoped by all of the input vari-
ables with a path to them in the circuit. For example, the
QBF ∃e1∀u1∃e2∀u2.(e1 ∧ ¬u1) ∨ (e2 ∧ u2) would be rep-
resented by a circuit with: (1) x1 = NOT(u1), i.e., a NOT
gate with input u1 and output x1; (2) x2 = AND(e1, x1); (3)
x3 = AND(e2, u2); and (4) out = OR(x2, x3). The xi are
the new existential auxiliary variables which if put into the
quantifier yield ∃e1∀u1∃x1x2e2∀u2∃x3. We see that x1 and
x2 are only scoped by e1 and u1 while the x3 has narrow-
est scope. Note that the circuit output out does not appear
in the “augmented” quantifier. This is because out will be
assigned a fixed value so it will be replaced by a constant.

The backtracking search solver CirQit of Goultiaeva,
Iverson, and Bacchus (2009) executes a tree-search in which
variables are instantiated and the consequences of those de-
cisions propagated. However, with QBF the solver has to
verify both settings of the universal variables and the order in
which variables are instantiated must respect the quantifier
ordering in ~Q (all variables scoping v must be instantiated
before v can be chosen). This implies that the solver will
never branch on any of the auxiliary variables. All inputs
they depend on scope them and must be instantiated first; af-
ter which their value will be forced. For example, if u1 is set
to true, the outputs x1 of NOT(u1) and x2=AND(e1, x1) are
both set to false. A clausal reason for every literal (v or ¬v)
that is forced can be extracted from the circuit. For example,
¬x2 is forced because the clause (x1,¬x2) ≡ ¬x1 → ¬x2

has become unit. This clause is extracted from the logic of
the AND gate that relates x1 and x2.

It can be shown (Thiffault, Bacchus, and Walsh 2004) that
the auxiliary variables labeling the gate outputs are the same
as the new variables that would be introduced when the cir-
cuit is encoded in CNF. Furthermore, propagation on the
circuit forces exactly the same literals as would be forced

by unit propagation on the CNF encoding, and labels them
with exactly the same clausal reasons.

CirQit propagates primal values (1-values). In the CNF
encoding, the circuit output line out is always set to 1 and
the CNF simplified prior to search. This is motivated by
SAT where the aim is to find a setting of the variables that
makes the formula true (i.e., inputs which that the circuit
output 1). Similarly, CirQit sets the output of the circuit to 1
and propagates this value back through the circuit. This can
interact with the settings of the input lines to cause further
propagation. For example, if u1 is set forcing ¬x2, then
x3 will also be forced. The final OR gate OR(x2,x3) must
output 1, and thus ¬x2 forces the other input to be 1. In turn
x3 forces e2 and u2. A clausal reason can be extracted from
the circuit for each forced literal; e.g., the reason for u2 is
the clause (¬x3, u2).

A contradiction occurs when either both 1 and 0 are
propagated to the same line, or when a disjunction of uni-
versal literals is forced to be true. In the example above the
universal literal u2 is forced so propagation detects a contra-
diction. A conflict clause can be extracted from the circuit
representation and used to initiate clause learning. In QBF
conflict clauses are untruthified clauses all of whose exis-
tential literals have been falsified. Starting with the conflict
clause and the fact that all forced literals have clausal rea-
sons, a clause learning process similar to that used in SAT
solvers can then be executed. The only difference is that
any universal literal that scopes no existential in the learnt
clause can be removed (these are called tailing universals).
The new clause can then be used to backtrack the solver just
as in SAT solvers.

Search based QBF solvers also employ Cube Learning.
With a circuit representation cube learning is initiated once
a sufficient number of input lines are set (i.e., input liter-
als made true) by the search to cause 1 to be propagated to
the circuit output. The solver knows that the body of the
QBF has now been reduced to 1, and hence that the QBF
has been truthified. A cube can be extracted from the true
input literals. Any subset of these input literals that suffices
to propagate 1 to the output forms a cube, and the solver
will typically employ a greedy approach to finding such a
subset. (Search might have set many other input literals that
ultimately were not needed to force the circuit output).

All tailing existentials can then be removed from the cube
(existentials that don’t scope a universal in the cube), and the
solver can then backtrack to the most recently set universal
u in the cube and try u’s other value (the cube verifies that
the u’s current value truthifies the QBF). If u’s other value
has already been verified, then the solver must have already
backtracked to u with a cube K0 verifying u’s other value.
Now on this backtrack it has found a new cube K1 verifying
u’s current value. K0 and K1 can be resolved removing
u and ¬u and all existentials that become tailing to obtain a
new cubeK. The solver can then useK to backtrack further.

Cube learning with a CNF representation is similar. The
solver can stop when all clauses have been truthified, and a
cube consisting of a subset of the true literals sufficient to
truthify all clauses can be extracted.

Cubes as currently implemented in QBF solvers have lim-
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ited effectiveness. The first limitation arises from that fact
that the solver starts off with no cubes—cubes have to be
learnt during search. This means that for the early phases of
the search the solver must delve very deep in its search tree
before it can recognize that the QBF has been made true. On
the other hand the solver starts off with many short clauses
(in the circuit representation these clauses are implicit in the
logical relationships between the gate inputs and its output).

The second limitation is that the cubes learnt when a solu-
tion is identified tend to be very large—they have to contain
enough input literals to truthify the circuit, or to satisfy ev-
ery clause in the CNF. Cubes learnt from a circuit tend to be
shorter than those learnt from a CNF, but they are still not
small enough. Once we start with long cubes it will require
a lot of resolutions (and a lot of search time) to generate
short ones. Hence, even when cubes are learnt, they tend to
be useful only quite deep in the search tree. On the other
hand, learnt clauses, although they can be large, can also of-
ten be short. A SAT solver, for example, often learns new
unit clauses.

Finally, a third limitation is that cubes constructed from
a circuit representation include only literals corresponding
to set input lines (cubes constructed from a CNF representa-
tion can contain auxiliary literals but will typically also con-
tain just as many input literals). Learnt clauses, on the other
hand can often contain only auxiliary literals, corresponding
to settings of various internal lines. Since many different
settings of the inputs can generate the same settings of vari-
ous internal lines, we see that a single clause with auxiliary
variables can represent many different sets of input literals
that falsify the formula. Cubes with only input literals, on
the other hand, capture only one specific setting of the input
variables that truthifies the formula.

Dual Propagation
How can we address the weaknesses of current cube learn-
ing? First, we note that cubes and clauses are duals of each
other. If all of the literals in a clause become false the for-
mula is falsified; if all of the literals in a cube become true
the formula is truthified. However, in current cube learn-
ing clauses and cubes are generated by quite different pro-
cesses. Intuitively, the duality between cubes and clauses
should mean that there exists a dual version of clause learn-
ing that can make the solver’s treatment of cubes more like
its treatment of clauses.

Consider the negation of the QBF being solved ¬ ~Q.φ.
This formula is false iff the original QBF ~Q.φ is true. Tak-
ing the negation in we obtain (¬ ~Q).(¬φ), where ¬ ~Q is the
same as ~Q except that the quantifiers are flipped. For ¬φ
we can exploit the circuit representation. This formula can
be represented by the same circuit used to represent φ, Cφ,
then passing the output of Cφ through a NOT gate.

If we want to solve ¬ ~Q.φ with a circuit based solver we
would take the circuit NOT(Cφ) and set its output to 1. The
1 would propagate back through the final NOT gate, and set
the output of Cφ to 0. So we see that the final NOT gate can
be discarded, it suffices to set the output of Cφ to 0. Now the
solver would start to set the input lines of the circuit. These
are identical to the input lines of Cφ but have reversed quan-

tifiers. The set input lines are propagated and contradictions
are detected. Propagation exploits the local logical prop-
erties of the gates and labels each propagated value with
a clausal reason. Contradictions generate falsified clauses
(conflict clauses) consisting of local sets of inputs and out-
puts of a single gate. Thus clause learning operates just as
before.

Logically, if propagation forces a input literal `, then ¬`
must make ¬ ~Q.φ false and ~Q.φ true. So when solving ~Q.φ

unit propagation on ¬ ~Q.φ tells us that we need not explore
the subtree below ¬`: the formula is provably truthified un-
der that setting. Note that, if a clause c becomes unit (`)
when solving ¬ ~Q.φ, then ` must be an existential in ¬ ~Q.φ;
otherwise c would be a conflict all-universal clause. Thus,
unit propagation in ¬ ~Q.φ can only force input universals in
~Q.φ, while unit propagation in ~Q.φ can only force input ex-
istentials in ~Q.φ. Unit propagation on ¬ ~Q.φ can be just as
powerful as unit propagation of ~Q.φ. So unit propagation on
¬ ~Q.φ allows us to identify and steer the solver away from
truthifying assignments just as effectively as unit propaga-
tion on ~Q.φ allows us to identify and steer the solver away
from falsifying assignments.

Similarly we see conflicts in ¬ ~Q.φ identify when ~Q.φ
must be true. And clauses learnt from these conflicts allow
us to detect similar assignments that must also truthify ~Q.φ.
Furthermore, clauses learnt this way can be just as effective
on truthifying assignments as clauses learnt from ~Q.φ are on
falsifying assignments.

To implement this idea we do not actually need to do
propagation on ¬ ~Q.φ. Rather we can use the same circuit
representation for φ and propagate two values in this circuit
along a primal and dual channel. Formally, every line of the
circuit is given two truth values: a primal or 1-value and a
dual or 0-value. The primal inputs of a gate are logically
connected to the gate’s primal output, and its dual inputs
are logically connected to its dual output. Initially, the cir-
cuit output’s primal value is set to 1 and its dual value to
0. These values propagate back through the primal and dual
channels of the circuit affecting the primal and dual values
of other lines respectively. The input lines always have an
equal primal and dual value, hence the solver need only keep
track of one value for the input lines. Whenever their value
is set, by decision or by values being propagated back along
one channel, the same value goes out along both channels.
Thus, the channels can affect each other via the input lines.

As before, search sets input lines and propagation sets the
auxiliary variables. (Both ~Q.φ and ¬ ~Q.φ have the same ex-
istential auxiliary variables scoped by the same set of in-
put variables). Now, however, both primal and dual val-
ues are propagated through the circuit to the auxiliary vari-
ables. Thus propagation might set either or both values of
the auxiliary variables. Contradictions are detected from
both the primal and dual values. In both cases a clause is
learnt and the solver backtracks. Primal clauses and dual
clauses are put in separate databases: unit propagating pri-
mal clauses forces primal values while unit propagating dual
clauses forces dual values. As more clauses are learnt these
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∀u∃xy Primal channel Dual channel
g1 = T [initial] g1 = F [initial]

g2 = F (¬g1)
u = F (¬g1)

u = F [Dual channel]
g3 = T (¬u) g3 = T (¬u)
g2 = T (g1,¬u)
g4 = T (g2) g4 = F (¬g2, g3)

x = F (¬g4)

Figure 1: Example circuit solved by dual propagation

databases can considerably increase the power of primal and
dual unit propagation, as well as the ability to detect primal
and dual conflicts.

It can be seen that a primal conflict causes backtrack
and an existential of ~Q.φ to be forced (the opposite value
must falsify ~Q.φ), while a dual conflict causes backtrack
and a universal of ~Q.φ to be forced (the opposite value must
truthify ~Q.φ). Furthermore, the solver always encounters ei-
ther a primal conflict or a dual conflict along each path it
explores—once a sufficient number of input lines have been
set either a 0 or a 1 must be propagated to the circuit out-
put causing either a primal or a dual conflict. Finally, the
solver terminates on learning either an empty primal or an
empty dual clause indicating that the input QBF is false or
true respectively.

Figure 1 illustrates dual propagation with a simple exam-
ple. It shows the sequence of values forced by propagation
on the two channels, together with their reasons, starting
with the circuit output g1. The last assignment on the dual
channel causes a conflict, since the variable x is universal
along that channel. So, the formula is found to be true. Note
that primal propagation alone cannot solve this problem.

Don’t-care propagation
One of the advantages of a circuit representation over CNF
is that it supports unrestricted detection of don’t care. This
can yield significant performance improvements (Goulti-
aeva, Iverson, and Bacchus 2009).

This raises the question of how dual propagation affects
don’t cares. Since propagation has the same logic along both
the primal and dual channels (albeit with potentially differ-
ent values being propagated), it is not difficult to extend the
notion of don’t cares to the dual channel values. We define
DC-1 variables to be those variables whose value is irrele-
vant assuming the 1-value of the output, and DC-0 variables
as those variables whose value is irrelevant assuming the 0-
value of the output. The techniques used to detect DC-1
variables can be extended to detect DC-0 variables, and the
following proposition can be proved.

Proposition 1. If all the input variables are set, except for
those that are also DC-1 or DC-0, then propagation will
cause a conflict to be reached on one of the channels.

This result says that the solver need never branch on any
variable that is don’t care on either channel: the truth of the
formula will still be resolved along every path of its search
tree. It is possible that some variables are recognized as DC

only on one of the channels. For example, in a formula of
the form α1∨ (α1∧α2), the variables belonging exclusively
to α2 will be found DC-0 but not DC-1. Thus, doing dual
propagation can increase the power of don’t care propaga-
tion.

Related work
It has previously been recognized that the weakness of cubes
(Ansótegui, Gomes, and Selman 2005) and the assymmetri-
cal treatment of variables (Bordeaux and Zhang 2007) seri-
ously harm the performance of search based QBF solvers.

An early work in this direction (Otwell, Remshagen, and
Truemper 2004) dealt only with a heavily restricted formal-
ization (limited to two quantifier levels and a particular for-
mula structure).

The solver Duaffle (Sabharwal et al. 2006) requires that
the QBF be formulated in two parts, a CNF and a DNF,
either conjoined or disjoined. The argument is made that
such a formulation is natural for many types of problems,
although clearly it is not always natural. The idea here is
that the DNF terms, when they become true, can be used
to more quickly detect that the formula has been truthified.
With dual propagation nothing special is required of the for-
mulation, and clause learning allows truth to be detected in
more cases.

The other, and most closely related work, was the ap-
proach of converting a circuit representation into both a CNF
and a DNF (CCDNF) (Zhang 2006). Thus the formula is
represented twice. The DNF allows for more powerful de-
tection of truth, while the CNF is used in the standard way to
detect falsity. The resulting solver, IQTest, however, had to
implement a dual version of unit propagation and DNF term
learning in addition to a standard unit propagation and clause
learning. In our approach the same module can be used to
deal with both the dual and the primal channels. Further-
more, by preserving the original circuit representation our
solver can also implement don’t care propagation.

One disadvantage of our approach is that it needs the in-
put to be represented as a propositional formula or circuit to
perform optimally. It can operate on CNF, and dual prop-
agation will still offer some advantages, but the more time
expensive circuit data structures will be a drag on perfor-
mance. This disadvantage is shared by the other approaches
just mentioned.

Experimental results
We have implemented our ideas (including don’t cares on
the dual channel) in the solver CirQit (Goultiaeva, Iver-
son, and Bacchus 2009). We compared the resulting solver,
called CirQit2, with the original, and with other state-of-the-
art QBF solvers.

The experiments were run on all the non-Prenex,
non-CNF benchmarks currently available from QBFLIB
(Giunchiglia, Narizzano, and Tacchella 2001a). The tests
were run on a 2.8GHz machine with 12GB of RAM under a
time limit of 1200 CPU seconds per instance.

Figure 2 shows the drastic effect that dual propagation
had on the performance of the solver. For each instance,
the time CirQit2 took to solve it is on the y-axis, and CirQit
on the x-axis. We can see that most of the instances are
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Figure 2: Time comparison between CirQit and CirQit2

strongly below the bisecting line, which means that CirQit2
took considerably less time to solve them. Instances that
timed out are plotted on the 1200 second mark on the graph.
We can see a lot of instances on the right border. Those are
the problems that CirQit2 solved but on which CirQit timed
out. Note that there are no problems along the top border:
CirQit2 solved all the problems CirQit did.

For the problems that are above the bisecting line, dual
propagation increased solving time. Note that the scale is
logarithmic, and most of the cloud in the lower left corner is
solved by both solvers within a second. The line of problems
just above the bisecting line are those where the solution did
not benefit from the dual propagation, but was slowed down
by the associated overhead. These rare problems now take
about twice the time it originally took to solve them: dual
propagation costs no more than twice the original. A small
handful of problems in the upper left show CirQit2 taking
considerably more time than its counterpart. These cases
are very rare, and are caused by heuristic reasons.

Table 1 shows the comparison between CirQit2, CirQit
and some state-of-the-art CNF-based QBF solvers: sKizzo
(v0.8.2) (Benedetti 2005), quantor (version 3.0, with picosat
back end) (Biere 2004), Qube (version 6.5) (Giunchiglia,
Narizzano, and Tacchella 2001b), nenofex (Lonsing and
Biere 2008) and depqbf (Lonsing and Biere 2009)—the lat-
ter two are the versions submitted to the main track of
QBFEVAL’10 (QBFEVAL is an annual international QBF
solver competition). Predecessors of sKizzo and Quantor
took first and second place at QBFEVAL’05. Qube6.5 is
an updated version of the best standalone solver of QBFE-
VAL’08, and of the winner of QBFEVAL’07. The predeces-
sor of Nenofex was the second best standalone solver of the
QBFEVAL’08. The non-prenex non-CNF instances are con-
verted to prenex CNF using a conversion tool available on
the QBFEval site.

Quantor is a bottom up solver based on resolution rather
than on top-down search. It is well known that the bot-
tom up approach works much better than top-down search

Figure 3: Problems solved vs time allotted per problem

on some QBFs, but is outperformed by search on other for-
mulas. Dual propagation improves search based solvers, but
it is still outperformed by quantor on the domains from the
set BMC QBF 1.0. These domains are “assertion”, “con-
sistency” and “possibility”, for which bottom up solvers are
better suited. Together, they comprise over half of the to-
tal problems, which is why the total number of problems
solved by quantor is higher. However, CirQit2 outperforms
quantor in all the other domains. It is also worth noting
that CirQit2 significantly out performs all of the other search
based solvers on these three “hard for search” domains. Ex-
cept for these three domains, and for “dme”, where it is un-
able to solve a problem that depqbf is able to solve, CirQit2
proves to be superior.

Comparison with the non-CNF QBF solvers currently
available was omitted. As shown in (Goultiaeva, Iver-
son, and Bacchus 2009), CirQit already outperforms these
solvers, and since CirQit2 outperforms CirQit (Figure 2) it
handly outperforms these solvers.

Due to technical limitations we were not able to do many
experiments with IQTest (Zhang 2006) (only a Windows ex-
ecutable of IQTest is available). However, we ran two prob-
lem suites. The first was the Seidl benchmarks with 150
instances. Using a Windows machine and a 1200 sec. time-
out, CirQit2 required 1009 sec. to solve all 150 problems,
while IQTest could only solve 126 problems, taking 53,000
seconds (not counting the time consumed by the timed out
instances). On the Scholl benchmarks, distributed with
IQTest, however, IQTest outperforms CirQit2. Of these 63
problems, CirQit2 solved 38 while IQTest solved 46 (within
the timeout). We do not have a good explanation for the dif-
ferences. It could be that IQTest’s heuristics were developed
with input from the Scholl benchmarks only.

Figure 3 shows the number of problems solved by the
solvers as time goes on. For compactness, only those solvers
that solved over 200 problems were included. We can see
that all the other solvers, except for CirQit2, essentially
plateau: after a timeout of 250 seconds, giving them more
time does not noticeably increase the number of problems
they could solve. The line representing the result of CirQit2,
on the other hand, keeps climbing. This indicates that tech-
nical issues, such as code optimization and better data struc-
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Benchmark Families CirQit2 CirQit sKizzo quantor Qube6.5 nenofex depqbf
(number of instances) Solved Time avg Cube #Cubes Solved Time avg Cube #Cubes Solved Time Solved Time Solved Time Solved Time Solved Time

Seidl (150) 150 318 91.31 170526 147 2281 57.41 1016738 37 6301 42 3272 149 2485 82 1160 150 557
assertion (120) 40 14503 - 0 3 1 - 0 14 796 119 8736 6 1180 12 4170 24 145
consistency (10) 4 1283 - None 0 0 - None 1 40 10 720 0 0 1 306 0 0
counter (45) 40 492 107.55 5932 39 1315 334.27 68126 34 1185 28 414 31 540 29 1727 31 70
dme (11) 10 5 10.83 179 10 15 373.64 2997 0 0 0 0 7 88 8 94 11 901
possibility (120) 45 16121 - 0 10 1707 - 0 13 700 111 7976 14 4713 12 4037 10 143.376
ring (20) 20 53.55 37.91 2692 15 60 190.96 165591 12 752 11 479 16 189 11 4 13 243
semaphore (16) 16 3 15.22 435 16 7 63.72 21045 14 68 16 12 16 361 16 1193 16 39

Total (492) 325 32779 90.78 179764 240 5389 90.41 1274497 125 9844 337 21613 239 9557 171 12692 255 2098

Table 1: Comparison between CirQit2 and other state-of-the-art CNF-based solvers. The largest number of instances solved is
shown in bold, with ties broken by the time taken to solve those instances. Average size of dual clauses (cubes) and the total
number of cubes learned is provided for the instances which were solved by both CirQit and CirQit2

tures, can bring considerable benefits to this solver. In fact,
a better optimized version of CirQit2 with some other addi-
tions not discussed here was able to solve 352 of the prob-
lems in this benchmark set, beating Quantor.

Comparing the results of CirQit and CirQit2 in Table 1
we see that dramatic speedups are evident in all domains.
Probably the most obvious improvement happened in the
benchmark sets “assertion”, “consistency” and “possibil-
ity”, where CirQit was unable to make much progress. The
addition of dual propagation put these benchmarks firmly
within its grasp, with solving time increasing roughly lin-
early for each next problem. In the benchmark sets “Seidl”
and “ring”, CirQit2 is able to solve all the problems in less
time than its previous version took to solving only some.
The remaining three domains also displayed a noticeable re-
duction in solving time. Finally, cube size is noticeably re-
duced in all domains except for “Seidl”, and the number of
cubes needed to solve the same problems is an order of mag-
nitude smaller in all domains.

Conclusion
In this paper, we presented dual propagation—a simple ap-
proach that reconciles clauses and cubes and greatly in-
creases the power and simplicity of the solver. We imple-
mented the idea, and have demonstrated the drastic effect it
has on performance.

There have been some previous attempts at overcoming
the weaknesses of cubes, but these attempts have required
more algorithmic changes and in some cases restricted the
problem representation.

Due to its simplicity, many additional techniques can be
used with dual propagation. We showed, for example, how
it can be combined with Don’t Care Propagation.
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