
Single-Frontier Bidirectional Search

Ariel Felner
Information Systems Engineering

Deutsche Telekom Labs
Ben-Gurion University

Be’er-Sheva, Israel 85104
felner@bgu.ac.il

Carsten Moldenhauer
Humboldt-Universität zu Berlin

Institut für Informatik
10099 Berlin, Germany

moldenha@informatik.hu-berlin.de

Nathan Sturtevant Jonathan Schaeffer
Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2E8
{nathanst, jonathan}@cs.ualberta.ca

Abstract

On the surface, bidirectional search (BDS) is an attractive
idea with the potential for significant asymptotic reductions
in search effort. However, the results in practice often fall
far short of expectations. We introduce a new bidirectional
search algorithm, Single-Frontier Bidirectional Search (SF-
BDS). Unlike traditional BDS which keeps two frontiers, SF-
BDS uses a single frontier. Each node in the tree can be seen
as an independent task of finding the shortest path between
the current start and current goal. At a particular node we
can decide to search from start to goal or from goal to start,
choosing the direction with the highest potential for minimiz-
ing the total work done. Theoretical results give insights as to
when this approach will work and experimental data validates
the algorithm for a broad range of domains.

Introduction
Most start-to-goal search algorithms are unidirectional, i.e.,
they search from a start state towards a goal state. Bidirec-
tional search (BDS) is a general framework where the search
is performed simultaneously from the start and from the goal
until the two search frontiers meet. BDS has proved to work
very well in domains that can fit into memory and have no
heuristic guidance. However, when heuristic guidance ex-
ists it has been shown that, in theory, traditional BDS has
little potential to outperform unidirectional search (Kaindl
and Kainz 1997). The reason is the meet in the middle prob-
lem of guaranteeing the optimality of the solution after the
search frontiers meet. A number of non-traditional BDS al-
gorithms have been proposed (Kaindl and Kainz 1997) but
the implementation of these algorithms is usually difficult
and the gains have not been impressive. Therefore, in prac-
tice, BDS is rarely used when heuristics are available.

Problems that require more memory than is available are
usually solved with depth-first search (DFS) algorithms such
as IDA* (Korf 1985). The classical idea of searching from
both directions has not been broadly considered for DFS al-
gorithms. The notion of meeting frontiers does not apply
here since the frontiers are not kept in memory. We show
how the meeting of the frontiers can be achieved even when
DFS algorithms are considered.

We introduce a new type of bidirectional search called
Single-Frontier Bidirectional Search (SFBDS). A node in a

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

search tree using SFBDS consists of a pair of states, s and
g, and corresponds to the task of finding the shortest path
between them. This task is recursively decomposed by ex-
panding either s or g and generating new tasks between (1)
the neighbors of s and g, or (2) the neighbors of g and s. At
every node a jumping policy decides which of the two states
to expand next, i.e., the search can proceed forward or back-
ward. Given a fixed jumping policy, a tree is induced which
can be searched using any admissible search algorithm.

We first introduce SFBDS and show that it may reduce
the size of the search tree by leveraging irregularities in the
branching factor of a search space. These irregularities may
naturally occur in a domain or appear as a result of heuris-
tic pruning of the search space. Next, we show that SFBDS
is a generalization of the dual search concept (Zahavi et al.
2008), a complicated algorithm which is limited to combi-
natorial puzzles with specific properties. Finally, we provide
experimental results for depth-first and best-first implemen-
tations of SFBDS confirming our analysis.

Single-frontier bidirectional search

In this paper we use the term node and use capital letters
(e.g. N) to indicate nodes of the search tree, while the term
state and small letters (e.g., s) are used to indicate states
(or vertices) of the input graph. We assume that the input
graph is undirected and that the task of the search is to find a
shortest path from the start state to the goal state. Our ideas
can be generalized to work without these assumptions.

Unidirectional search

Assume the task is to find a path between s and g on a graph.
Regular search algorithms formalize a search tree such that
each node of the tree includes one state of the graph. The
root node R includes the start state s. Assume that node N
corresponds to state x. The task at N is to find a (shortest)
path between x and g. When a heuristic is applied, it esti-
mates the length of the path from x to g (h-cost) and adds
this to the accumulated path from s to x, i.e., all edges from
R to node N (g-cost). When the goal is reached via an opti-
mal path, we backtrack and the states of the path are passed
up the tree to construct the solution path.

SFBDS: Formal Definition

The main observation underlying this paper is the following:

59

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

(a) Unidirectional tree (b) Task tree

Figure 1: Example for unidirectional and SFBDS trees.

Finding the shortest path between states x and g can be
solved via recursive decomposition. The method used
for the decomposition (direction of the search) does not
matter as long as an optimal path is returned.

In SFBDS each node is defined as a pair of states x and
y denoted by N(x, y). The task of such a node is to find a
shortest path between x and y. In other words, the task is to
close the gap between x and y. This can be done by treating
x as the start and y as the goal, searching from x to y. An
alternative is to reverse the direction of the search by treat-
ing y as the start and x as the goal, searching from y to x.
For example, if at N(x, y) both x and y have two neighbors,
then the children of N of the two alternatives are:

(a) regular direction (expand x): (x1, y) and (x2, y); or
(b) reverse direction (expand y): (x, y1) and (x, y2).

Each node N should be expanded according to one of these
alternatives. The search terminates when a goal node is
reached (N(x, y) where x = y). The choice of search di-
rection in N is reflected by N ’s children only, but no other
node in the search is influenced by this choice of direction.
Solutions or cost estimates from node N are naturally passed
up to the parent of N , regardless of the direction used for N .

We use a jumping policy to choose which direction to con-
tinue the search at each node. Define the task search tree
(task tree in short) for a given jumping policy as the tree
obtained by using R(s, g) as the root of the tree. Any ad-
missible algorithm can be used to search for a shortest path
from R to any goal node in the task search tree.

Examples

Unidirectional search and SFBDS are illustrated using the
graphs in Figure 1. The objective is to find a shortest path
from the start state, a, to the goal state, o. Consider a unidi-
rectional search (Figure 1a). In this tree, every node implic-
itly solves the task of getting from the current node to o, and
the search will proceed across the tree until o is found.

Now, consider searching the same tree with SFBDS (Fig-
ure 1b). Nodes are labeled with the shortest-path task that
should be solved below them. The state which is chosen for
expansion by the jumping policy is marked with an under-
score. For example, at the root, the task is (a, o) resulting
in two children, (b, o) and (c, o). At node (c, o), however,
the jumping policy chooses o for expansion. This generates
nodes for all neighbors of o, leading to (c, g) in our example.
Finally, at (c, g), state g is chosen for expansion, generating

a goal node (c, c).
Edges in a task tree are of two types. The first type are

edges from a node (x, y) to a node (w, y) which corresponds
to an edge (x, w) in the graph (expanding x). The second
type are edges from a node (x, y) to a node (x, z) which
corresponds to an edge (y, z) in the graph (expanding y).
For example, the path in the task tree in Figure 1b indi-
cated by dotted arrows corresponds to edges (a, c), (o, g)
and (g, c). Constructing the solution path is straightforward.
When backtracking up the search tree from a goal node,
edges that correspond to forward expansions are appended
to the front of the path while edges that correspond to back-
wards expansions are appended to the end of the path. Thus,
the path of (a, c, g, o) is constructed from this branch.

Analysis

Given a specific jumping policy the task tree is determined.
Every shortest path in the task tree encodes a shortest path
in the graph and vice versa. Therefore, using any admissible
search algorithm on the task tree will return an admissible
solution for the original graph. No gains can be provided
by using any other search algorithm besides A* (or any of
its variants) because it is guaranteed to find the optimal path
and the nodes it expands are mandatory. This applies to any
type of search tree and to the task tree as well.

The main aim of SFBDS is to minimize search effort by
choosing an appropriate jumping policy. Regular unidirec-
tional search uses the policy never jump. Similarly, a unidi-
rectional search from the goal to the start employs the pol-
icy jump only at the root. The idea is to improve upon these
jumping policies. Unfortunately, the space of jumping poli-
cies is exponential in the number of nodes expanded and it
is out of the scope to determine an optimal jumping policy
at runtime. However, heuristic approaches can be used.

We distinguish four types of domains (shown in Figure 2)
to consider if jumping at node (a, g) can be advantageous.

Case 1: Consider domains with a uniform branching fac-
tor b. A search without heuristic guidance on the unidirec-
tional search tree will expand O(bd) nodes when the solution
is of length d. Consider the task trees generated by differ-
ent jumping policies. Since the branching factor is uniform
all the task trees have the same structure. Hence, searching a
task tree of a different jumping policy will also require O(bd)
node expansions. In Figure 2a consider the policy where the
search does not change direction until it reaches node (a, g)
at depth d1. A unidirectional search would continue with a
search to depth d2 = d− d1, expanding O(bd2) nodes below
node (a, g). Now, assume the direction of search is reversed
at (a, g). This search continues from g to depth d2, also

60

Figure 2: Case analysis when reversing the search direction can be advantageous.

expanding O(bd2) nodes below node (a, g). Therefore, any
jumping policy, including no jumping, is optimal.

Case 2: Consider domains with a non-uniform branching
factor and without dead ends (Figure 2b). A non-uniform
branching factor can be a domain characteristic or the result
of heuristic pruning. If one area of a state space has better
heuristic values than another, the effective branching factor
(number of nodes expanded below a given node) in that area
may be smaller. Hence, there is the potential to reduce the
search effort by choosing a good jumping policy.

Case 3: Consider domains with dead ends in the search
tree (Figure 2c). Consider a unidirectional search from i
to g. At depth d/2 only b is connected to the goal and
all other nodes (e.g., x) are dead ends. In this search we
have two trees of depth d/2 and the total effort is O(2 ×
bd/2) =O(bd/2). SFBDS with a non-optimal jumping policy
does not recognize dead ends until at least one of the two
states of a node is a dead end. When the search direction
reverses below (a, g) it will search to an additional depth
of d − d1 before being pruned. Hence, the search tree is

of size O(bd/2 + bd/2−d1). Using the simplistic assumption
that the search always reverses at depth d1, the total effort

will be O(bd1(bd/2 + bd/2−d1)) ≫ O(bd/2) before a solution
is found. In these domains it is crucial to jump in the right
places or not to jump at all to avoid a quadratic increase in
the search effort. Good heuristic guidance can be used to
prune the unsuccessful searches earlier than at depth d− d1.

Case 4: On graphs with many cycles best-first search al-
gorithms are quite effective due to duplicate detection. If
there are V states in the graph, a best-first version of SF-
BDS can have up to V 2 unique tasks, so there is a potential
asymptotic increase in the size of the state space.

Relationship to Dual Search

The concept of duality and an algorithm called dual search
(DS) (Felner et al. 2005; Zahavi et al. 2008) was introduced
in the context of permutation state spaces such as Rubik’s
Cube. Assume that when applying the operator sequence O
to s we arrive at g. The dual state of s, denoted as sd, is
defined to be the state which is reached by applying O to
g. The distances from s and sd to g are equal. Therefore,
any admissible heuristic lookup for sd is also admissible for
s. Given a heuristic h, h(s, g) is called the regular lookup

and h(sd, g) is called the dual lookup. If they differ their
maximum yields a more powerful heuristic.

DS exploits the heuristic differences of the two lookups.
At each state, it either continues to search regularly or it
“jumps” to the dual state and continues the search from

there. For pattern databases (PDBs), a good jumping pol-
icy is to “jump” if h(sd) > h(s). This was called the jump if
larger (JIL) policy. Dual IDA* (DIDA*) was shown to sig-
nificantly outperform IDA* in many combinatorial puzzles.

DS has two main limitations. First, it only works in do-
mains (e.g., combinatorial puzzles) which have the special
property that each operator corresponds to a location-based
permutation. Similarly, it assumes that the same type of op-
erators are applicable to all states. Second, the concept of the
dual state and the DS algorithm are technically complicated
and hard to understand. In addition, DS was only imple-
mented on top of IDA* and the question as to whether it is
applicable to A* remains open.

SFBDS generalizes DS to all possible state spaces and is
simpler to understand. Many DS concepts, such as the dis-
tinction between “simple” and “general” duality, disappear
when viewed as a special case of SFBDS. This paper also
shows that SFBDS is suitable for search with A*.

To understand why DS and SFBDS are equivalent let O be
the location-based permutation that transfers s into g. That
is, assume location x ∈ s occupies object a. O specifies
the destination location y ∈ g for object a. Now, O(s) = g
and O−1(g) = s. Similarly, by definition O−1(sd) = g.
Therefore the relation between g and s is identical to the
relation between sd and g. All operators are applicable in all
states so all we need to do is to find the shortest sequence of
operators that produces permutation O.

The PDB lookups are similar too. Let π be a value-based
permutation (“renaming”), of s into g. That is, assume ob-
ject a is in location x ∈ s . π specifies the name of the ob-
ject for location x ∈ g. Now, since O and π are commutable
then sd = O(g) = O(π(s)) = π(O(s)) = π(g). Hence,

h(sd, g) = h(π(g), π(s)) = h(g, s). That means all heuris-

tic lookups in DS for dual states sd are equal to the reverse
lookups in SFBDS and the two algorithms are equivalent.

SFBDS characteristics

SFBDS has the flexibility of deciding which side of the
search to expand next. In fact, any gains achieved by SF-
BDS are solely determined by the quality of the jumping
policy. In general, one wants to expand the side with the
subtree below it that can be searched most efficiently. Three
possible features for a jumping policy are considered here.

(1) Branching factor: For a node N(x, y), x and y may
have different branching factors. Expand the state with the
smallest branching factor. For example, consider a non-root
15-puzzle node N(x, y) where state x has the blank in the
center (branching factor of 3) while state y has the blank in

61

the corner (branching factor of 1). Now consider a depth 5
tree with a non-uniform branching factor where the branch-
ing factors at depths 1 . . . 5 are fixed to 1, 4, 2, 2, and 2 re-
spectively. If we change direction based only on the branch-
ing factor, we essentially get to ‘skip’ the worst branching
factor in the tree. An optimal policy would switch direc-
tions at depth one, and expand 8 nodes total, while a forward
search would expand 16 nodes and a reverse search would
expand 32 nodes. The largest gain in this case is the ratio of
the largest to smallest branching factor in the tree.
(2) Asymmetric heuristics: Assume that the graph is undi-
rected and thus for every two states, x and y, dist(x, y) =
dist(y, x) where dist(x, y) is the length of the shortest path
between x and y. In many cases, admissible heuristics are
symmetric too, meaning that h(x, y) = h(y, x) (e.g., Man-
hattan distance). However, some admissible heuristics are
not symmetric: h(x, y) 6= h(y, x). An example is a goal-
oriented PDB. Assume we build PDBs for state x (PDBx)
and state y (PDBy). Each PDB relies on different features
of the state, hence PDBx(y) likely stores a different heuris-
tic value than PDBy(x). When an asymmetric heuristic
exists we can perform these two possible lookups for node
N(x, y). As a first step, we can take the maximum of these
two lookups as the heuristic for N(x, y). The second step
is more powerful. Assume that h(x, y) > h(y, x), that ex-
panding x will generate nodes (x1, y) and (x2, y) and that
expanding y will generate nodes (x, y1) and (x, y2). Since
the heuristic at x is larger, we expect that nodes (x1, y) and
(x2, y) will have larger heuristics than (x, y1) and (x, y2).
Thus, we choose to expand x. This was called the jump if
larger policy (JIL) in (Zahavi et al. 2008).
(3) Side with larger heuristics: The preceding idea can be
generalized. Even if the heuristic is symmetric we can do the
following. Perform a 1-step lookahead and peek at all the
children of x and measure their heuristic towards y. Simi-
larly, perform a 1-step lookahead and peek at all the children
of y and measure their heuristic towards x. If one side tends
to have larger heuristic values, choose to expand that side.
We refer to this as the JIL(k) policy, where k is the looka-
head depth. The JIL method described above is JIL(0).

Optimal jumping policies for IDA*:

The optimal jumping policy can be computed offline for
IDA* under certain conditions. This gives us the minimum
possible search effort that can be achieved. Let (x, y) be
a task in the task tree. A jumping policy should decide
whether to expand x or y. Our optimization algorithm per-
forms the search below (x, y) for both cases until all so-
lutions are found. We then backtrack up the tree and for
each node choose the expansion with minimum search ef-
fort. This effectively doubles the branching factor. Hence,
if a unidirectional search has complexity O(bd) finding the

optimal policy has complexity O((2b)d). This is not feasi-
ble for long solution lengths d. The space needed for the
optimal policy is O(bd).

Parent and duplicate pruning

Typically, when search algorithms expand a node N they
do not generate the parent of N . This is usually done by

keeping the operator that generated N and not applying its
inverse to N . In SFBDS two operators are kept for N(x, y),
one for each of x and y. When a node is expanded from its
forward (backward) side, the inverse of the operator that was
used to first reach x (y) is not applied. In regular search the
one exception is the root node. In SFBDS both the start and
goal act as root nodes, slightly enlarging the tree.

DFS algorithms like IDA* do not perform duplicate de-
tection (DD). If multiple paths exist to a node, that node
and all its children may be expanded many times. Best-first
algorithms like A* store open- and closed-lists performing
DD. However, the DD problem in SFBDS is more compli-
cated than in A*. As there are O(V 2) possible tasks that
can be created out of all possible pairs of states SFBDS has
the potential to asymptotically increase the size of the search
space. We devised a method to show when a particular task
is guaranteed to be worse than similar existing tasks and can
be pruned. We do not describe this pruning in detail here, as
the gains of SFBDS in A* search are limited.

Experiments

SFBDS performance is demonstrated on the tile puzzles
of size 15 and 24, the pancake puzzle, scale-free graphs
and room maps. Puzzles have a relatively small and stable
branching factor and belong to case 1 in the analysis sec-
tion. However, heuristics can be used to diversify the sizes
of the task trees induced by different jumping policies and
relate them to the second case. Scale free graphs induce non-
uniform, high branching factors and belong to case 2 of the
domains. As an example of cases 3 and 4 we consider room
maps as a path-finding problem.

On the puzzles, SFBDS is identical to DS. We repeated
the experiments in (Zahavi et al. 2008), generating the same
numbers. The JIL(k) results are new. For the non-puzzle do-
mains duality does not exist and such searches are possible
only due to our new SFBDS formalization.

15-puzzle with Manhattan Distance

To show the effectiveness of SFBDS on simple heuristics,
we repeated the experiments first performed in (Korf 1985)
using the Manhattan distance (MD) heuristic; this time in-
cluding SFBDS with a number of jumping policies. The
results are in Table 1 (top). The first line uses IDA* with-
out any jumping and produces the identical node counts to
those reported in (Korf 1985). The second line uses SFBDS-
IDA* with the jumping policy of expanding the side with
the smaller branching factor (BF). The branching factor is
small, either 1, 2 or 3, (4 at the root) limiting the possi-
ble savings. Since the heuristic is symmetric, JIL(0) will
never choose to reverse the search direction and is equiva-
lent to regular IDA*. The next line reports the results for
JIL(1) using the following jumping policy. Assume that
T is the IDA* threshold, the current node is N(x, y), and
f(N(x, y)) = k. For the special case of the tile puzzle we
know that the f -cost either remains the same or increases by
two. If k = T , then only count the children with f = k
(those with f = k + 2 will be pruned immediately); expand
the side with the smaller count. If k < T then all the chil-
dren will be expanded and we want to estimate the number

62

H Alg. Policy Nodes Time

15 puzzle

MD IDA* Never 363,028,020 51s

MD SFBDS BF 256,819,013 37s
MD SFBDS JIL(1) 91,962,501 18s
MD SFBDS JIL(2) 71,290,100 17s

17 pancake

regular IDA* Never 342,308,368,717 284,054s
reversed IDA* Never 14,387,002,121 12,485s

max IDA* Never 2,478,269,076 3,086s

max SFBDS JIL(0) 260,506,693 362s
max SFBDS JIL(1) 17,336,052 120s

Table 1: 15 puzzle (top). 17 pancake (bottom).

of nodes below this node with f = k + 2. We count the
number of children but give a larger weight b (ideally b is
the heuristic branching factor) to those with f = k as they
will generate a larger number of nodes with f = k + 2.

The results show the great potential in this direction. Even
though the heuristic is symmetric, performing the JIL(1)
policy reduced the number of generated nodes by a factor
of 4 and the time overhead by almost a factor of 3. Further
lookahead, JIL(2) provided modest gains.

Pancake puzzle with PDBs

A PDB is usually built to estimate the distance to a given
goal state. However, in many permutation puzzles with the
appropriate mapping of the tiles the same PDB can be used
to estimate distances between any pairs of states. There-
fore, given a node N(x, y) and a PDB both hx(y) (regular
lookup) as well as hy(x) (reverse lookup) can be calculated.
Different PDB lookups are performed and different values
can be obtained.

Table 1 (bottom) presents results averaged over 10 ran-
dom instances of the 17-pancake puzzle. We used the same
7-token PDB used by (Zahavi et al. 2008) of the largest pan-
cakes. The first line is a regular IDA* search with one PDB
lookup. The second line always uses the reverse lookup. It
produced inconsistent heuristic values because different to-
kens are being looked up at every step. Adding BPMX on
top results in a 24-fold reduction in the number of nodes
generated. Taking the maximum of both heuristics further
improved the results. Line 4 shows the results of SFBDS
with the JIL(0) policy where another 10-fold improvement
was obtained. The first four lines already appeared in (Za-
havi et al. 2008). However, we now also applied the new
JIL(1) policy. With JIL(1), we get a further reduction by a
factor of 15 in nodes, but only a factor of 3 in time because
of the lookahead overhead. These are the state-of-the-art re-
sults for such PDBs on this domain. Similar tendencies were
obtained for smaller sizes of this puzzle.

Optimal jumping policies for the pancake puzzle

Table 2 shows the averaged results of the optimal jumping
policy for the 10, 11 and 12 pancake puzzle using 1000 ran-
dom instances each. Entries include the total number of
nodes and the last iteration nodes (in brackets). We use the
maximum of the regular and reverse lookup using the PDB
heuristic of the 7 largest tokens. BPMX is disabled. The last

pancakes 10 11 12

avg. sol. 8.683 9.66 10.699

policy nodes generated (last iteration)

regular 83 (68) 405 (286) 3,728 (2,538)
JIL(0) 73 (60) 307 (214) 2,247 (1,482)
JIL(1) 65 (54) 233 (165) 1,670 (1,108)

optimal (43) (94) (458)

Table 2: Optimal policy on the pancake puzzle

Heuristic Policy Nodes

1 r,r* - 43,454,810,045
2 r,r*,rev,rev* - 13,549,943,868
3 r,r*,rev,rev* JIL(0) 3,948,614,947
4 r,r*,rev,rev* JIL(1) 1,778,435,449

(a) SFBDS on the 24-puzzle.

(b) PDBs

Alg.
Octile Differential

nodes win nodes win

A* 7,835 N/A 1,179 N/A

BF 329,837 12.5% 4,165 18.2%
JIL(1) 804,426 1.6% 4,847 42.4%
DW 34,037 5.0% 841 67.0%

(c) SFBDS with A* on room maps.

Table 3: Results on the 24-puzzle and room maps.

row shows the minimal possible search effort for SFBDS
in the last iteration with an optimal jumping policy. Even
though our jumping policies perform well compared to uni-
directional search, the results suggest that there is potential
for further improvements. Note that JIL is a generic jumping
policy. Hence, by incorporating domain-dependent knowl-
edge it is possible to build more sophisticated policies.

24-puzzle

For the 24-puzzle, the same 6− 6− 6 − 6 PDB partitioning
from (Korf and Felner 2002) was used. If we only use the
traditional goal state, then the PDB of Table 3b (top) is used
as it has the blank in the corner. In (Zahavi et al. 2008) they
showed that 8 6-tile PDBs are enough to be able to perform
a 6-6-6-6 partitioning towards any possible blank location.
For example, Table 3b (bottom) shows how four 6-tile PDBs
can be used when the blank is in the center.

In (Korf and Felner 2002) 50 random instances were opti-
mally solved. Following (Zahavi et al. 2008) we only report
results on the 25 instances with the shortest optimal solution
in Table 3a. The first three lines are identical to those in
(Zahavi et al. 2008); the fourth line is new. Line 1 presents
the benchmark results from (Korf and Felner 2002) where
the maximum between the regular PDB (r) and its reflection
about the main diagonal (r∗) were taken. Line 2 is the case
where the maximum between all possible four PDB lookups
were used (regular, reversed and their two reflections about
the main diagonal). Line 3 shows SFBDS which used a pol-
icy based on JIL(0) (called J24 in (Zahavi et al. 2008)). The
last line shows the new JIL(1) results where a further reduc-
tion of a factor of 2.2 is obtained.

63

Algorithm BFS BDBFS DFID SFDFID

Nodes 16,427 212 824,682 18,056
Time 35s 3ms 936ms 17ms

Nodes - 10% 56,154 1,775 - 21,142
Time - 10% 50s 18ms - 21ms

Table 4: Results on a scale-free graph.

Scale-Free Graphs

As an example for domain of case 2 of the analysis
section we investigate scale-free graphs (or power-law
graphs) (Faloutsos, Faloutsos, and Faloutsos 1999). We
used the R-MAT (Chakrabarti, Zhan, and Faloutsos 2004)
algorithm to generate a scale-free graph with 100,000 nodes
and 400,000 edges. The branching factor ranges from 1 to
150.

We report the results for one such graph in Table 4, al-
though other graphs gave similar results. No default heuris-
tic is available in these graphs, so we consider the follow-
ing algorithms. Breadth-first Search (BFS) finds optimal
paths by expanding nodes, best-first, based on their g-value
(=depth). Bidirectional breadth-first search (BDBFS) ex-
pands nodes from the start and goal simultaneously, stopping
when the frontiers meet. DFID is a depth-first search with
iterative deepening cost limits. SFDFID is a single-frontier
bidirectional version of DFID with a policy that expands the
side with the lower branching factor.

The results are averaged over 96 instances (out of 100)
that could be solved by all algorithms. The bottom two lines
are averages over the hardest 10 problems only. SFDFID
expands 46 times fewer nodes than DFID and is 55 times
faster. Over all problems, BDBFS expands the fewest nodes
and is fastest. BFS and BDBFS are very slow due to data
structure overheads. Although SFDFID expands 85 times
more nodes than BDBFS, it is only 5.7 times slower, and
on the hardest problems it is actually comparable to BDBFS
as its constant time per node is much smaller. A custom
implementation of SFDFID for this domain would likely be
even faster, as the branching factor in each direction can be
cached, an optimization we did not perform.

These results illustrate the gains that are possible in do-
mains with a variable branching factor. SFDFID outper-
forms regular DFID, and has comparable performance with
BDBFS, yet only uses memory linear in the solution depth.

SFBDS-A* on room maps

Room maps are structured by a grid of rooms with random
doors between them. This domain is an example of case
3 given in the analysis section. As A* keeps a closed-list,
searching to the edge or a corner of a room is comparable
to a dead end in the search tree because the goal can only
be reached by backtracking through previously expanded
states.

We performed experiments on 24 maps, each having
32x32 rooms of size 7x7 and random paths that connect
the rooms. Our test set consists of 11,205 pairs of start
and goal states.We experimented with the trivial octile dis-
tance heuristic and with the more informed memory-based
differential heuristics (DH) (Sturtevant et al. 2009) with ten
canonical states.

The results are shown in Table 3c. A vertex with branch-
ing factor two is called a doorway. The doorway policy
(DW) only reverses the search direction (jumps) at such
states, i.e., if for node N(x, y) x or y are doorways, search
towards it. We measure the number of nodes expanded
(nodes), averaged over the test set, and the number of in-
stances where the respective algorithm expands fewer nodes
than A* (win) as a percentage of the total number of in-
stances. The respective best results are highlighted. The
first line shows the results for regular A*.

SFBDS-A* with the octile heuristic and the branching
factor policy performs poorly, rarely beating A* and expand-
ing 40 times more nodes on average. This is due the poten-
tial V 2 blow-up in tasks versus states, particularly because
the octile heuristic is weak.

With good heuristic guidance the algorithm can avoid ex-
panding states that lead to dead ends. Therefore, SFBDS
with differential heuristic and doorway policy expands fewer
nodes than regular A* on average. Our algorithm performs
better in more than 67% of the test instances and expands 1.4
times fewer nodes. These results suggest that the gains from
SFBDS will be minimal in a highly connected graph unless
we can take advantage of special properties of a domain.

Conclusions
SFBDS is a general approach for bidirectional search which
is especially applicable to depth-first search. It is far simpler
and more general than the previous dual search ideas. We
provide new analysis that provides deeper insight into when
such an approach will work and what properties a domain
must have to benefit from a SFBDS approach.

Acknowledgments
This research was supported by the Israeli Science Founda-
tion (ISF) grants No. 728/06 and 305/09, and by iCORE.

References
Chakrabarti, D.; Zhan, Y.; and Faloutsos, C. 2004. R-mat:
A recursive model for graph mining. In SDM.

Faloutsos, M.; Faloutsos, P.; and Faloutsos, C. 1999. On
power-law relationships of the internet topology. In SIG-
COMM, 251–262.

Felner, A.; Zahavi, U.; Schaeffer, J.; and Holte, R. C. 2005.
Dual lookups in pattern databases. In IJCAI-05, 103–108.

Kaindl, H., and Kainz, G. 1997. Bidirectional heuristic
search reconsidered. JAIR 7:283–317.

Korf, R. E., and Felner, A. 2002. Disjoint pattern database
heuristics. Artificial Intelligence 134(1-2):9–22.

Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.

Sturtevant, N.; Felner, A.; Barer, M.; Schaeffer, J.; and
Burch, N. 2009. Memory-based heuristics for explicit state
spaces. In IJCAI-09, 609–614.

Zahavi, U.; Felner, A.; Holte, R. C.; and Schaeffer, J. 2008.
Duality in permutation state spaces and the dual search al-
gorithm. Artif. Intell. 172(4-5):514–540.

64

