
A Stronger Consistency for Soft Global Constraints in
Weighted Constraint Satisfaction

J. H. M. Lee and K. L. Leung
Department of Computer Science and Engineering

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
{jlee,klleung}@cse.cuhk.edu.hk

Abstract

Weighted Constraint Satisfaction is made practical by pow-
erful consistency techniques, such as AC*, FDAC* and
EDAC*, which reduce search space effectively and efficiently
during search, but they are designed for only binary and
ternary constraints. To allow soft global constraints, usu-
ally of high arity, to enjoy the same benefits, Lee and Le-
ung give polynomial time algorithms to enforce generalized
AC* (GAC*) and FDAC* (FDGAC*) for projection-safe soft
non-binary constraints. Generalizing the stronger EDAC* is
less straightforward. In this paper, we first reveal the oscilla-
tion problem when enforcing EDAC* on constraints sharing
more than one variable. To avoid oscillation, we propose a
weak version of EDAC* and generalize it to weak EDGAC*
for non-binary constraints. Weak EDGAC* is stronger than
FDGAC* and GAC*, but weaker than VAC and soft k-
consistency for k > 2. We also show that weak EDGAC*
can be enforced in polynomial time for projection-safe con-
straints. Extensive experimentation confirms the efficiency of
our proposal.

Introduction

Soft constraints help model preferences and over-
constrained problems. Weighted Constraint Satisfaction
Problems (WCSPs), a soft CSP framework, is made prac-
tical by powerful consistency techniques applied during
search. NC*, AC* and FDAC* (Larrosa and Schiex 2003;
2004) and EDAC* (de Givry et al. 2005) are instrumental
in solving radio link frequency problems which are binary
in nature. Generalizations of these consistencies for ternary
constraints (Sanchez, de Givry, and Schiex 2008) help
solve Mendelian error detection problems. Zytnicki et al.
(2009) introduced BAC∅ for solving RNA gene localization
problems.

On the other hand, many real-life problems are complex
to model, requiring the use of specialized global constraints
which usually have high arities. Lee and Leung (2009) gen-
eralize AC* and FDAC* to their non-binary counterparts,
GAC* and FDGAC*, and show that the new consistencies
can be enforced in polynomial time for projection-safe soft
global constraints. A natural next step is to generalize also
the stronger consistency EDAC* (de Givry et al. 2005) to

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

EDGAC*, but this turns out to be non-trivial. We identify
and analyze an inherent limitation of EDAC*: similar to the
case of Full AC* (de Givry et al. 2005), ED(G)AC* en-
forcement will go into oscillation if two constraints share
more than one variable, which is common when a problem
involves high arity (soft) constraints. Sanchez et al. (2008)
did not mention the oscillation problem but their method
for enforcing EDAC* for the special case of ternary con-
straints would avoid the oscillation problem. In this paper,
we give a weak form of EDAC*, which can be generalized
to weak EDGAC* for constraints of any arity. Most im-
portantly, weak EDAC* is reduced to EDAC* when no two
constraints share more than one variable. Weak EDGAC* is
stronger than FDGAC* and GAC* (Lee and Leung 2009),
but weaker than VAC (Cooper et al. 2008) and soft k-
consistency (Cooper 2005) for k > 2. We also give an
enforcement algorithm for weak EDGAC*, which can be
run in polynomial time for projection-safe (Lee and Leung
2009) soft global constraints. Extensive experimentation
confirms the efficiency of our proposal both in terms of prun-
ing and running time.

Background

A weighted CSP (WCSP) (Schiex, Fargier, and Verfail-
lie 1995) is a tuple (X ,D, C, k). X is a set of variables
{x1, x2, . . . , xn} ordered by their indices. D is a set of do-
mains D(xi) for xi ∈ X . Each xi can only be assigned
one value in its corresponding domain. An assignment
{xs1

7→ vs1
, . . . , xsn

7→ vsn
} onto S = {xs1

, . . . , xsn
} ⊆

X can be represented by a tuple ℓ. The notation ℓ[xsi
] de-

notes the value vsi
assigned to xsi

∈ S, and L(S) denotes
a set of tuples corresponding to all possible assignments
on variables S. C is a set of soft constraints, each CS of
which represents a function mapping a tuple ℓ ∈ L(S) to
a cost in the valuation structure V (k) = ([0, . . . , k],⊕,≤).
The structure V (k) contains a set of integers [0, . . . , k] with
standard integer ordering ≤. Addition ⊕ is defined by
a⊕b = min(k, a+b), and subtraction ⊖ is defined only for
a ≥ b, a ⊖ b = a − b if a 6= k and k ⊖ a = k for any a. To
simplify notation, we write C{xs1

,xs2
,...,xsn} as Cs1s2···sn

if

the context is clear.
Without loss of generality, we assume the existence of Ci

for each xi ∈ D(xi) and C∅ denoting the minimum cost of
the problem. If they are not defined, we assume Ci(v) = 0

121

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

for all v ∈ D(xi) and C∅ = 0. The cost of a tuple ℓ ∈ L(X)
is defined as cost(ℓ) = C∅ ⊕

⊕
CS∈C CS(ℓ[S]), where ℓ[S]

is the tuple formed by projecting ℓ to S ⊆ X . A tuple ℓ ∈
L(X) is feasible if cost(ℓ) < k, and is a solution of a WCSP
if cost(ℓ) is minimum among all tuples in L(X).

WCSPs are usually solved with basic branch-and-bound
search augmented with consistency techniques which prune
infeasible values from variable domains and push costs into
C∅ while preserving the equivalence of the problems. Dif-
ferent consistency notions have been defined such as NC*
(Larrosa and Schiex 2004), GAC* (Cooper and Schiex 2004;
Lee and Leung 2009), and FDGAC* (Lee and Leung 2009).

A variable xi is node consistent (NC*) if each value
v ∈ D(xi) satisfies Ci(v) ⊕ C∅ < k and there exists a
value v′ ∈ D(xi) such that Ci(v

′) = 0. A WCSP is NC* iff
all variables are NC*. Procedure enforceNC*() in Algo-
rithm 1 enforces NC*, where unaryProject() projects
unary constraints towards C∅ and pruneVal() removes
infeasible values.

Procedure enforceNC*()
foreach xi ∈ X do unaryProject(xi);1

foreach xi ∈ X do pruneVal(xi);2

Procedure unaryProject(xi)
α := min{Ci(v)|v ∈ D(xi)};3

C∅ := C∅ ⊕ α;4

foreach v ∈ D(xi) do Ci(v) := Ci(v) ⊖ α;5

Function pruneVal(xi):Boolean
flag := false;6

foreach v ∈ D(xi) s.t. Ci(v) ⊕ C∅ = k do7

D(xi) := D(xi) \ {v};8

flag := true;9

return flag;10

Algorithm 1: Enforce NC*

A variable xi ∈ S is (G)AC* with respect to a non-unary
constraint CS if it is NC* and all values v ∈ D(xi) have a
tuple ℓ ∈ L(S) with ℓ[xi] = v such that CS(ℓ) = 0. Such a
tuple is a simple support of v ∈ D(xi) with respect to CS .
A WCSP is (G)AC* iff all variables are (G)AC* with respect
to all non-unary constraints. The procedurefindSupport
in Algorithm 2 enforces simple supports for values in D(xi)
with respect to CS , which requires time complexity expo-
nential in |S| in general. However, if the constraints are
projection-safe, enforcing (G)AC* requires only polynomial
time (Lee and Leung 2009).

Suppose variables are ordered by their indices. A full sup-
port of a value v ∈ D(xi) with respect to CS with xi ∈ S
and a set of variables U ⊆ S is a tuple ℓ ∈ L(S) with
ℓ[xi] = v such that CS(ℓ) ⊕

⊕
xj∈U Cj(vj) = 0. A vari-

able xi ∈ S is directional (generalized) arc consistent star
(D(G)AC*) with respect to a non-unary constraint CS if it
is NC* and all values v ∈ D(xi) have full supports with
respect to CS and and {xj |j > i} ∩ S. A WCSP is full di-
rectional (generalized) arc consistent star (FD(G)AC*) if all
variables are D(G)AC* and (G)AC* with respect to all non-

Function findSupport(CS, xi):Boolean
flag := false;1

foreach v ∈ D(xi) do2

α := min{CS(ℓ)|ℓ ∈ L(S) ∧ ℓ[xi] = v};3

if Ci(v) = 0 ∧ α > 0 then flag := true;4

Ci(v) := Ci(v) ⊕ α;5

foreach tuple ℓ ∈ L(S) s.t. ℓ[xi] = v do6

CS(ℓ) := CS(ℓ) ⊖ α;7

unaryProject(xi);8

return flag;9

Function findFullSupport(CS, xi, U):Boolean
foreach xj ∈ U do10

foreach vj ∈ D(xj) do11

foreach ℓ ∈ L(S) s.t. ℓ[xj] = vj do12

CS(ℓ) := CS(ℓ) ⊕ Cj(vj);13

Cj(vj) := 0;14

flag := findSupport(CS, xi);15

foreach xj ∈ U do findSupport(CS, xj);16

unaryProject(xi);17

return flag;18

Algorithm 2: Enforcing simple supports and full supports
for values in D(xi)

unary constraints. The procedure findFullSupport in
Algorithm 2 enforces full supports for values in D(xi) with
respect to CS and U ⊆ S, which requires time complexity
exponential in |S| in general. Again, if the constraints are
projection-safe, enforcing FD(G)AC* requires only polyno-
mial time (Lee and Leung 2009).

An Inherent Limitation of EDAC*

A variable is existential arc consistent (EAC*) if it is
NC* and there exists a value v ∈ D(xi) with zero unary
cost such that it has full supports with respect to all con-
straints Cij and {xj}. A WCSP is existential directional
arc consistent (EDAC*) if it is FDAC* and all variables
are EAC* (de Givry et al. 2005). Enforcing EAC* on
a variable xi requires two main operations: (1) compute
α = mina∈D(xi){Ci(a)⊕

⊕
Cij∈C minb∈D(xj){Cij(a, b)⊕

Cj(b)}}, which determines whether enforcing full supports
breaks the NC* requirement, and (2) if α > 0, enforce full
supports by invoking findFullSupport(xi, Cij , {xj})
for each Cij ∈ C, which NC* is no longer satisfied and
hence C∅ can be increased by enforcing NC*.

EDAC* enforcement will oscillate with constraints shar-
ing more than one variable. The situation is similar to Ex-
ample 3 by de Givry et al. (2005). We demonstrate by the
example in Figure 1(a), which shows a WCSP with two soft
constraints C1

12 and C2
12. It is FDAC* but not EDAC*. If

x2 takes the value a, C1
12(v, a) ⊕ C1(v) ≥ 1 for all values

v ∈ D(x1); if x2 takes the value b, C2
12(v, b) ⊕ C1(v) ≥ 1

for all values v ∈ D(x1). Thus, by enforcing full supports
of each value in D(x2) with respect to all constraints and

122

k = 4, C∅ = 0

x1 C1

a 1
b 0

x1 x2 C1
12

a a 0
a b 2
b a 1
b b 0

x2 C2

a 0
b 0

x1 x2 C2
12

a a 1
a b 0
b a 0
b b 2

(a) Original WCSP

k = 4, C∅ = 0

x1 C1

a 0
b 0

x1 x2 C1
12

a a 1
a b 3
b a 1
b b 0

x2 C2

a 0
b 0

x1 x2 C2
12

a a 1
a b 0
b a 0
b b 2

(b) After Extension

k = 4, C∅ = 0

x1 C1

a 0
b 0

x1 x2 C1
12

a a 0
a b 3
b a 0
b b 0

x2 C2

a 1
b 0

x1 x2 C2
12

a a 1
a b 0
b a 0
b b 2

(c) After Projection

Figure 1: Oscillation in EDAC* enforcement

{x1}, NC* is broken and C∅ can be increased. To increase
C∅, we enforce full supports: the cost of 1 in C1(a) is ex-
tended (lines 12 to 14 in Algorithm 2) to C1

12, resulting in
Figure 1(b). No cost in C1 can be extended to C2

12. Per-
forming projection (lines 5 to 7 in Algorithm 2) from C1

12 to
C2 results in Figure 1(c). The WCSP is now EAC* but not
FDAC*. Enforcing FDAC* converts the problem state back
to Figure 1(a).

The problem is caused by the first step, which does not
tell how the unary costs are distributed to increase C∅. Al-
though an increment is predicted, the unary cost C1(a) has
a choice of moving the cost to C1

12 or C2
12. During compu-

tation, we obtain no information on how the unary costs are
moved. As shown, a wrong movement breaks DAC* with-
out incrementing C∅, resulting in oscillation.

This problem does not occur in existing solvers which
handle only up to ternary constraints. The solvers allow only
one binary constraint for every pair of variables. If there are
indeed two constraints for the same two variables, the con-
straints can be merged into one, where the cost of a tuple
in the merged constraint is the sum of the costs of the same
tuple in the two original constraints. However, if we allow
high arity global constraints, sharing of more than one vari-
able would be common and necessary in many scenarios.
A straightforward generalization of EDAC* for non-binary
constraints would inherit the same oscillation problem. For
example, Figure 2(a) shows a WCSP with two ternary con-
straints C124 and C134. Each unit-cost ternary tuple is rep-
resented by three lines joined by a black dot. The WCSP
is FDGAC*. With a similar argument, a lower bound of 1
should be deduced by finding full supports of x4 with respect
to C124 and {x1, x2}, and C134 and {x1, x3}. Applying full
support enforcement would result in the state in Figure 2(b),
but enforcing FDGAC* again will convert the problem back
to the state in Figure 2(a).

In the case of ternary constraints, Sanchez et al. (2008)
cleverly avoid the oscillation problem by re-defining full
supports to include not just unary but also binary con-
straints. During EDAC enforcement, unary costs are dis-
tributed through extension to binary constraints. However,
the method is only designed for ternary constraints. In the
following, we define a weak version of EDAC*, which is

(a) (b)

(c) (d)

Figure 2: Four Equivalent WCSPs

based on the notion of cost-providing partitions.

Cost-Providing Partitions and Weak EDGAC*

A cost-providing partition Bxi
for variable xi ∈ X is a set

of sets {Bxi,CS
|xi ∈ S} such that:

• |Bxi
| is the number of constraints related to xi;

• Bxi,CS
⊆ S;

• Bxi,CSj
∩ Bxi,CSk

= ∅ for any two different constraints

CSk
, CSj

∈ C, and;

•
⋃

Bxi,CS
∈Bxi

Bxi,CS
= (

⋃
CS∈C∧xi∈S S) \ {xi}.

Essentially, Bxi
forms a partition of the set containing all

variables related to xi. If xj ∈ Bxi,CS
, the unary costs in

Cj can only be extended to CS when enforcing EAC* for
xi. This avoids the problem of determining how the unary
costs of xj are distributed when there exists more than one
constraint on {xi, xj}.

Based on the cost-providing partitions, we define weak
EDAC*. Given a WCSP P (X ,D, C, k) and the cost-
providing partitions Bxi

for each variable xi ∈ X . A weak
fully supported value v ∈ D(xi) of a variable xi ∈ X is
a value with zero unary cost and for each variable xj and
a constraint Cm

ij , there exists a value b ∈ D(xj) such that

Cm
ij (v, b) = 0 if Bxi,C

m
ij

= {}, and Cm
ij (v, b)⊕Cj(b) = 0 if

Bxi,C
m
ij

= {xj}. A variable xi is weak existential arc con-

sistent (weak EAC*) if it is NC* and there exists at least one
weak fully supported value in its domain. P is weak existen-
tial directional arc consistent (weak EDAC*) if it is FDAC*
and each variable is weak EAC*. Weak EDAC* collapses to
AC when WCSPs collapse to CSPs for any cost-providing
partition. Moreover, weak EDAC* is reduced to EDAC* (de
Givry et al. 2005) when the binary soft constraints share at
most one variable.

We further generalize weak EDAC* to weak EDGAC* for
n-ary soft constraints. Given a WCSP P (X ,D, C, k) and
any cost-providing partition Bxi

for each variable xi ∈ X .
A weak fully supported value v ∈ D(xi) of a variable xi

123

is a value with zero unary cost and full supports with re-
spect to all constraints CS ∈ C with xi ∈ S and Bxi,CS

.
A variable xi is weak existential generalized arc consistent
(weak EGAC*) if it is NC* and there exists at least one weak
fully supported value in its domain. P is weak existential di-
rectional generalized arc consistent (weak EDGAC*) if it
is FDGAC* and each variable is weak EGAC*. For exam-
ple, in Figure 2(a), the WCSP is not weak EDGAC* with
the cost-providing partition Bx4

= {Bx4,C124
, Bx4,C134

} =
{{x2}, {x1, x3}}. If we enforce full supports on x4 with re-
spect to C124 and {x2} (Figure 2(c)), and C123 and {x1, x3}
(Figure 2(d)), enforcing NC* on x4 increases C∅ by 1.
Given any cost-providing partition, weak EDGAC* is re-
duced to GAC when WCSPs collapse to CSPs.

To compute the cost-providing partition Bxi
of a vari-

able xi, we apply Algorithm 3, which is a greedy approach
to partition the set Y containing all variables related to
xi defined in line 1, hoping to maximize max{|Bxi,CS

|}.
Whether such choice deduces the highest lower bound in
weak EDGAC* requires further studies.

Procedure findCostProvidingPartition(xi)
Y = (

⋃
CS∈C∧xi∈S S) \ {xi};1

Sort C in decreasing order of |S|;2

foreach CS ∈ C s.t. xi ∈ S do3

Bxi,CS
= Y ∩ S;4

Y = Y \ S;5

Algorithm 3: Finding Bxi

The procedure enforceWeakEDGAC*() in Algorithm
4 enforces weak EDGAC* of a WCSP. The cost-providing
partitions are first computed in lines 1 and 2. The proce-
dure makes use of four propagation queues P , Q, R and S.
If xi ∈ P , the variable xi is potentially not weak EGAC*
due to a change in unary costs or a removal of values in
some variables. If xj ∈ R, the variables xi involving in
the same constraints as xj are potentially not DGAC*. If
xj ∈ Q, all variables in the same constraints as xj are po-
tentially not GAC*. The propagation queue S helps build
P efficiently. The procedure consists of three inner-while
loops and one for-loop. The first inner-while loop from lines
6 to 10 enforces weak EGAC* on each variable by the pro-
cedure findExistentialSupport() in line 8. If the
procedure returns true, a projection from some constraints
to Ci has been performed. The weak fully supported values
of other variables may be destroyed. Thus, the related vari-
ables are pushed back to P for revision in line 10. The sec-
ond inner-while loop from lines 12 to 19 enforces DGAC*,
while the third inner-while loop from lines 20 to 26 en-
forces GAC*. A change in unary cost requires re-examining
DGAC* and weak EGAC*, which is done by pushing the
variables into the corresponding queues in lines 9 and 10,
and lines 18 and 19. In the last step, NC* is enforced by
the for-loop from lines 28 to 31. Again, if a value in D(xi)
is removed, GAC*, DGAC* or weak EGAC* may be de-
stroyed, and xi is pushed into the corresponding queues for
re-examination.

Procedure enforceWeakEDGAC*()
foreach xi ∈ X do1

findCostProvidingPartition(xi);2

R := Q := S := X ;3

while S 6= ∅ ∨R 6= ∅ ∨Q 6= ∅ do4

P := S ∪
xi∈S,CS∈C

(S \ {xi});5

while P 6= ∅ do6

xi := pop(P);7

if findExistentialSupport(xi) then8

R := R∪ {xi};9

P := P ∪ {xj |xi, xj ∈ CS, CS ∈ C};10

S := ∅;11

while R 6= ∅ do12

xu := popMax(R);13

foreach CS s.t. xu ∈ S and |S| > 1 do14

for i = n DownTo 1 s.t. xi ∈ S \ {xu} do15

U = {xj |j > i} ∪ S;16

if findFullSupport(CS, xi, U) then17

S := S ∪ {xi};18

R := R∪ {xi};19

while Q 6= ∅ do20

xu := pop(Q);21

flag := false;22

foreach CS s.t. xu ∈ S and |S| > 1 do23

foreach xi ∈ S \ {xu} do24

if findSupport(CS, xi) then25

S := S ∪ {xi};26

R := R∪ {xi};27

foreach xi ∈ X s.t. pruneVal(xi) do28

S := S ∪ {xi};29

Q := Q ∪ {xi};30

R := R∪ {xi};31

Function findExistentialSupport(xi):Boolean
flag := false;32

α := mina∈D(xi){Ci(a)⊕33

xi∈S,CS∈C
minℓ[xi]=a{CS(ℓ) ⊕

xj∈Bxi,CS

Cj(ℓ[xj])}};

if α > 0 then34

flag := true;35

foreach CS ∈ C s.t. xi ∈ S do36

findFullSupport(CS, xi, Bxi,CS
);37

return flag;38

Algorithm 4: Enforcing weak EDGAC*

The algorithm must terminate. We analyze the time com-
plexity by abstracting the worst-case time complexity of the
procedures findSupport(), findFullSupport() and
findExistentialSupport() as fGAC , fDGAC , and
fEGAC respectively. The overall time complexity is stated
as follows.

Theorem 1 The procedure enforceWeakEDGAC*() in
Algorithm 4 requires O(max{nd, k}(fEGAC + r2efDGAC

+nd) + r2edfGAC), where n = |X |, d = max{|D(xi)|},

124

e = |C|, and r = maxCS∈C{|S|} Thus,
enforceWeakEDGAC*() must terminate.

Proof: As lines 1 and 2 require only O(nr), we only ana-
lyze the time complexity of each inner while-loop and com-
pute the overall time complexity.

A variable is pushed into S if a value is removed or weak
EGAC* is violated. The former happens O(nd) times, while
the latter occurs O(k) times (each time weak EGAC* is vi-
olated, C∅ increases). Since P is built on S, the number
of iterations caused by P is O(max{nd, k}). Thus, the first
inner while-loop in line 6 requires O(max{nd, k}fEGAC).

A variable is pushed into R if either a value is removed, or
unary costs are moved by GAC* or weak EGAC* enforce-
ment. The number of iterations due to R is O(max{nd, k}).
Consider the second inner while-loop in line 11. Once a
variable is popped out in line 13, it is not pushed back into
R again by line 19. Thus, the loop only iterates O(n) times.
It follows that the second inner while-loop in line 12 requires
O(max{nd, k}r2efDGAC) (Lee and Leung 2009).

A variable is pushed into Q only if a value is removed.
Thus, the number of iterations caused by Q is O(nd). Thus
the third while-loop in line 20 requires O(r2edfGAC) (Lee
and Leung 2009).

The outer while-loop in line 4 terminates when all propa-
gation queues are empty. Thus, the main while-loop iterates
O(max{nd, k}) times. The last for-loop in line 28 requires
O(max{nd, k}nd) times in total.

By summing up all time complexity results, the global
time complexity is O(max{nd, k}(fEGAC + r2efDGAC +
nd) + r2edfGAC).

The procedure enforceWeakEDGAC*() is again expo-
nential due to findSupport(), findFullSupport()
and findExistentialSupport(). In the following,
we focus on the last procedure. It first checks whether
the weak fully supported value exists by computing α,
which determines whether NC* still holds if we perform
findFullSupport() from lines 36 to 37. If α equals
0, the weak fully supported value exists and nothing should
be done; otherwise, the weak fully supported value can be
formed by the for-loop at lines 36 to 37. The time complex-
ity depends on two operations:

• Computing the value of α in line 33;

• Finding full supports by the line 37.

These two operations are exponential in |S| in general.
However, if all constraints are projection-safe, the time com-
plexity of the above operations can be reduced to polynomial
time (Lee and Leung 2009).

In the following, we compare the strength of weak
EDGAC* against related consistencies. We say that α-
consistency is stronger than β-consistency if a WCSP P is
β-consistent whenever P is α-consistent. If α-consistency
is stronger than β-consistency but β-consistency is not
stronger than α-consistency, then α-consistency is strictly
stronger than β-consistency.

By definition, weak EDGAC* implies FDGAC*. We have
also shown an example in which the problem is FDGAC*
but not weak EDGAC*. Thus, weak EDGAC* is strictly
stronger than FDGAC*.

Theorem 2 Weak EDGAC* with any cost-providing par-
tition is strictly stronger than FDGAC*, which is in turn
strictly stronger than GAC* (Lee and Leung 2009)

In other words, enforcing FDGAC* on a problem which is
already weak EDGAC* cannot further improve C∅ or re-
move more values.

In addition, VAC (Cooper et al. 2008) is strictly stronger
than EDAC*. So is soft k-consistency (Cooper 2005) for
k > 2. Since EDAC* is stronger than weak EDGAC*, we
have VAC and soft k-consistency (k > 2) strictly stronger
than weak EDGAC*.

Theorem 3 VAC and soft k-consistency (k > 2) are strictly
stronger than weak EDGAC* with any cost-providing parti-
tion.

Experimental Results

To test the efficiency of weak EDGAC*, we perform the
following experiments and compare it with FDGAC* (Lee
and Leung 2009). Weaker than FDGAC*, GAC* and strong
∅IC (Lee and Leung 2009) are omitted due to the space
limitation. VAC and soft k consistency are omitted as they
have not been implemented efficiently for general n-ary con-
straints. Weak EDGAC* enforcement is implemented in
ToulBar21. The following six benchmarks are used in our
experiments:

• The Latin square problem (CSPLIB003) of order n is to
fill an n×n table using numbers from {0, . . . , n−1} such
that each number occurs only once in every row and every
column.

• The generalized round robin tournament problem (mod-
ified from CSPLIB026), parameterized by (N, P, W), is
to schedule a tournament of N teams over W weeks, with
each week divided into P periods, such that: (1) every
team plays at least once a week, (2) every team plays at
most twice in the same period over the tournament, and
(3) every team plays every other team.

• The fair scheduling problem, suggested by the Global
Constraint Catalog2, is to schedule n persons into four
shifts over five days such that each person should be as-
signed the same number of the ith shift.

• The people-mission scheduling problem, extending the
doctor-nurse rostering problem described by Beldiceanu
et al. (2004) is to schedule three groups of n people into
six missions such that each mission is done by a team con-
taining exactly one person in each group. In this problem,
we also place a table constraint on each team, restricting
some combinations.

• The nurse scheduling problem is to schedule a group of
n nurses into four shifts: PM shift, AM shift, Overnight,
and Day-Off, over four days such that (1) each nurse must
have at most three AM shifts, at least two PM shifts, at
least one Overnight, and at least one Day-Off, (2) each
AM shift must have two nurses, each PM shift must have

1http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro
2http://www.emn.fr/x-info/sdemasse/gccat/

125

one nurse, and each Overnight must have one nurse, and
(3) AM-shifts are preferred to be packed together, and the
same preference is also posted on Day-Offs.

• The stretch modeling problem consists of a sequence
of variables {x1, . . . , xn} with domains D(xi) = {a, b}.
Each subsequence {xi, . . . , xn−5+i}, where 1 ≤ i ≤ 5, is
required to contain a-stretches of length 2 and b-stretches
of length 2 or 3, restricted using stretch constraints
(Pesant 2001) modeled by regular constraints (Pesant
2004).

The above benchmarks are originally hard in nature and
modeled using global constraints. We soften these problems
by introducing random unary costs ranging from 0 to 9 on
each variable. The hard global constraints GC are also re-
placed by their projection-safe soft variants soft GCµ (Lee
and Leung 2009) with different violation measures µ: var,
val, edit (van Hoeve, Pesant, and Rousseau 2006).

In the experiments, variables are assigned in lexico-
graphic order. Value assignments start with the value with
minimum unary cost. The test is conducted on a Dell Op-
tiplex 280 with an Intel P4 3.2GHz CPU and 2GB RAM.
The average runtime and number of search nodes of five ran-
domly generated instances are measured for each value of n
with no initial upper bound. Table 1 gives the results. En-
tries marked with a “*” indicates the execution of one of the
five instances exceeds 1 hour. We also mark the best results
by the ‘†’ symbol.

Among all instances, weak EDGAC* always prune more
than FDGAC*, bettering up to one order of magnitude in
the recorded figures. FDGAC* cannot solve a few instances
within the time limit, but weak EDGAC* can. This confirms
empirically weak EDGAC*’s theoretical strength as stated
in Theorem 2. There are three types of timing results. In
Tables 1(a), 1(b), 1(c), 1(d), and 1(g), weak EDGAC* beats
FDGAC* in all instances. In particular, FDGAC* cannot
solve some of the larger and more difficult instances within
the time limit. In Tables 1(e), 1(f), and 1(h), FDGAC* al-
ways beats weak EDGAC*, but by a small margin only. In
Tables 1(i) and 1(j), FDGAC* wins in the smaller instances.
In the larger instances, the effort in doing the extra pruning
finally pays off and weak EDGAC* prevails. This suggests
that weak EDGAC* has a better scaling behavior.

In summary, although weak EDGAC* is a more expensive
consistency to enforce in general, the additional pruning can
usually compensate for the extra effort.

Conclusion

Our contributions are three-fold. First, we discover and
give an example of a limitation of EDAC*. When con-
straints share more than one variable, oscillation similar to
the one demonstrated in Full AC* (de Givry et al. 2005)
will occur. Second, we introduce cost-providing partitions,
which restrict the distribution of the cost when enforcing
EDAC*. Based on cost-providing partitions, we define
weak EDGAC*, which can be enforced in polynomial time
for projection-safe soft global constraints (Lee and Leung
2009). Third, we perform extensive experiments to compare

(a) Latin Square with soft GCC
var

n
FDGAC* Weak EDGAC*

Time(s) Nodes Time(s) Nodes

4 †0.1 22 †0.1 †17.0

5 †0.1 66.2 †0.1 †48.2

6 4.8 244.6 †1.2 †87.0

7 58.4 1431.2 †16.4 †331.8

8 * * †459.6 †4730.8

(b) Latin Square with soft GCC
val

n
FDGAC* Weak EDGAC*

Time(s) Nodes Time(s) Nodes

4 †0.1 20.4 †0.1 †17.0

5 †0.1 61.2 †0.1 †45.2

6 3.6 211.0 †1.0 †82.2

7 40.4 1243.6 †13.4 †318.4

8 * * †285.2 †3700.4

(c) Generalized Round Robin Tournament

with soft GCC
var

(N, P, W)
FDGAC* Weak EDGAC*

Time(s) Nodes Time(s) Nodes

(4,3,2) 0.2 142.2 †0.1 †33.4

(5,4,2) 0.6 171.6 †0.1 †44.6

(6,5,3) * * †583.4 †6508.8

(7,5,3) * * †1283.4 †7476.6

(d) Generalized Round Robin Tournament

with soft GCC
val

(N, P, W)
FDGAC* Weak EDGAC*

Time(s) Nodes Time(s) Nodes

(4,3,2) 0.2 141.0 †0.1 †33.0

(5,4,2) 0.6 171.0 †0.1 †42.8

(6,5,3) * * †438.2 †6499.6

(7,5,3) * * †765.0 †7413.6

(e) Fair Scheduling with soft same
var

n
FDGAC* Weak EDGAC*

Time(s) Nodes Time(s) Nodes

5 †0.1 27.4 †0.1 †25.4

6 †0.4 40.4 1.0 †34.0

7 †1.0 45.0 1.2 †40.6

8 †2.0 45.4 2.2 †45.0

9 †2.6 49.0 3.2 †49.0

10 †4.0 58.0 4.6 †56.8

11 †5.8 67.2 6.4 †61.6

(f) People-mission Scheduling with

soft same
var

n
FDGAC* weak EDGAC*

Time(s) Nodes Time(s) Nodes

4 †0.2 247.8 0.4 †238.8

5 †3.4 831.2 †3.4 †693.4

6 †55.6 11065.2 69.2 †10957.8

7 †1348.0 333937.6 1714.0 †296019.2

(g) Nurse Rostering with

soft regular
var ()

n
FDGAC* weak EDGAC*

Time(s) Nodes Time(s) Nodes

3 †0.1 28.6 †0.1 †22.8

4 †0.1 32.6 †0.1 †28.0

5 4.0 379.0 †3.6 †273.6

6 63.4 4017.6 †37.8 †1927.2

7 207.6 12242.0 †42.8 †2167.6

8 821.2 44414.0 †229.2 †10437.0

(h) Nurse Rostering with

soft regular
edit()

n
FDGAC* weak EDGAC*

Time(s) Nodes Time(s) Nodes

3 †5.6 841.4 6.2 †803.2

4 †25.4 2568.8 27.6 †2424.0

5 †535.6 47091.2 546.8 †40244.0

(i) Modeling stretch by

soft regular
var ()

n
FDGAC* weak EDGAC*

Time(s) Nodes Time(s) Nodes

30 †30.0 171.4 35.2 †162.6

35 †57.6 239.8 69.0 †233.4

40 †92.2 328.6 108.2 †316.0

45 †240.6 651.8 246.4 †570.6

50 130.2 1660.6 †118.2 †1316.0

55 208.0 2291.8 †193.8 †1856.8

(j) Modeling stretch by

soft regular
edit()

n
FDGAC* weak EDGAC*

Time(s) Nodes Time(s) Nodes

30 †34.2 123.8 39.6 †122.4

35 †60.6 164.0 70.8 †162.8

40 †90.8 208.4 101.6 †194.0

45 239.6 371.0 †207.8 †299.6

50 204.8 967.6 †185.0 †823.2

55 264.2 972.8 †234.6 †777.6

Table 1: Experimental results: time (in seconds) and number
of nodes

weak EDGAC* and FDGAC*, and confirm the pruning and
execution efficiency of our proposal.

One immediate future work is to investigate the effect of
cost-providing partitions. It is unclear how different variable
arrangement in the cost-providing partitions affect domain
pruning as well as lower bound deduction. Another possible
direction is to investigate if other even stronger consisten-
cies, such as VAC (Cooper et al. 2008), can also benefit from
projection safety to make their enforcement practical. Such
work can help enrich the applicability of soft constraints to
real-life problems.

Acknowledgement

We are grateful to the anonymous referees for their con-
structive comments. The work described in this paper
was substantially supported by grants CUHK413207 and
CUHK413808 from the Research Grants Council of Hong
Kong SAR.

126

References

Beldiceanu, N.; Katriel, I.; and Thiel, S. 2004. Filtering
Algorithms for the Same Constraints. In Proceedings of
CPAIOR’2004, 65–79.

Cooper, M., and Schiex, T. 2004. Arc Consistency for Soft
Constraints. Artificial Intelligence 154:199–227.

Cooper, M.; de Givry, S.; Sanchez, M.; Schiex, T.; and Zyt-
nicki, M. 2008. Virtual Arc Consistency for Weighted CSP.
In proceedings of AAAI’2008, 253–258.

Cooper, M. 2005. High-order Consistency in Valued Con-
straint Satisfaction. Constraints 10:283–305.

de Givry, S.; Heras, F.; Zytnicki, M.; and Larrosa, J. 2005.
Existential arc consistency: Getting closer to full arc con-
sistency in weighted CSPs. In Proceedings of IJCAI’2005,
84–89.

Larrosa, J., and Schiex, T. 2003. In the Quest of the Best
Form of Local Consistency for Weighted CSP. In Proceed-
ings of IJCAI’2003, 239–244.

Larrosa, J., and Schiex, T. 2004. Solving Weighted CSP by
Maintaining Arc Consistency. Artificial Intelligence 159(1-
2):1–26.

Lee, J., and Leung, K. 2009. Towards Efficient Consistency
Enforcement for Global Constraints in Weighted Constraint
Satisfaction. In Proceedings of IJCAI’2009, 559–565.

Pesant, G. 2001. A Filtering Algorithm for the Stretch Con-
straint. In Proceedings of CP’2001, 183–195.

Pesant, G. 2004. A Regular Language Membership Con-
straint for Finite Sequences of Variables. In Proceedings of
CP’2004, 482–495.

Sanchez, M.; de Givry, S.; and Schiex, T. 2008. Mendelian
Error Detection in Complex Pedigrees using Weighted Con-
straint Satisfaction Techniques. Constraints 13(1):130–154.

Schiex, T.; Fargier, H.; and Verfaillie, G. 1995. Valued
Constraint Satisfaction Problems: Hard and Easy Problems.
In Proceedings of IJCAI’1995, 631–637.

van Hoeve, W.; Pesant, G.; and Rousseau, L.-M. 2006. On
Global Warming: Flow-based Soft Global Constraints. J.
Heuristics 12(4-5):347–373.

Zytnicki, M.; Gaspin, C.; and Schiex, T. 2009. Bounds
Arc Consistency for Weighted CSPs. Journal of Artificial
Inteliigence Research 35:593–621.

127

