
Search Space Reduction Using Swamp Hierarchies

Nir Pochter
School of Engineering and Computer Science

The Hebrew University, Jerusalem, Israel
nirp@cs.huji.ac.il

Aviv Zohar
School of Engineering and Computer Science

The Hebrew University, Jerusalem, Israel
and Microsoft Israel R&D Center Herzlia, Israel

avivz@cs.huji.ac.il

Jeffrey S. Rosenschein
School of Engineering and Computer Science

The Hebrew University, Jerusalem, Israel
jeff@cs.huji.ac.il

Ariel Felner
Information Systems Engineering

Ben-Gurion University, Be’er-Sheva, Israel
felner@bgu.ac.il

Abstract

In various domains, such as computer games, robotics, and
transportation networks, shortest paths may need to be found
quickly. Search time can be significantly reduced if it is
known which parts of the graph include “swamps”—areas
that cannot lie on the only available shortest path, and can
thus safely be pruned during search. We introduce an al-
gorithm for detecting hierarchies of swamps, and exploit-
ing them. Experiments support our claims of improved ef-
ficiency, showing significant reduction in search time.

Introduction

A common direction in heuristic search is to develop tech-
niques for very large combinatorial domains (e.g., permuta-
tion puzzles) where the state space is defined only implicitly,
due to its exponential size. However, there are many do-
mains, such as map-based searches (common in GPS nav-
igation, computer games, and robotics) where the entire
state-space is given explicitly. Optimal paths for such do-
mains can be found relatively quickly with simple heuris-
tics, especially when compared to the time it takes to ex-
plore exponentially large combinatorial problems. Relative
quickness, however, might still not be fast enough in certain
real-time applications, where further improvement towards
high-speed performance is especially valued.

We present an approach that relies on preprocessing tech-
niques that can dramatically reduce search costs, and do not
compromise search optimality (A preliminary version ap-
peared in (Pochter, Zohar, and Rosenschein 2009)). Our
preprocessing determines the location of swamps, namely
areas that can always be safely pruned, as long as they do
not contain the start or end state. This approach is particu-
larly useful when maps are known in advance and are used
for multiple searches.

To understand the intuition behind swamps, think of an
agent traversing a maze. A certain corridor in the maze may
be the long path to the target or even a dead end, and thus
may be useless for constructing short paths. A search al-
gorithm may still look inside this corridor, especially if the

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

heuristic indicates that this corridor is in the general direc-
tion of the target, and should be explored before other op-
tions. Only when the corridor is further explored will the
algorithm learn that it does not lead to the target quickly.
We automatically identify such areas in the graph during the
preprocessing stage, and allow the search algorithm to ex-
plore them only under very specific circumstances: when
the search originates or terminates within them.

We build upon this basic intuition, and present techniques
that identify more complex structures that can be partially
pruned, improving search even more. Experimental analy-
sis of our approach in various domains reveals a drastic de-
crease in search costs when compared to search algorithms
without this preprocessing.

Related Work A common technique for speeding up
heuristic search is through preprocessing techniques. The
work that is perhaps closest to ours is the “dead-end heuris-
tic” introduced by Björnsson and Halldórsson (2006). They
use a preprocessing phase to identify areas that are dead-
ends, and create an abstract graph whose nodes are these
areas. Initially, the search is performed on the abstracted
graph. The areas that were not visited during the search
on the abstracted graph are then ignored when the search is
performed in the original search space. In addition to iden-
tifying dead-ends, our approach also identifies (and prunes,
when possible) areas when there is an alternative shortest
path that avoids them. We also do not require any additional
searches in abstract spaces, and we utilize a hierarchical ap-
proach that saves significantly more time during the search.

Geisberger et al. (2008) used contraction to replace ver-
tices through which few shortest paths pass, with shortcuts.
They applied their technique to the Dijkstra algorithm using
GPS data.

There is much research on efficient search in explicit
state-spaces, using techniques that compromise solution
quality using different graph abstraction techniques (Sturte-
vant 2007; Botea, Müller, and Schaeffer 2004; Sturtevant
and Buro 2005; Demyen and Buro 2006). The basic idea
of these techniques is to run a preprocessing phase, during
which the original graph is abstracted, sometimes to multi-
ple levels. The search is performed in an abstract graph, and
mapped back to the original graph where it is then refined.

155

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

The resulting path, however, is not guaranteed optimal.

Other preprocessing techniques encode memory-based
heuristics in the form of lookup tables. Pattern databases
(PDBs) (Culberson and Schaeffer 1998), and their enhance-
ments, have recently been explored as a powerful method
for automatically building admissible memory-based heuris-
tics based on abstractions of the domain. PDBs are usually
goal-specific, and are usually designed and used for implicit
exponential domains.

Another class of memory-based heuristics, true dis-
tance heuristics (TDHs), was introduced for explicit state
spaces (Sturtevant et al. 2009; Felner et al. 2009). Ideally,
the all-pairs-shortest path matrix can be precomputed and
stored. Due to time and memory constraints, TDHs store
shortest distances between a small number of selected pairs
of states in the state space, using them to calculate an admis-
sible heuristic. This method is naturally more precise when
more memory is available for the cached distances. Our own
approach achieves equivalent results with less memory.

All these preprocessing methods are intended to speed up
the run-time search. It is commonly assumed that the time
requirements of the preprocessing phase are of lesser im-
portance, as it is performed only once but can then can be
amortized over the solving of many problem instances.

Our own technique does not introduce a new heuristic, but
rather prunes the graph; in principle, it can be used with any
search algorithm, heuristic, or approach that uncovers new
heuristics (including PDBs and TDHs).

Swamps

In this section we present the notion of swamps (the under-
lying concept used in our approach), starting with the basic
definition, and then develop the more complex notions of
modular-swamps and swamp-hierarchies.

A swamp is defined as a subset of the states in the search
graph such that any shortest path that goes through the
swamp (and does not start or end in it), has an equally short
alternative that does not pass through it.1 We define this no-
tion more formally below.

Definition 1. A swamp S in a graph G = (V, E) is a set of
states S ⊆ V such that for each v1, v2 ∈ V \ S, there exists
a shortest path P1,2 that connects v1 and v2 and traverses
only nodes in V \ S.

Note that in general, a swamp does not have to be a con-
nected subset of states. We will use the term contiguous-
swamp to specify a connected subset of states that is a
swamp. We will often denote it in this paper by C.

Example 1. Figure 1 shows two contiguous-swamps, C1

which is composed of state 1, and C2 which is composed of
states 5 and 6. Additionally, the set of states S = {1, 5, 6}
forms a swamp: all shortest paths between the remaining
states in the graph do not pass through S.

1A slightly more restrictive alternative is to define a swamp as
a group of nodes that is never used in any shortest path. That def-
inition has nicer properties in some sense, but yields significantly
smaller swamps and is thus less useful in practice.

Figure 1: An example of two contiguous-swamps. Note that their
unification is also a disconnected swamp.

Definition 2. The external boundary of a set of states T ,
B(T), is the set of nodes outside the set that have neighbor-
ing nodes in the set.

Note that this definition applies to every set of states, not
just connected sets.

The next lemma states that it is enough to check only
paths between points on the boundary of a swamp in order
to ensure that it is indeed a swamp. This gives us an efficient
and local procedure for checking if a given set of nodes is a
swamp by iterating over all pairs of nodes on the boundary
of the candidate set.

Lemma 1. Let S be a set of vertices in V . If for any two ver-
tices on the external boundary of S, v1, v2 ∈ B(S), there ex-
ists a shortest path between v1, v2 that does not pass through
S, then S is a swamp.

Proofs throughout are omitted due to lack of space.
The exploitation of swamps during search occurs as fol-

lows: when a search is performed between two states, both
of which are outside of a swamp S, all nodes belonging to S
can be considered blocked, and do not have to be expanded.

To improve savings during search, we would of course
like to increase the number of pruned nodes, i.e., increase
the number of nodes inside the swamp. On the other hand,
a swamp that itself contains the start or target state cannot
be pruned, and thus larger swamps will be used less often.
For example, as the definition of swamps implies, the en-
tire graph is a trivial swamp, but is useless when pruning
states during any search. Thus, there is a tradeoff between a
swamp’s size and its usability. To handle this issue, we de-
tect a set of small contiguous-swamps that cover as much of
the graph as possible, but can be also used together. We call
such sets modular-swamps. Later in the paper we extend the
notion of modular-swamps to the more complex (but very
useful) notion of swamp-hierarchies.

Modular-Swamps

It is important to note that two regions can be individual
contiguous-swamps without their union being a swamp, as
shown in the following example.

Figure 2: Two contiguous-swamps; Their union is not a swamp.

156

Example 2. Figure 2 depicts a graph with two contiguous-
swamps, C1 and C2. The reader can verify that, while the
individual contiguous-swamps appropriately satisfy the def-
inition of swamps, their union does not—any path between
states 1 and 4 must pass through one of the two swamps.

The example above motivates us to define a modular-
swamp as a set of contiguous-swamps that can be used to-
gether effectively.

Definition 3. A modular-swamp M is a set of disjoint
contiguous-swamps M = {C1, . . . , Ck} ∀i 6= j Ci ∩
Cj = ∅, such that any subset of them forms a swamp. That

is, if M′ ⊆ M then
⋃

C∈M′

C is a swamp.

Within the context of modular-swamp M, let CM(v) de-
note the contiguous-swamp within M that contains state v.

CM(v) ,

{ Ci ∈ M for which v ∈ Ci

∅ if v is not contained in any
contiguous-swamp within M.

We will usually discard the subscript M when the set M
with which we are operating is obvious from the context.

Definition 3 provides a natural way to conduct a search
over a graph, within which a modular-swamp M is known:
whenever we search for a path between states v1, v2, we will
block access to all contiguous-swamps in M, except per-
haps C(v1) and C(v2)—the contiguous-swamps that contain
nodes v1 and v2. The remaining contiguous-swamps form
a swamp together, and can thus be considered blocked for
the purpose of the search (which, through our construction,
originates and ends outside the swamp). The real challenge,
though, is to find modular-swamps in the graph (we present
an algorithm below).

Since modular-swamps are restricted so as to contain
only small contiguous-swamps that can be combined con-
sistently, we will usually have difficulty finding a modular-
swamp that covers the entire graph. We address this with
a hierarchical approach that allows us to greatly expand the
portion of the graph that is covered by contiguous-swamps.

Swamp-Hierarchies

Once we find a modular-swamp, we can recursively search
for another modular-swamp on the remaining graph. This
stage introduces dependencies between contiguous-swamps.
Before formally defining these dependencies, we will illus-
trate them, with an example.

Figure 3: An example of a swamp-hierarchy

Example 3. Figure 3 depicts a graph with two contiguous
sets of states, C1 and C2. C1 is a contiguous-swamp that is

composed of states 5 and 6. The reader can easily verify
that these two states do not participate in the shortest path
between nodes on the external boundary of C1.

On the other hand, C2 is not a contiguous-swamp if con-
sidered on its own (it is, in fact, on the shortest path between
state 6 and state 3). However, if the nodes in C1 are consid-
ered blocked, then C2 is a contiguous-swamp; that is, if we
prune states 5 and 6 from the graph, then we can consider
C2 a swamp.

We say that C2 above depends on C1. Whenever we search
for a shortest path on the graph, we can safely consider C1

as blocked (unless our search starts or ends inside it), and
(given that C1 is considered blocked) we will consider C2 as
blocked unless our search begins or ends in C1 ∪ C2.

To generalize the example above, we will define a partial
order � on contiguous-swamps: intuitively, C1 � C2 if C2

depends on C1, in the same manner as the example above.
We remind the reader that a partial order � is

• reflexive (Ci � Ci),

• antisymmetric (if Ci � Cj and Cj � Ci then Ci = Cj)

• and transitive (if Ci � Cj and Cj � Cl then Ci � Cl).

We define the closure of a set of contiguous-swamps T ⊆
H under � as the following set:

T� = {C ∈ H | C � C′ for some C′ ∈ T }
That is, T� is the set T extended with all contiguous-

swamps on which members of T depend.
We are now ready to formally define a swamp-hierarchy:

Definition 4. A swamp-hierarchy in a graph G is a tuple
(H,�) where H is a set of disjoint contiguous-swamps:

H = {C1, . . . , Ck} ∀i 6= j Ci ∩ Cj = ∅
and � is a partial order on them such that the closure of any
subset of contiguous-swamps from H forms a swamp in G;
i.e., ∀ T ⊆ H we have that

S =
⋃

C∈T�

C is a swamp in G

The definition of a swamp-hierarchy may seem somewhat
complex, but using it to effectively prune the graph is quite
simple. The following observation highlights the usefulness
of the definition.

Observation 1. Given that we are searching for a path be-
tween states v1 and v2 in a graph for which we have a
swamp-hierarchy (H,�), we can remove from the set H the
contiguous-swamps that contain v1, v2, and any contiguous-
swamp that depends on them. This set is closed under �.

T = H \ {C : C(v1) � C ∨ C(v2) � C}
we therefore have T� = T

Therefore, by Definition 4, the union of all contiguous-
swamps in T is a swamp, and we can consider it blocked
when searching between v1 and v2 (specifically, v1 and v2

are not contained in any of the contiguous-swamps in T).

A swamp-hierarchy will thus be most effective if it covers
as much of the search space as possible, and contains as few
dependencies as possible. This way, a large portion of the
graph will be blocked in all searches.

157

Constructing Swamps

Finding a Single Contiguous-Swamp

We begin our search for a contiguous-swamp with a state
around which we would like to find a swamp. We call this
state a seed. Later, we will search for swamps around a set
of seeds in different locations in the graph, in order to try
and cover it with as many contiguous-swamps as possible.2

According to Lemma 1, all we need to do in order to con-
firm that a set of states is a contiguous-swamp is to check
that there exists a shortest path between any pair of states on
the boundary of the set that does not pass through the sus-
pected set. Note that checking this is usually fast if the set
of nodes is small, as the searches are very local.

To generate a candidate set for the detection process, we
take the set of states with distance less than or equal to radius
r from the seed. If a problem is found during the confirma-
tion of the set (in the form of a pair of points (x, y) on the
boundary of the set for which no alternative shortest path
exists), the following trimming process is performed.

We keep the set of states that are connected to the seed
after removing the states that are on the shortest path be-
tween x and y. We then repeat the confirmation process
with the trimmed set (of the remaining states). We continue
to try other candidate sets (of larger and larger radii around
the seed) and keep the largest contiguous-swamp that was
found around the seed.

The trimming process is described formally3 in Alg. 1.

Algorithm 1 Trim to Swamp

procedure TRIM(stateSet, Graph)
repeat

trimmed := false
B := getBoundary(stateSet, Graph)
for all v1, v2 ∈ B do

P1 := findPath(v1, v2, Graph)
P2 := findPath(v1, v2, Graph \ stateSet)
if length(P2) > length(P1)

stateSet := stateSet \ P2

keepConnected(stateSet, seed)
trimmed := true

until ¬trimmed
return stateSet

Constructing Modular-Swamps

Given the procedure for detecting a single contiguous-
swamp, we would like to find a set of contiguous-swamps
that we can use together. As shown in Example 2, a

2On a general graph, all states are potential seeds. Sometimes,
with domain-specific knowledge, we can consider a smaller set of
states; e.g., it is often possible to reduce the set of seeds to states
adjacent to obstacles, and corners are natural seeds as well. We
will not address the issue in this paper due to space constraints.

3For simplicity of presentation, and because the implementa-
tion is straightforward, we use the functions getBoundary() which
returns the boundary of a set of states, and keepConnected() which
keeps only the subset of states that is connected to the seed, without
showing their implementation.

(a) (b)

Figure 4: Examples. (a) Grid having a swamp hierarchy with 2
levels. Contiguous-swamps are numbered and colored—gray for
level zero, and white for level one. (b) Delaunay Graph with 250
vertices.

union of arbitrary contiguous-swamps is not guaranteed to
form a swamp. Instead, our algorithm will start with an
empty modular-swamp, and will iteratively add contiguous-
swamps in a way that preserves the modularity of the set.

The algorithm we use checks that the candidate set of
states S will form a swamp when added to any subset of the
current modular-swamp M: we run two searches between
any pair of states on the boundary of S. The first search
is executed while considering M as a modular-swamp (see
details below), and the second search is done considering
M ∪S as a modular-swamp. If each pair of searches gives a
solution with the same cost, we can define the new modular-
swamp as M ∪ S. This (along with the same trimming
method we have shown for regular contiguous-swamps) is
depicted in Algorithm 2.

Algorithm 2 Trim to Consistent Swamp

procedure FINDCONSSWAMP(stateSet, G,M)
repeat

trimmed := false
B := getBoundary(stateSet, G)
for all v1, v2 ∈ B do

OpenG := G \ (C \ {CM(v1), CM(v2)})
P1 := findPath(v1, v2, OpenG)
P2 := findPath(v1, v2, OpenG \ stateSet)
if length(P2) > length(P1)

stateSet := stateSet \ P2

keepConnected(stateSet, seed)
trimmed := true

until ¬trimmed
return stateSet

Note that Alg. 2 did not exhaustively check that every sub-
set of the new modular-swamp is a swamp. Still, the follow-
ing theorem states that this property does, indeed, hold.

Theorem 2. Given a modular-swamp M, the output of Al-
gorithm 2 gives a set of states C such that M∪ {C} is also
a modular-swamp.

Figure 4(a) illustrates the results achieved by our algo-
rithm for constructing modular-swamps. The numbers on
the gray squares are the different contiguous-swamps. The
union of all these contiguous-swamps is a modular swamp.
The numbers in the white cells represent another level in a
swamp hierarchy which we shall now show how to detect.

158

Constructing Swamp-Hierarchies

We now present a simple way to construct swamp-
hierarchies. While this is only one of many possible methods
for doing it, this method has the advantage of relying on lo-
cal dependencies between contiguous-swamps, which keeps
the method simple and fast.

We start by finding a modular-swamp using the tech-
nique described above. The contiguous-swamps of this
modular-swamp are considered as level zero of the hierar-
chy. Then, we construct another modular-swamp, but with
a slight change: this time, all states that are in contiguous-
swamps that were detected at lower levels are considered to
be blocked. We continue this iterative process until we are
no longer able to produce a non-empty modular-swamp.

We denote the modular-swamp we found during the i’th
iteration by Mi. We then define the following swamp-
hierarchy: H =

⋃

i Mi. We define the dependency struc-
ture so that contiguous-swamps from a higher level in the hi-
erarchy depend on a contiguous-swamp from a lower level
if they are touching, i.e., if one has nodes that are on the
boundary of the other. Formally:

• Cj � Ci if Ci ∈ Mk and Cj ∈ Ml for some k > l and
there exists a state s ∈ B(Ci) such that s ∈ Cj or,

• if transitivity implies the above. That is, Ci � Ck if there
exists Cj such that Ci � Cj and Cj � Ck.

Theorem 3. H =
⋃

i Mi, along with the partial order � as
defined above, defines a swamp-hierarchy.

Memory Consumption The representation of our swamp
hierarchy in memory is quite efficient. For each state that
is part of a swamp, we need to specify its contiguous-
swamp. In addition, each contiguous-swamp keeps a list of
contiguous-swamps on which it depends (among its neigh-
bors). This amount of memory can accumulate to slightly
more than |V |. Other methods such as TDH achieve their
full benefit only when much more memory is available.

Experimental Results

To explore our method’s effectiveness, we ran experiments
in several domains. For each graph, we ran our swamp
detection algorithms, and conducted A∗ searches between
10,000 randomly selected pairs of states. For comparison,
searches were also conducted without swamps.

As time measurements are implementation and machine-
specific, we also examined the number of nodes expanded
during search. It is still important to examine time mea-
surements, so as to make sure that the overhead caused by
using swamps during run-time (i.e., blocking off certain ar-
eas) does not negate the advantage gained by lowering the
number of expanded nodes.

The domains we used were random grids, random graphs,
Delaunay graphs, random mazes, room maps, and maps
from the computer game Baldur’s Gate.

For grid-based domains we assumed 8-neighbor connec-

tivity (a diagonal move’s cost is
√

2), and used the octile
distance heuristic; for Delaunay Graphs, we used the Eu-
clidean distance heuristic. For random graphs no heuristic
exists. Results on each domain are described below, and

summarized in Table 1; in all these domains with the ex-
ception of random graphs (which are particularly difficult),
swamps enabled considerable reduction in both the number
of nodes expanded by A∗, as well as search run-time.

Mazes We generated squared mazes of different sizes us-
ing a random version of Prim’s algorithm. Figures 5(a), 5(b),
and 5(c) demonstrate the effectiveness of swamps in the
maze domain. Figure 5(a) shows the number of nodes A∗

expanded when using and not using swamps, compared to
the number of nodes on the shortest path (the lower bound
of nodes that must be expanded). Using swamps caused A∗

to expand only a few more nodes than the lower bound; with-
out swamps, A∗ expanded a much larger number. The ben-
efit from swamps increases with the size of the maze. Fig-
ure 5(b) shows a similar trend for average search time with
and without swamps (see also Table 1).

While preprocessing time is usually significant with other
search improvement techniques that rely on preprocessing
(e.g., those in the related work section), detection of swamps
can be relatively quick. Figure 5(c) shows the number of
searches it takes on average to recover the cost of the swamp
detection process. The results showed that on large mazes
of size 400× 400, the preprocessing cost is recovered in full
after fewer than 400 searches.

Room maps Room maps consisted of 256 × 256 grids,
with rooms of size 32 × 32, and random doors between
them (maps came from HOG (Sturtevant 2009)). Results
are shown in Table 1. While the octile heuristic is more ac-
curate in rooms than in mazes, using swamps still gave a
significant advantage in both the number of expanded nodes
and the time of the search, as shown in the table.

Baldur’s Gate maps This domain consists of maps from
the computer game Baldur’s Gate. These maps showed high
variability of results, because of the different structure of
each map; our experiments included all maps of size greater
than 100×100. Results (in Table 1) show that using swamps
saved a factor of almost 3 in node expansion. The results for
search time are almost as good, as the check for swamps re-
quires only small overhead. Note that most maps in Baldur’s
Gate are relatively small compared to maps that are currently
being used by more modern computer games, and we expect
that with larger maps, greater savings will be achieved.

Random Grids This domain consists of 8-connected
grids, with randomly placed obstacles. This would seem to
be the worst-case scenario for swamps on a grid where ob-
stacles exist; the reason is that structures are easily utilized
by swamps, while random obstacles mean that useful struc-
tures may not appear. Our experiments show that even on
random grids, the hierarchal swamp approach can improve
search efficiency. We also witnessed the phenomenon that
the improvement is greater as the graph gets larger. Results
for grids of size 300 × 300 are shown in Table 1. Even in
this domain, using swamps significantly reduced both the
number of expanded nodes, and the average search time.

Delaunay Graphs Delaunay graphs have been used in
the past to simulate transportation networks (Felner, Stern,
and Kraus 2002); a randomly generated set of points on a
2D plane is made into a graph using Delaunay triangulation.
As a result, nodes are locally connected. To simulate a real

159

(a) (b) (c)

Figure 5: (a) Nodes expanded with and without using swamps, and length of shortest path; (b) Search time with and without swamps; (c)
Number of searches it takes until the time gained in searches from using swamps equals preprocessing costs.

Nodes Time Swamp% #Searches

Mazes (400 × 400) 3.41% 4.36% 100% 362

Rooms 15.27% 13.53% 88.40% 865

Baldur’s Gate 34.58% 41.18% 73.58% 874

Random Grids 32.04% 33.45% 79.26% 2111

Delaunay Graphs 47.83% 42.70% 57.84% 1011

Random Graphs 94.12% 94.61% 6.27% 2319600

Table 1: Results comparing A
∗ performance with and with-

out swamps: Nodes—the percentage of nodes expanded using
swamps, compared to A

∗ without swamps; Time—time it took to
search with swamps as a percentage of the time it took to search
without swamps; Swamp%—the percentage of states that are part
of some contiguous-swamp; #Searches—number of searches it
took to recover detection cost.

roadmap, in which not all close points are connected, some
edges are also randomly removed. Random edges are added
to represent highways. For the results presented here, we
removed 60% of the edges, and added edges such that every
vertex has a 5% chance to be connected to a highway (see
Figure 4(b) for an example). The heuristic used for search
was Euclidean distance. Even in this domain, almost 58% of
the graph was covered with swamps, which led to substantial
savings: A∗ with swamps only expanded 48% of the nodes
that it would have expanded without swamps, and search
time was 43% of the search time of regular A∗.

Random Graphs Random graphs (G(n, p)) are graphs
with n vertices, where an edge between any pair of vertices
exists with probability p. We generated random graphs with

n = 800 and probability p = log(n)
n

+ ǫ, which is the thresh-
old for an almost-surely connected graph. Edges had ran-
dom weight between 1 and the number of vertices. As the
graph is random and not planar, no heuristic exists for it—so
we used A∗ with a heuristic value of 1 for non-goal states,
and 0 for a goal state. As the graph has a high degree using p,
we did not expect it to have many useful swamps. However,
we did manage to detect 6.27% of the graph as swamps, sav-
ing 5.88% on node expansion and 5.39% on search time.

Conclusions

We presented the concept of swamps, sets of nodes in a
graph that can needlessly slow search. We defined modular-
swamps, and swamp-hierarchies, presenting algorithms that

make use of their properties to reduce search costs while still
detecting optimal paths. We presented an algorithm that de-
tects swamps, and applied it to various domains. Our experi-
ments show that the gains from utilizing swamps can be sub-
stantial, reducing both the number of nodes expanded during
search, and the time it takes to perform searches.

Acknowledgments

This research was supported in part by Israel Science Foun-
dation grants #898/05 and #305/09.

References
Björnsson, Y., and Halldórsson, K. 2006. Improved heuristics for
optimal path-finding on game maps. AIIDE 9–14.

Botea, A.; Müller, M.; and Schaeffer, J. 2004. Near optimal hier-
archical path-finding. J. of Game Develop. 1(1):7–28.

Culberson, J. C., and Schaeffer, J. 1998. Pattern databases. Com-
putational Intelligence 14(3):318–334.

Demyen, D., and Buro, M. 2006. Efficient triangulation-based
pathfinding. In AAAI’06.

Felner, A.; Berrer, M.; Sturtevant, N.; and Schaeffer, J. 2009.
Abstraction-based heuristics with true distance computations. In
Proceedings of SARA-09.

Felner, A.; Stern, R.; and Kraus, S. 2002. PHA*: performing A
∗

in unknown physical environments. In AAMAS ’02, 240–247. New
York, NY, USA: ACM.

Geisberger, R.; Sanders, P.; Schultes, D.; and Delling, D. 2008.
Contraction hierarchies: Faster and simpler hierarchical routing in
road networks. In International Workshop on Experimental Algo-
rithms (WEA 2008), 319–333.

Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2009. Using swamps
to improve optimal pathfinding (extended abstract). In AAMAS
2009, 1163–1164.

Sturtevant, N. R., and Buro, M. 2005. Partial pathfinding using
map abstraction and refinement. AAAI 1392–1397.

Sturtevant, N.; Felner, A.; Barer, M.; Schaeffer, J.; and Burch, N.
2009. Memory-based heuristics for explicit state spaces. In IJCAI-
09, 609–614.

Sturtevant, N. R. 2007. Memory-efficient abstractions for pathfind-
ing. In AIIDE, 31–36.

Sturtevant, N. R. 2009. HOG, hierarchical open graph.
http://code.google.com/p/hog2/source/checkout.

160

