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Abstract

Forming effective coalitions is a major research challenge in
AI and multi-agent systems (MAS). Coalition Structure Gen-
eration (CSG) involves partitioning a set of agents into coali-
tions so that social surplus (the sum of the rewards of all coali-
tions) is maximized. A partition is called a coalition structure
(CS). In traditional works, the value of a coalition is given by
a black box function called a characteristic function. In this
paper, we propose a novel formalization of CSG, i.e., we as-
sume that the value of a characteristic function is given by an
optimal solution of a distributed constraint optimization prob-
lem (DCOP) among the agents of a coalition. A DCOP is a
popular approach for modeling cooperative agents, since it is
quite general and can formalize various application problems
in MAS. At first glance, one might imagine that the computa-
tional costs required in this approach would be too expensive,
since we need to solve an NP-hard problem just to obtain the
value of a single coalition. To optimally solve a CSG, we
might need to solve O(2n) DCOP problem instances, where
n is the number of agents. However, quite surprisingly, we
show that an approximation algorithm, whose computational
cost is about the same as solving just one DCOP, can find a
CS with quality guarantees. More specifically, we develop an
algorithm with parameter k that can find a CS whose social
surplus is at least max(k/(w∗ +1), k/⌊n/2⌋) of the optimal
CS, where w∗ is the tree width of a constraint graph. When
k = 1, the complexity of this algorithm is about the same as
solving just one DCOP. These results illustrate that the local-
ity of interactions among agents, which is explicitly modeled
in the DCOP formalization, is quite useful in developing an
efficient CSG algorithm with quality guarantees.

Introduction

Coalition formation is an important capability in auto-
mated negotiation among self-interested agents. Coalition
Structure Generation (CSG) involves partitioning a set of
agents into coalitions so that social surplus (the sum of
the rewards of all coalitions) is maximized. A partition
is called a coalition structure (CS). This problem has be-
come a popular research topic in AI and multi-agent sys-
tems (MAS). Possible applications of CSG include dis-
tributed vehicle routing (Sandholm and Lesser 1997), multi-
sensor networks (Dang et al. 2006), etc. Solving CSG is
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equivalent to a complete set partition problem (Yeh 1986),
and various algorithms for solving CSG have been devel-
oped (Rahwan et al. 2007; Rahwan and Jennings 2008;
Rothkopf, Pekeč, and Harstad 1998; Sandholm et al. 1999;
Yeh 1986). In these traditional works, the value of a coali-
tion is given by a black box function called a characteristic
function. A notable exception is (Ohta et al. 2009). In this
work, the value of a coalition is calculated by applying a set
of rules, such as MC-nets (Ieong and Shoham 2005), rather
than a single black box function. The motivation for using
a set of rules rather than a black box function is to repre-
sent a characteristic function more concisely. However, it
remains unclear what kinds of problem domains can be con-
cisely represented by such rules.

Let us reconsider the meaning of the value of a coali-
tion. It represents the optimal gain achieved by agents in
the coalition when they work together. Thus, it is natural to
think that the value is obtained by solving some optimization
problem among the agents of the coalition. This idea is also
pointed out in (Sandholm et al. 1999). Deng, Ibaraki, and
Nagamochi (1997) also present a concept called combina-
torial optimization games, in which the value of a coalition
is given by solving various graph-related combinatorial op-
timization problems, such as the maximum flow problem.

After a pioneering work by (Modi et al. 2003),
a Distributed Constraint Optimization Problem (DCOP)
has become a popular approach for modeling cooperative
agents. Various algorithms have been developed, includ-
ing DPOP (Petcu and Faltings 2005), OptAPO (Mailler and
Lesser 2004), NCBB (Chechetka and Sycara 2006), etc. In
DCOP, each agent has a choice of actions (values). Re-
ward/cost is determined by the combination of values. The
goal is to maximize/minimize the sum of the rewards/costs.
This framework is quite general and can represent various
application domains in cooperative MAS. In this research,
we assume that the value of a coalition is given by an opti-
mal solution of a DCOP among the agents of the coalition.

Let us introduce some motivating examples that can be
formalized as CSG based on DCOPs. Consider the prob-
lem of forming rescue groups in a disaster area. There exists
a set of people T . Each person has following different ca-
pabilities: providing medical treatment, driving a vehicle,
acting as a firefighter, etc. We want to create as many res-
cue groups as possible, but at the same time, we need to
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make sure that the members of each group have enough ca-
pabilities. Having people with identical capabilities in one
group can be wasteful. We can assume that each person is
a variable, whose domain consists of the possible combi-
nations of his/her capabilities to perform. Thus, there exist
positive relations/rewards between complementary capabili-
ties, and there exist negative relations/rewards between sub-
stitutable capabilities. Also, the vehicle routing problem de-
scribed in (Sandholm 1993) can be formalized as CSG based
on DCOPs, where geographically dispersed dispatch centers
of different companies cooperate.

Although a DCOP is a very general and powerful frame-
work, the required computational costs might be too ex-
pensive, because we need to solve an NP-hard problem
just to obtain the value of a single coalition. To optimally
solve a CSG, we might need to solve O(2n) DCOP prob-
lem instances, where n is the number of agents. However,
quite surprisingly, we show that an approximation algo-
rithm, whose computational cost is about the same as finding
the value of the grand coalition (the coalition of all agents),
can find a CS with quality guarantees. More specifically, we
develop an algorithm with parameter k that can find a CS
whose social surplus is at least max(k/(w∗ + 1), k/⌊n/2⌋)
of the optimal CS, where w∗ is the tree width of a constraint
graph. When k = 1, the complexity of this algorithm is
about the same as solving just one DCOP. More specifically,
assuming the size of a variable domain (the number of pos-
sible values) is d, the search space size of a DCOP is dn,
while the search space size of the approximation algorithm
is (d + 1)n for k = 1. Also, we develop an anytime al-
gorithm that repeatedly applies the approximation algorithm
and experimentally show that the average approximation ra-
tio of the approximation algorithm is by far superior to the
theoretical worst-case bound.

The contribution of this work is two-fold: (1) for CSG re-
search, this work introduces a novel representation scheme
of a characteristic function and efficient approximation al-
gorithms with worst-case guarantees, and (2) for DCOP re-
search, this work introduces a promising new, but computa-
tionally challenging application domain that requires an ex-
tension of traditional DCOP formalization. We believe this
paper introduces a new exciting research domain, which is
built on the success of existing CSG and DCOP research.

Model
Let T = {1, 2, . . . , n} be the set of all agents. We assume
that the value of coalition S is given by a characteristic func-
tion v. A characteristic function v : 2T → R assigns a value
to each set of agents (coalition) S ⊆ T .

We assume that the value of a coalition S, v(S), is de-
fined as an optimal solution of a DCOP among the agents of
coalition S. Agent i has variable xi, which represents the
choice of its action. Agent i chooses the value of xi from
a finite, discrete domain Di. The rewards on the values of
these variables are determined as below. For notation sim-
plicity, we assume that reward functions are either unary or
binary, which is a standard convention used in DCOP liter-
ature. The results presented in this paper hold when there
exist k-ary reward functions for k ≥ 3.

There exists unary reward ri : Di → R on the value
di ∈ Di of variable xi, which represents reward ri(di) when
agent i chooses value (action) di. We assume that there ex-
ists at least one value di ∈ Di such that ri(di) ≥ 0. Also,
there exists binary reward ri,j : Di × Dj → R on variables
xi and xj , which represents reward ri,j(di, dj) when agents
i and j are in the same coalition and chooses values (actions)
di and dj , respectively. Let us denote that A ∈ Πi∈SDi is a
value assignment to all variables. Thus, v(S) is defined as:

max
A

{
∑

i∈S

ri(di) +
∑

i,j∈S

ri,j(di, dj)}.

A coalition structure CS is a partition of T , into disjoint,
exhaustive coalitions. More precisely, CS = {S1, S2, . . . }
satisfies the following conditions:

∀i, j(i 6= j), Si ∩ Sj = φ,
⋃

Si∈CS

Si = T.

In other words, in a CS, each agent belongs to exactly one
coalition, and some agents may be alone in their coalitions.

For example, if there exist three agents a, b, and c,
then there are seven possible coalitions: {a}, {b}, {c},
{a, b}, {b, c}, {a, c}, {a, b, c}, and five possible coalition
structures: {{a}, {b}, {c}}, {{a, b}, {c}}, {{a}, {b, c}},
{{b}, {a, c}}, {{a, b, c}}.

The value of a coalition structure CS, denoted as
V (CS), is the sum of the value of coalitions, V (CS) =∑

Si∈CS v(Si), or equivalently,

V (CS) = max
A

{
∑

i∈S∈CS

ri(di) +
∑

i,j∈S∈CS

ri,j(di, dj)}.

An optimal coalition structure CS∗ maximizes the social
surplus, i.e., CS∗ satisfies the following condition:
∀CS, V (CS) ≤ V (CS∗), or equivalently,

CS∗ = arg max
CS

max
A

{
∑

i∈S∈CS

ri(di)+
∑

i,j∈S∈CS

ri,j(di, dj)}.

In a standard DCOP, the goal is to find an optimal
value assignment such that v(T ) = {

∑
i∈T ri(di) +∑

i,j∈T ri,j(di, dj)} is maximized. On the other hand, in

our CSG formalization, if two agents work in different coali-
tions, there exists no positive/negative interaction between
them. The goal is to partition agents into groups so that
the obtained social surplus is maximized. In this formal-
ization, there exists no positive/negative interaction among
coalitions. This corresponds to a commonly used assump-
tion in coalitional game theory called no externality, i.e., the
gain of a coalition is independent from other coalitions.

We say a characteristic function is super-additive, if for
any disjoint sets Si, Sj , v(Si ∪ Sj) ≥ v(Si) + v(Sj) holds.
In super-additive cases, solving CSG becomes trivial, i.e.,
the grand coalition (the coalition of all agents) is optimal.
In our DCOP formalization, we can represent a non-super-
additive characteristic function. Furthermore, a characteris-
tic function is not restricted to monotone, i.e., in our DCOP
formalization, there is a chance that for two coalitions, S
and S′, where S ⊃ S′, v(S) can be smaller than v(S′).
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Figure 1: Reward Functions in Example 1

Example 1 Let there be three agents a, b, and c. We assume
that each agent has two actions. Thus, we assume that there
are three variables xa, xb, and xc, and the domain of each
variable is {0, 1}.

The unary/binary rewards are as follows. We assume that
all reward values that are not explicitly described are 0 (Fig-
ure 1).

ra(1) = 5, rb(1) = 3, rc(0) = 4,
rc(1) = 2, ra,b(1, 0) = 4, ra,b(1, 1) = −2,
ra,c(1, 0) = −3, ra,c(1, 1) = 1.

The value of v({a, b, c}) is obtained by solving a DCOP
among three agents. The optimal value assignment is xa =
1, xb = 0, xc = 1, and v({a, b, c}) is calculated as ra(1) +
rb(0)+rc(1)+ra,b(1, 0)+rb,c(0, 1)+ra,c(1, 1) = 12. Also,
the value of v({a, b}) is obtained by solving a DCOP be-
tween xa and xb. The optimal assignment is xa = 1, xb = 0,
and v({a, b}) is calculated as ra(1)+rb(0)+ra,b(1, 0) = 9.
In this case, if agent c acts alone, it can obtain unary re-
ward 4 by setting its value to 0. Thus, in this case, the
grand coalition is not optimal. The optimal coalition struc-
ture is {{a, b}, {c}} and the optimal value assignment is
xa = 1, xb = 0, xc = 0.

Representation Size of DCOP Formalization

To explicitly represent a characteristic function, we need to
specify the value of a coalition for all 2n possible coalitions.
If the number of reward functions is small, say, there ex-
ist only unary/binary rewards, the number of reward func-
tions is only O(n2). Thus, we can represent a characteristic
function much more concisely. Obviously, using k-ary re-
ward functions, we can represent any characteristic function
as a DCOP. However, the motivation for using our DCOP
formalization is not to represent an arbitrary characteristic
function, but to directly represent the underlying optimiza-
tion problem among agents.

Our scheme can compactly represent any characteris-
tic function that can be compactly represented by other
schemes, such as Marginal contribution networks (MC-
nets) (Ieong and Shoham 2005) and Synergy coalition group
(SCG) (Conitzer and Sandholm 2006). On the other hand,

there exists a characteristic function that can be compactly
represented by our scheme, but other schemes need expo-
nentially more space, i.e., the following theorems hold.

Theorem 1 Any characteristic function that is compactly
represented by MC-nets and SCG can also be compactly
represented using a DCOP formalization, i.e., the number
of required rules/constraints increases at most in O(n).

Theorem 2 There exists a characteristic function that can
be represented compactly using a DCOP formalization,
while MC-nets and SCG require exponentially more space
to represent this characteristic function.

We omit proofs due to space limitations. These results are
intuitively natural since characteristic functions represented
by DCOP formalization would be more complex than those
of MC-nets and SCG.

Complexity of CSG with DCOP

One of the central research questions in compact represen-
tation schemes of a characteristic function is the computa-
tional complexity of finding or proving the existence of so-
lution concepts (e.g., core, Shapley value). Our DCOP for-
malization is not good for this purpose. Actually, even a
very simple problem, i.e., checking the feasibility of an im-
putation (a value distribution among agents of a coalition),
is NP-complete since we need to solve a DCOP.

Theorem 3 Checking whether an imputation is feasible is
NP-complete.

Proof When the value assignments of variables are given,
calculating the value of a coalition and checking the value is
more than or equal to the sum of the values in the imputation
can be done in polynomial time. Thus, this problem is in
class NP.

Next, we reduce a decision version of a standard COP
problem, i.e., checking whether there exists a solution of
a COP better than a given threshold τ , to this feasibility
checking problem. For the original COP, we create a feasi-
bility checking problem instance with exactly the same vari-
ables and reward functions. Also, we create an imputation
where the sum of the values in the imputation is equal to τ .
If the answer to the obtained feasibility checking problem
instance is “yes,” then the answer to the original problem is
also “yes,” and vice versa. Since the decision problem of a
COP is NP-complete, this feasibility check problem must be
NP-hard. Also, since it is in class NP, it is NP-complete. �

Next, we examine the computational complexity of CSG
using our DCOP formalization. We prove that a deci-
sion problem of CSG using a DCOP formalization is NP-
complete.

Theorem 4 A decision problem of CSG using a DCOP for-
malization, i.e., checking whether there exists a CS where
V (CS) is greater than a given threshold is NP-complete.
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Proof For a given CS and value assignments, checking
whether V (CS) is greater than or equal to a given threshold
can be solved in polynomial time. Thus, this problem is in
class NP. Next, we reduce a standard COP problem, where
all reward values are non-negative, to CSG. For the orig-
inal COP, we create a CSG problem instance with exactly
the same variables and reward functions. Since all reward
values are non-negative, a CS that contains only the grand
coalition is optimal. More specifically, if CS∗ contains mul-
tiple coalitions, then we can create another CS′, which uses
the same value assignments as CS∗ but all coalitions are
merged into a single coalition. Since all binary reward val-
ues are non-negative, v(CS∗) ≤ v(CS′) holds. Thus, an
optimal solution of the original COP must be identical to
the solution in the CSG problem instance. Since the deci-
sion problem of a COP is NP-complete, a CSG with DCOP
is NP-hard. Since it is also in class NP, it is NP-complete.�

Approximation Algorithm

Basic Ideas

The main idea of our approximation algorithm is to only
search for a restricted subset of all coalition structures with-
out explicitly calculating the value of coalitions. More
specifically, we search for coalition structures, each of which
contains only k coalitions with multiple agents (referred to
as multi-agent coalitions). Except for the multi-agent coali-
tions, every other coalition contains only a single agent (re-
ferred to as single-agent coalition). To search for a restricted
subset of coalition structures, we slightly modify the original
DCOP instance.

Details of Approximation Algorithm

We create a DCOP problem instance by slightly modifying
the original DCOP problem as follows, so that we can search
for coalition structures that contain at most k multi-agent
coalitions.

• We add one new value for each variable called “indepen-
dent,” which means that the agent acts independently. The
unary reward of “independent” equals the maximal unary
reward for other values.

• Also, agent i has k copies of its domain Di. For ex-
ample, consider the case where i has Di = {d1, d2}
and k = 2. Then, agent i has a new domain D′

i =
{d1,1, d2,1, d1,2, d2,2, independent}.

• Each value in a copied domain indicates which action the
agent chooses and to which coalition it belongs.

• All binary rewards related to at least one “independent”
value are 0, since the agent who chooses “independent”
forms its own coalition.

• The unary reward value of a copied value is identical with
the original value. In the above example, ri(d1,1) =
ri(d1,2) = ri(d1) and ri(d2,1) = ri(d2,2) = ri(d2).

• A binary reward value between copied values belonging
to the same coalition equals the original binary reward
values, otherwise, the reward value is 0.

We can solve this new DCOP using any existing algo-
rithms that can obtain an optimal solution, such as ADOPT,

DPOP, etc. (or any centralized COP algorithms, e.g.,
(Dechter 1999), if we can collect all information to a cen-
tralized server)1. By using the obtained solution, we create
a CS where an agent who chooses “independent” forms its
own coalition, and an agent who chooses a value within j-th
copy joins j-th coalition2.

The search space of this DCOP is (kd+1)n, where d is the
domain size of the original DCOP. When k = 1, the search
space is (d + 1)n. Thus, if k = 1, the computational cost
of this algorithm is about the same as solving the original
DCOP, whose search space is dn.

Let us show a simple example where k = 1.

Example 2 Consider the agents and reward-functions of ex-
ample 1. We add one new value for each variable called
“independent.” Since k = 1, we don’t add copied val-
ues for each variable. Thus, the domain of each variable
is {0, 1, independent}. The optimal value assignment of
this new DCOP problem instance is xa = 1, xb = 0, xc =
independent. In this case, this assignment means that
agents a and b form coalition {a, b} and agent c forms
its own coalition {c}. Thus, V ({{a, b}, {c}}) is calcu-
lated as ra(1) + rb(0) + rc(independent) + ra,b(1, 0) +
rb,c(0, independent) + ra,c(1, independent) = 13. In this
way, we can obtain a CS by solving just one DCOP instance.
In this case, the obtained coalition structure is optimal.

Worst-case Bound based on Number of Agents

We first show that a bound can be given based on the number
of multi-agent coalitions in CS∗.

Theorem 5 The worst-case ratio of the approximate algo-
rithm is k/l, i.e., for obtained coalition structure CSap

k ,
V (CS∗) ≤ l · V (CSap

k )/k holds, where l is the number
of multi-agent coalitions in CS∗.

Proof We assume CS∗ contains l multi-agent coalitions.
Consider another coalition structure CS′

k, which is obtained
as follows. First, we set CS′

k = CS∗. Then, we continue to
choose multi-agent coalition S, where v(S) is the smallest
in CS′

k, and divide it into single-agent coalitions, until k
multi-agent coalitions remain in CS′

k. In other words, we
divide l − k multi-agent coalitions in CS∗. Let us assume
Smin is a multi-agent coalition in CS′

k, where v(Smin) is
the smallest. By dividing a multi-agent coalition into single-
agent coalitions, the maximal loss is less than or equal to
v(Smin), since we divide only coalition S′, where v(S′) ≤
v(Smin) holds. Note that we assume there exists at least one

1To be more precise, some existing algorithms including
ADOPT are originally designed for cost-minimizing problems.
Also, the existence of negative rewards can be problematic for
pruning. However, we can directly apply DP-based algorithms
such as DPOP. Furthermore, we can apply a simple modification
of ADOPT by assuming the possible value of each reward function
is bounded.

2In (kd + 1)n search space, there are k! duplicated solutions,
since the names of groups/coalitions are “indistinguishable.” We
can reduce such duplicated solutions by adding symmetry breaking
constraints (Gent 2001).
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value di ∈ Di for xi where ri(di) ≥ 0. Thus, the value of a
single-agent coalition is non-negative.

Since CS′

k contains k multi-agent coalitions, v(Smin) ≤
V (CS′

k)/k holds. The solver maximizes the DCOP, i.e.,
V (CS′

k) ≤ V (CSap
k ) holds. Thus, v(Smin) ≤ V (CSap

k )/k
holds and the following conditions hold:

V (CS∗) ≤ (l − k)v(Smin) + V (CS′

k)
≤ (l − k)v(Smin) + V (CSap

k )
≤ l

k
· V (CSap

k ).

�

Theorem 6 The worst-case ratio of the approximate al-
gorithm is k/⌊n/2⌋, i.e., for obtained coalition structure
CSap

k , V (CS∗) ≤ ⌊n/2⌋ · V (CSap
k )/k holds. Also, this

bound is tight.

Proof The proof is obvious from Theorem 5 and the fact
that there are at most ⌊n/2⌋ multi-agent coalitions in CS∗.
When the values of single-agent coalitions are zero and the
multi-agent coalitions are 1, this bound is tight. �

Worst-case Bound based on Tree Width

Instead of ⌊n/2⌋, we can use w∗ + 1, where w∗ is the tree
width of a constraint graph. It is well-known that the tree
width characterizes the complexity of various graph-based
optimization algorithms, including CSP/COP (Diestel 2000;
Dechter 2003).

(a) Original Graph (b) Tree Decomposition

Figure 2: Example of Tree Decomposition

For graph G = (V , E), where V is a set of nodes and E

is a set of edges, we denote the tree width of G as tw(G).
If original graph G is a tree, its tree width is 1. A pseudo-
tree is often used in DCOP algorithms (Modi et al. 2003;
Petcu and Faltings 2005). The tree width is related to the
induced width of a pseudo-tree (Dechter 2003), i.e., if the
tree width is w∗, then the induced width of any pseudo-tree
is at least w∗.

We show a formal definition of the tree width below. It is
rather complicated and difficult to understand. Please refer
to graph theory textbooks, such as (Diestel 2000), for details.
Formally, for graph G = (V , E), a tree decomposition of G
is a pair (X, T ), such that X = {X1, X2, . . .}, where each
Xs ∈ X is a subset of V and T is a tree whose nodes are
X . (X, T ) must satisfy the following conditions:

(node coverage):
⋃

Xs∈X
Xs = V ,

(edge coverage): ∀(i, j) ∈ E, ∃Xs ∈ X , such that i ∈ Xs

and j ∈ Xs hold.

(coherence): If i ∈ Xs and i ∈ Xt, then ∀Xz , where Xz

is a tree node and it is along the unique path between Xs

and Xt, i ∈ Xz holds.

The width of tree decomposition (X, T ) is given as
maxXs∈X |Xs| − 1, and the tree width of G, which is de-
noted as tw(G), is the minimum width among all possible
tree decompositions of G. Figure 2(b) shows an example of
the tree decomposition of the graph illustrated in Figure 2(a).
Since for all Xs, |Xs| ≤ 3 holds, the width of this tree de-
composition is 2. This happens to be the minimum width for
all decompositions, thus the tree width of this graph is 2.

Let us consider constraint network G = (V , E), where
V is a set of agents and (i, j) ∈ E exists for each binary
reward between xi and xj . The following theorems hold.

Theorem 7 When tw(G) = w∗, then there exists an opti-
mal coalition structure CS∗ that contains at most w∗ + 1
multi-agent coalitions.

Proof Assume that there exists an optimal coalition struc-

ture CS∗
′

that contains more than w∗ +1 multi-agent coali-
tions. Without loss of generality, we can assume that within

each S ∈ CS∗
′

, any two agents i, j ∈ S are connected di-
rectly or indirectly by agents in S. If this is not the case
for some S, we can divide S into multiple coalitions with-
out reducing the value of the CS. Then, consider a graph

G′ = (V ′, E′), where V
′ = CS∗

′

, i.e., each node is a

coalition in CS∗
′

, and there exists an edge between two
coalitions S and S′, if there exists xi ∈ S and xj ∈ S′, such
that a binary reward exists between xi and xj . G′ is ob-
tained from G by contracting the edges between two agents

that belong to the same coalition in S ∈ CS∗
′

. More pre-
cisely, contracting edge (i, j) means removing edge (i, j)
and node j, and connecting all neighbors of j to i. The tree
width does not increase by contraction (Diestel 2000). This
is because, for tree decomposition (X, T ), if we replace j
to i in each Xs ∈ X (and remove duplications of i), then,
we still have a valid tree decomposition (i.e., all three con-
ditions still hold). Thus, tw(G′) ≤ tw(G) = w∗ holds.

Also, it is well-known that if the tree width is w∗, the
graph can be colored using w∗ + 1 different colors, so that
nodes connected by an edge have different colors (Diestel
2000). This is because if we color each node in Xs ∈ X

differently, we obtain a valid coloring. Thus, G′ can be col-
ored using w∗ + 1 different colors. Then, if S and S′ have
the same color, we can merge them without reducing the
value of the coalition structure (since there exists no posi-
tive/negative rewards between S and S′). By merging coali-
tions with the same color, we obtain a coalition structure
CS∗ that contains at most w∗ + 1 multi-agent coalitions

and V (CS∗) = V (CS∗
′

) holds. �

Theorem 8 If tw(G) = w∗, the worst-case ratio of the ap-
proximate algorithm is k/(w∗ + 1), i.e., for obtained coali-
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tion structure CSap
k , V (CS∗) ≤ (w∗ + 1) · V (CSap

k )/k
holds. Also, this bound is tight.

We omit the proof due to space limitations. It is basically
similar to the proof of Theorem 6.

Furthermore, w∗ characterizes the complexity of the
COP/DCOP algorithms. The following theorem holds.

Theorem 9 If tw(G) = w∗, then we can develop a cen-
tralized algorithm that obtains optimal CS∗ with time and

space complexity O(n · ((w∗ + 1)d + 1)w∗
+1).

Proof If we create w∗ + 1 copies of the domains and solve
the obtained DCOP instance using a centralized algorithm,
we can obtain an optimal solution. Then, the domain size
becomes (w∗ + 1)d + 1. By creating copies of the domains,
the structure of a constraint network does not change, and
thus the tree width does not change. We can use any cen-
tralized algorithm (e.g., DP based algorithm, bucket elimi-
nation (Dechter 1999)) whose time and space complexities

are O(n · ds
w∗

+1), where ds is the domain size. �

Also, we can use any DCOP algorithm that is bounded by
tree width, such as DPOP (Petcu and Faltings 2005), to de-
velop a distributed algorithm with a complexity bound.

Although finding w∗ is NP-hard (Arnborg 1985), we can
easily obtain an upper-bound of w∗. For example, we can
use arbitrary total ordering among agents (or use a heuristic
method to find a good ordering (Dechter 2003)) and create
a pseudo-tree. The induced width of the pseudo-tree gives
an upper-bound of w∗, which can be used as a pessimistic
worst-case bound.

Note that it is quite rare to have a quality bound for
DCOP/CSG approximation algorithms. A notable excep-
tion is (Sandholm et al. 1999). Our algorithm is inspired
by (Sandholm et al. 1999), which also searches for a re-
stricted subset of all coalition structures. However, since the
subsets searched are different, the obtained bounds are dif-
ferent. We can expect w∗ would be small when agents are
loosely coupled.

Anytime Algorithm

We can construct an anytime algorithm by incrementing k
one by one. Alternatively, we can repeatedly apply the ap-
proximation algorithm with k = 1 as follows.

1. Apply the approximation algorithm with k = 1.

2. If the obtained CS only contains single-agent coalitions,
then finish this algorithm.

3. Otherwise, remove the agents in multi-agent coalition. If
no agent remains, then finish this algorithm. Otherwise,
go to (1).

For each application of the approximate algorithm, one
multi-agent coalition is found and removed (or the algo-
rithm terminates). Thus, the approximation algorithm is ap-
plied at most ⌊n/2⌋ times. This anytime algorithm is much
more efficient than an algorithm with a large k. However,
it is a greedy algorithm and its worst-case bound is still
max(1/(w∗ + 1), 1/⌊n/2⌋).

Figure 3: Approximation Ratio of the Algorithm (n ∈
[10, 100], |D| = 2, w∗ = 1, k = 1)

Table 1: Approximation Ratio of the Algorithm (n = 10,
|D| = 2, w∗ ∈ [1, 5], k = 1)

induced width 1 2 3 4 5

average ratio 0.965 0.957 0.962 0.928 0.941

Experiments

We experimentally examined the solution quality obtained
by our proposed algorithm. We compared the optimal solu-
tion with the solution obtained by our algorithm with k = 1
in following two cases.

case (1): n ∈ [10, 100], w∗ = 1.

case (2): n = 10, w∗ ∈ [1, 5].

n is the number of agents and w∗ is the tree width of a con-
straint graph. In these experiments, we set the domain size of
each variable |D| to 2 and chose a unary reward value and a
binary reward value from the uniform distribution [−10, 10].

In case (1), we restrict a graph structure to a tree (i.e.,
w∗ = 1). Thus, the theoretical worst-case bound is 1/(w∗ +
1) = 0.5. In this case, we can obtain the optimal solution
in polynomial time. We generated 100 problem instances
for each number of agents. Figure 3 illustrates the aver-
age approximation ratio. The x-axis indicates the number
of agents, while the y-axis shows the average approximation
ratio. We can see that the average ratio is more than 96% of
the optimal solutions. This is by far superior to the theoreti-
cal worst-case bound, i.e., 0.5.

In case (2), we examine the case where the graph structure
is not restricted to a tree, i.e., w∗ > 1. Since finding w∗ is
NP-hard, we use an upper-bound of w∗, i.e., the induced
width of the pseudo-tree obtained by the greedy algorithm
described in (Dechter 2003). We set n = 10, and generate
10 problem instances for each induced width. Table 1 shows
the average approximation ratio. We can see that the average
ratio is more than 92% of the optimal solutions even if we
increase the induced width. This is also by far superior to
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the theoretical worst-case bound. For example, when the
induced width is 5, the pessimistic estimation of the worst-
case bound obtained by the induced width is 1/(5 + 1) =
0.17.

Conclusion

We proposed a novel formalization of CSG problems, i.e.,
the value of a characteristic function is given as an optimal
solution of a DCOP among the agents of a coalition. We pro-
posed an approximation algorithm with parameter k, whose
social surplus is at least max(k/(w∗ + 1), k/⌊n/2⌋) of the
optimal CS. When k = 1, its computational cost is about the
same as finding the value of the grand coalition. These re-
sults illustrate that our DCOP formalization is effective for
CSG, since it can successfully model the locality of interac-
tions among agents. We also proposed an anytime algorithm
and experimentally showed that the average approximation
ratio of the approximation algorithm is by far superior to the
theoretical worst-case bound.

Our future works include developing more efficient algo-
rithms, applying the ideas developed in this paper to real-
world application domains, and extending our formalization
to handle the case with externality, i.e., there can be posi-
tive/negative interactions among coalitions.
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