
1.6-Bit Pattern Databases

Teresa M. Breyer and Richard E. Korf
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

{tbreyer,korf}@cs.ucla.edu

Abstract

We present a new technique to compress pattern
databases to provide consistent heuristics without loss
of information. We store the heuristic estimate mod-
ulo three, requiring only two bits per entry or in a more
compact representation, only 1.6 bits. This allows us
to store a pattern database with more entries in the
same amount of memory as an uncompressed pattern
database. These compression techniques are most use-
ful when lossy compression using cliques or their gen-
eralization is not possible or where adjacent entries in
the pattern database are not highly correlated. We com-
pare both techniques to the best existing compression
methods for the Top-Spin puzzle, Rubik’s cube, the 4-
peg Towers of Hanoi problem, and the 24 puzzle. Un-
der certain conditions, our best implementations for the
Top-Spin puzzle and Rubik’s cube outperform the re-
spective state of the art solvers by a factor of four.

Introduction

Heuristic search algorithms, including A* (Hart, Nilsson,
and Raphael 1968), IDA* (Korf 1985), Frontier A* (Korf
et al. 2005), and Breadth-First Heuristic Search (BFHS)
(Zhou and Hansen 2006) use a heuristic function h to prune
nodes. h(n) estimates a lowest cost to get from node n to a
goal state. If h never overestimates this cost, it is admissi-
ble and optimality of the solution is guaranteed. If h(n) ≤
k(n, m) + h(m) for all states n and m, where k(n, m) is
the cost of a shortest path from n to m, h is consistent.
Most naturally occurring heuristics are consistent, but lossy
compression, randomizing among several pattern databases,
or using duality (Zahavi et al. 2007; Felner et al. 2007;
Zahavi et al. 2008) generates inconsistent heuristics.

For many problems, a heuristic evaluation function can
be precomputed and stored in a lookup table called a pat-
tern database (PDB) (Culberson and Schaeffer 1998). For
example, for the Towers of Hanoi problem we choose a sub-
set of the discs, the pattern discs, and ignore the positions
of all other discs. For each possible configuration of the pat-
tern discs, we store the minimum number of moves required
to solve this smaller Towers of Hanoi problem in a lookup
table. In general, a pattern is a projection of a state from

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the original problem space onto the pattern space. For prob-
lems with unit operator costs, PDBs are constructed through
a backward breadth-first search from the projection of the
goal state, the goal pattern, in the pattern space. A perfect
hash function maps each pattern to one entry in the PDB
where the depth at which it is first generated is stored. This
is exactly the minimum number of moves required to reach
the goal pattern in the pattern space.

During search, we get the heuristic estimate of a state by
projecting it onto the pattern space, and then using the per-
fect hash function to retrieve the pattern’s entry in the PDB.
Under certain conditions, it is possible to sum values from
several PDBs without overestimating the solution cost (Korf
and Felner 2002). For the Towers of Hanoi problem, we can
partition all discs into disjoint sets and construct a PDB for
each of these sets. In general, if there is a way to partition all
state variables into disjoint sets of pattern variables so that
each operator only changes variables from one set, we can
add the resulting heuristic estimates admissibly. We call the
resulting PDBs additive and such a set of PDBs disjoint.

In general, the more variables used as pattern variables in
a PDB, the more entries the PDB has, and the more accu-
rate the resulting heuristic estimate will be. If we can loss-
lessly compress PDBs, we can fit PDBs with more entries
in memory and therefore solve problems with fewer node
expansions than when using the same amount of space for
an uncompressed PDB. This research applies to all problem
spaces where operators have unit cost and are reversible.

Other Examples of Pattern Databases

The Sliding-Tile Puzzles

We construct PDBs for these puzzles by only considering
a subset of the tiles, the pattern tiles, and for each pattern
storing the number of moves required to get the pattern tiles
to their goal positions. Unlike in the Towers of Hanoi prob-
lem, non-pattern tiles are present, but indistinguishable. If
we only count moves of pattern tiles, we can use disjoint
sets of pattern tiles to generate disjoint additive PDBs (Korf
and Felner 2002). To save memory, instead of storing one
heuristic value for each position of the blank and each con-
figuration of the pattern tiles, Korf and Felner only stored the
minimum over all positions of the blank for each pattern, re-
sulting in an inconsistent heuristic (Zahavi et al. 2007).

39

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

The Top-Spin Puzzle

The (n, k) Top-Spin puzzle consists of a circular track hold-
ing n tokens, numbered 1 to n. The goal is to arrange the
tokens so that they are sorted in increasing order. The to-
kens can be slid around the track, and there is a turnstile that
can flip the k tokens it holds. In the most common encoding,
an operator is a shift around the track followed by a reversal
of the k tokens in the turnstile.

We construct PDBs for this problem by only considering a
subset of the tokens, the pattern tokens, and for each pattern
storing the number of flips required to arrange the pattern
tokens in order. The non-pattern tokens are present, but in-
distinguishable. Each operator reverses k tokens, and these
tokens could belong to different pattern sets. Hence these
PDBs are not additive.

Rubik’s Cube

We construct PDBs for Rubik’s cube by only considering
a subset of the cubies, usually the eight corner cubies or a
set of edge cubies. For each pattern, we store the number
of rotations required to get the pattern cubies in their goal
positions and orientations (Korf 1997). As in the Top-Spin
puzzle, these Rubik’s cube PDBs are not additive.

Related Work

Compressed Pattern Databases

Felner et al. (2007) performed a comprehensive study of
methods to compress PDBs. They concluded that, given
limited memory, it is better to use this memory for com-
pressed than for uncompressed PDBs. Their methods range
from compressing a PDB of size M by a factor of c by map-
ping c patterns to one compressed entry using any function
from the set {1, · · · , M} to the set {1, · · · , M/c}, to more
complex methods leveraging specific properties of problem
spaces. To map c patterns to one entry, one can use the index
in the uncompressed PDB and divide it by c, to get the in-
dex in the compressed PDB. Alternatively, one can take the
original index modulo M/c. Each entry stores the minimum
heuristic estimates of all c patterns mapped to it.

Felner et al. (2007) introduced a method for lossy com-
pression based on cliques. Here, a clique is a set of patterns
reachable from each other by one move. For a clique of
size q, one can just store the minimum value d. This intro-
duces an error of at most one move. Similarly, a set of z
nodes, where any pair of nodes is at most r moves apart,
can be compressed by storing the minimum value d. This
introduces an error of at most r moves. In the 4-peg Tow-
ers of Hanoi problem, patterns differing only by the position
of the smallest disc form a clique of size four. Therefore,
we can compress PDBs for this problem by a factor of four
by ignoring the position of the smallest disc. Patterns dif-
fering only by the positions of the smallest two discs form
a set of 16 nodes at most three moves apart. Therefore, we
can compress by a factor of 16 by ignoring the positions of
the smallest two discs. This introduces an error of at most
three moves. In the sliding-tile puzzle graph, the maximum
clique size is only two. All tiles are fixed except for one spe-
cific tile which can be in any one of two adjacent positions.

These two states are mapped to adjacent entries in the PDB
and therefore can be efficiently compressed by dividing the
index by two. In the Top-Spin puzzle graph, the only cliques
are of size two as well, but these two states differ by more
than one pattern token, since each move flips k tokens.

Cliques can also be used for lossless compression. Given
a clique of size q, one can store the minimum value d and
q additional bits, one bit for each pattern in the clique. This
bit is set to zero if the pattern’s heuristic value is d, or to one
if the heuristic value is d + 1. More generally, a set of z
nodes, where any pair of nodes is at most r moves apart, can
be compressed by storing the minimum value d and an addi-
tional ⌈log

2
(r + 1)⌉ bits per pattern. For each pattern these

bits store a number i between zero and r, where i represents
heuristic value d + i.

Mod Three Breadth-First Search

Cooperman and Finkelstein (1992) introduced this method
to compactly represent problem space graphs. A perfect
hash function and its inverse are used to map each state to
a unique index in a hashtable which stores two bits for each
index and vice versa. For example, for the 4-peg Towers of
Hanoi problem with n discs, the hash function assigns each
state an index consisting of 2n bits, two bits for the location
of each disc. Initially, all states have a value of three, label-
ing them as not yet generated, and the initial state has a value
of zero. A breadth-first search of the graph is performed and
the hashtable is used as the open list during search. While
searching the graph, for each state the depth modulo three
at which it is first generated is stored. Therefore, the values
zero to two label states that have been generated. When the
root is expanded, its children are assigned a value of one.
In the second iteration, the whole hashtable is scanned, all
states with a value of one are expanded, and states gener-
ated for the first time are assigned a value of two. In the
third iteration the complete hashtable is scanned again, all
states with value two are expanded, and states generated
for the first time are assigned a value of zero (three modulo
three). In the following iteration states with value zero are
expanded. Therefore, the root will be re-expanded, but all
child states no longer have a value of three. Consequently,
no new states will be generated from it. Each state that has
been expanded will be re-expanded once every three itera-
tions, but previously expanded states will not generate any
new states. When no new states are generated in a complete
iteration, the search ends and all reachable states have been
expanded and assigned their depth modulo three.

Given this hashtable and any state, one can determine the
depth at which that state was first generated, as well as a
path back to the root. First, the state is expanded, then an
operator that leads to a state at one depth shallower (modulo
three) is chosen and that state is expanded. This process is
repeated until the root is generated. The number of steps it
took to reach the root is the depth of the state, and all states
expanded form a path from the root to the original state.

Two-Bit Pattern Databases
Uncompressed PDBs often assign one byte or four bits to
each entry, which is sufficient as long as the maximum

40

Figure 1: Two-bit PDB lookup of start state

Figure 2: Two-bit PDB lookup during search

heuristic estimate does not exceed 255 or 15, respectively.
This is the case in all of our domains. We reduce this with-
out loss of information to two bits per entry, so we are able
to compress by a factor of four or two. In general, if the
uncompressed PDB used N bits per entry, we are able to
compress by a factor of N/2. This method only requires
unit edge cost reversible operators and consistent heuristics.

Constructing Two-Bit Pattern Databases

We use Cooperman and Finkelstein’s (1992) modulo three
breadth-first search in the pattern space with the goal pattern
as the root to construct our PDB. When the search is com-
pleted, the hashtable is our two-bit PDB. We can use this
two-bit PDB to solve any particular problem instance.

Search Using Two-Bit Pattern Databases

First, we determine the heuristic estimate of the start state.
Figure 1 shows an example. We begin with the start pattern
s, the projection of the start state onto the pattern space. We
expand s in the pattern space. At least one operator will lead
to a pattern one level (modulo three) closer to the goal pat-
tern g, the projection of the goal state onto the pattern space.
Then, any one of these patterns one level closer to g is cho-
sen for expansion next. In our example, s has heuristic value
one (modulo three), and we choose the child with heuristic
value zero (modulo three). This process is repeated until g is
generated. We keep track of the number of steps taken. The
number of steps it took to reach g is the heuristic estimate
of the start state in the original problem space. In Figure 1,
the start state has heuristic estimate four. We store the start
state together with its heuristic estimate in the open list or
on the stack, depending on the search algorithm used. When
a new state is generated, we calculate its heuristic estimate.
We get its heuristic estimate by adding or subtracting one
from the parent’s heuristic estimate or by assigning the child
pattern the same heuristic estimate as its parent. Figure 2

demonstrates how a two-bit PDB lookup is done. We take
the heuristic estimate modulo three of the parent pattern p,
and we look up the entry of the child pattern c in the PDB.
Comparing these two modulo three values tells us whether c
is a level closer to g, further away or at the same level as p.
Finally, we store the child state and its heuristic estimate in
the open list or on the stack and continue searching.

Using Less Than Two Bits

Only three values are required to store the heuristic estimates
modulo three. Using two bits per entry allocates four dis-
tinct values per pattern, but the fourth value is only used
while constructing the PDB. Instead of two contiguous bits
per pattern, we can compress the PDB using base three num-
bers. Two modulo three values can be encoded as 1 of 9
different values, three modulo three values as one of 27 dif-
ferent values, etc. While constructing the PDB, we can use
a separate table which tells us whether a pattern has been
generated or not. A perfect hash function assigns each pat-
tern one bit in this table, its used bit. Initially, all used bits
are set to zero. When a pattern is generated, its used bit is
set to one. After constructing the PDB, we can discard this
table. The resulting PDB requires log

2
3 ≈ 1.58 bits per en-

try and is the most efficient method for lossless compression
if there is no further structure to the data. Cooperman and
Finkelstein (1992) also mention this improvement.

Theoretically we would need a total of ⌈(n · log
2
3)/8⌉

bytes to store a PDB with n entries. However, accessing
the correct values per pattern gets computationally expen-
sive because it involves integer division and modulo opera-
tors on very large numbers. In particular, a PDB would be
represented as one single multi-word number and we would
have to extract our heuristic estimates (modulo three) from
that number. Alternatively, we decided to fit as many pat-
terns as possible in each byte. Since each byte represents
28 = 256 different values, the largest base three number that
can be stored in one byte is 35 = 243, and therefore we can
fit five modulo three values in one byte. Compared to using
one byte per pattern this allows us to compress by a factor of
five and uses 8/5 = 1.6 bits per pattern, which is very close
to the optimal 1.58 bits. Even with maximal compression
only 20 entries could be encoded in one four-byte word, or
40 entries in one eight-byte word. Therefore, encoding five
entries per byte is just as efficient. Accessing an entry in the
1.6-bit PDB is still slightly more expensive than accessing
an entry in a two-bit PDB. It involves integer division by 5
to find the correct byte and a modulo operator to determine
which value to extract from the byte. Then, for each possible
value of a byte and for each of the five encoded values, we
store the actual modulo three heuristic estimate in a lookup
table. This table has 243 · 5 = 1215 entries. In contrast, for
two-bit PDBs shift and bitwise operators suffice.

Inconsistent Heuristics

It is also possible to compress inconsistent PDBs by stor-
ing the heuristic values modulo some number. Zahavi et al.
(2007) defined the inconsistency rate (IRE) of a heuristic h
and an edge e = (m, n) as |h(n)−h(m)|. A heuristic with a
maximum IRE over all edges of k can be compressed using

41

Comp. h(s) Generated Time Size

1 None 10.53 43,607,741 12.25 247
2 Two Bit 10.53 43,607,741 12.83 123
3 Mod 2 10.16 55,244,961 16.10 123
4 1.6 Bit 10.53 43,607,741 13.57 99
5 Mod 2.5 9.97 62,266,443 18.46 99

Table 1: Solving the (17,4) Top-Spin puzzle using a 9-token
PDB

Comp. Heur. h(s) Generated Time Size

1 Two Bit 8r+0d 12.37 11,103 0.016 990
2 None 4r+4d+c 11.53 76,932 0.080 247
3 Two Bit 4r+4d+c 12.39 10,188 0.631 990

Table 2: Solving the (17, 4) Top-Spin puzzle using a 10-
token two-bit PDB or, a uncompressed 9-token PDB

i = ⌈log2(2k + 1))⌉ bits. Applying an operator can increase
or decrease the heuristic estimate by a value of up to k, so
2k + 1 values are required. As long as i is smaller than the
number of bits required per state in the uncompressed PDB,
there is a memory gain from compressing modulo 2k + 1.

Experimental Results

The Top-Spin Puzzle

Felner et al. (2007) established mapping patterns to the same
compressed entry by applying the modulo function to their
index as the best compression method for Top-Spin. We
compare their modulo hash function to our method. Both
compression methods use the modulo operator. Ours stores
the heuristic values modulo three, while theirs applies the
modulo operator to the hash function. To avoid confusion,
we will call our methods two-bit, and 1.6-bit PDBs, and their
compression method modulo compression.

Table 1 has experimental results on the (17, 4) Top-Spin
problem, which has 17 tokens and a turnstile that flips four
tokens. We used IDA* with a PDB consisting of tokens 1
through 9. These PDBs have such low values that four bits
per state suffice. Therefore, with our method, we can only
compress by a factor of 2 and 2.5, respectively. Our experi-
ments are averaged over 1, 000 random initial states, gener-
ated by a random walk of 150 moves because not all permu-
tations of the (17, 4) puzzle are solvable (Chen and Skiena
1996). The average solution depth of these states is 14.90.
Furthermore, we were limited to two gigabytes of memory.
The first column gives the type of compression used. The
second column gives the average heuristic value of the ini-
tial state. The third column gives the average number of
nodes generated. The fourth column gives the average time
in seconds required to solve a problem, and the last column
gives the size of the PDB in megabytes. The first row uses
the uncompressed PDB using four bits per entry. The sec-
ond row uses our two-bit PDB. The third row uses the same
amount of memory using modulo compression by a factor of
2. The fourth row uses even less memory using our 1.6-bit
PDB. The last row uses the same amount of memory using
modulo compression by a factor of 2.5.

Our compressed PDBs generate the same number of
nodes as the uncompressed PDB, but use only 50% and 40%
of the memory, respectively. The two-bit PDB performs al-
most equally well time-wise. For the 1.6-bit PDB, there is
a slightly larger time overhead for the more expensive PDB
lookup. In comparison, modulo compression by a factor of
2 generates about 25% more nodes and takes 25% more time
than the uncompressed PDB because virtually random states
are mapped to the same entry in the PDB, which stores only
the minimum of their heuristic values. Modulo compression
by a factor of 2.5 performs even worse.

In our second set of experiments, we use a two-bit PDB
consisting of tokens 1 through 10. We could not run experi-
ments with the uncompressed PDB because it would require
approximately two gigabytes. We use the property that a
PDB for tokens 1 to 10 is also a PDB for tokens 2 to 11, 3 to
12, etc. Therefore, from one PDB we can actually get up to
17 different PDB lookups for the (17, 4) Top-Spin problem.
Table 2 compares our best implementation in the first row,
which uses IDA* and the maximum over 8 regular lookups
in a 10-token two-bit PDB, to Felner et al.’s (2005) best im-
plementation in the second row, which uses the maximum
over 4 regular and 4 dual lookups in an uncompressed 9-
token PDB as well as bpmx cutoffs. For an explanation of
this algorithm, we refer the reader to Felner et al.’s paper.
The columns are the same as in Table 1, except for the sec-
ond column, which gives the number of regular (’r’) and dual
(’d’) lookups and the presence of bpmx cutoffs (’c’). One
can see that our algorithm is four times faster than Felner
et al.’s (2005) dual lookups for this particular problem size
but uses four times as much memory. Adding more lookups
does not reduce the time to solve a problem any further but
only the number of nodes expanded.

In the third row we combined dual lookups, which result
in an inconsistent heuristic, with two-bit PDBs. Thus, we
had to recompute the heuristic value from scratch for every
dual lookup using the same technique as for the start state.
Even though the number of nodes expanded is slightly less
than in row one, the dual lookups are too time consuming.

Overall, two-bit PDBs perform better than dual lookups
under certain conditions and vice versa. Our experiments
strongly suggest that two-bit PDBs outperform dual lookups
when a two-bit PDB using more pattern variables can be
stored in the available memory, but the uncompressed PDB
for dual lookups cannot. We showed this to hold for the
(17, 4) puzzle with two gigabytes of memory.

Rubik’s Cube

Felner et al. (2007) did not include any experiments on Ru-
bik’s cube. Thus, we compare their general compression
methods applying division and modulo to the index (which
we will call division and modulo compression) to our two-bit
and 1.6-bit PDBs. Korf (1997) first solved random instances
of Rubik’s cube using IDA* and the maximum of three
PDBs, one 8-corner-cubie, and two 6-edge-cubie PDBs.

For our first set of experiments we used the same three
PDBs as Korf (1997), except that we used seven instead of
six edge cubies. These PDBs have such low values that four
bits per state suffice. Therefore, with our method we can

42

Comp. h(s) Generated Time Size

1 None 9.1 102,891,122,415 32,457 529
2 Two-Bit 9.1 102,891,122,415 32,113 265
3 1.6-Bit 9.1 102,891,122,415 35,190 212
4 8-810-810 9.1 105,720,641,791 36,385 529
5 Dual 9.1 65,932,517,927 27,150 529
6 (8-7-7-7-7) 9.1 64,713,886,881 27,960 529

Table 3: Solving Korf’s ten initial states of Rubik’s cube
using a 8-corner-cubie and two 7-edge-cubie PDBs

Comp. h(s) Generated Time Size

1 Two-Bit 9.5 26,370,698,776 11,290 1,239
2 Div 2 9.3 56,173,197,862 25,917 1,239
3 Mod 2 9.3 58,777,491,012 27,577 1,239
4 1.6-Bit 9.5 26,370,698,776 12,309 991
5 Div 2.5 9.1 68,635,164,093 33,838 991
6 Mod 2.5 9.0 77,981,222,043 35,976 991
7 Dual 9.1 65,932,517,927 27,150 529
8 Two-Bit 9.7 14,095,769,007 8,667 1,239

(8-8-8-8-8)

Table 4: Solving Korf’s ten initial states of Rubik’s cube
using a 8-corner-cubie and two 8-edge-cubie or, with dual
lookups, two 7-edge-cubie PDBs

only compress by a factor of 2 and 2.5, respectively. Ta-
ble 3 has experimental results averaged over the ten random
initial states published by Korf (1997). Their average so-
lution depth is 17.50. The columns are the same as in Ta-
ble 1. The first row gives results using the uncompressed
PDBs, which use four bits per entry. The second row uses
our two-bit PDBs. The third row uses our 1.6-bit PDBs. One
can see that our two-bit PDBs expand the same number of
nodes and add no time overhead compared to the uncom-
pressed PDBs. We delay comparing to modulo and division
compression until our second set of experiments with larger
PDBs because solving all ten instances took too long with
these weaker PDBs. The last three rows of Table 3 below the
line have slightly different experimental results. The fourth
row uses the same amount of memory as the uncompressed
PDBs, but instead of using two 7-edge-cubie PDBs, it uses
two 8-edge-cubie PDBs each compressed to the size of a 7-
edge-cubie PDB using division compression by a factor of
ten as well as the 8-corner-cubie PDB. The fifth row uses the
original uncompressed PDBs, including the 8-corner-cubie
PDB, but it uses a regular and a dual lookup for both 7-
edge-cubie PDBs (Zahavi et al. 2008). Hence, it uses the
maximum of a total of five lookups. We believe that this
is currently the best optimal solver for Rubik’s cube. The
last row also uses five lookups, but instead of a dual and a
regular lookup it uses two regular lookups using geometric
symmetries in each of the two uncompressed 7-edge-cubie
PDBs and one lookup in the 8-corner-cubie PDB. One can
see that five regular lookups perform just as well as a com-
bination of regular and dual lookups. Also, there seems to
be no advantage from compressing a larger PDB to the size
of a smaller PDB when using lossy compression.

For our second set of experiments we used the maximum
over three PDBs, the same 8-corner-cubie PDB, and two 8-
edge-cubie PDBs. Due to geometrical symmetries we only
need to store one of these 8-edge-cubie PDBs. The uncom-
pressed 8-edge-cubie PDB does not fit in two gigabytes of
memory, so we can only use it when it is compressed. Simi-
lar to Table 3, Table 4 has experimental results averaged over
Korf’s (1997) ten random initial states. The first row uses
our two-bit PDBs. The second and third rows use modulo
and division compression by a factor of 2 using four bits per
entry. They use the same amount of memory as our two-bit
PDBs. The fourth row uses 1.6-bit PDBs, and the fifth and
sixth row use the same amount of memory using division
and modulo compression by a factor of 2.5. One can see that
modulo and division compression by a factor of 2 expand
twice as many nodes and take twice as much time as our
two-bit PDBs. In the first row below the line in Table 4 we
also give experimental results for the best existing solver us-
ing dual lookups. But, since it uses uncompressed PDBs, we
can only give results using the 7-edge-cubie PDBs. Again
we compared against five regular lookups in the second row,
four of which are in the two-bit 8-edge-cubie PDB. Here,
one can see that with two gigabytes of memory our best
implementation beats the best existing implementation by
a factor of four but using more than twice as much mem-
ory. We also tried using more than four regular lookups in
the 8-edge-cubie PDB, but there is only an improvement in
number of nodes expanded, not in running time.

Summarizing, our two-bit and 1.6-bit PDBs are the best
known compressed PDBs for Rubik’s cube. Also, we beat
the fastest solver currently available by a factor of four.

The 4-peg Towers of Hanoi Problem

The classic Towers of Hanoi problem has three pegs, with
a simple recursive optimal solution. For the 4-peg problem
a recursive solution strategy has been proposed as well, but,
absent a proof, search is the only way to verify the optimality
of this solution (Frame 1941; Stewart 1941).

For the 4-peg Towers of Hanoi problem exponential mem-
ory algorithms detecting duplicates perform best. We use
breadth-first heuristic search (BFHS) (Zhou and Hansen
2006). BFHS searches the problem space in breadth-first
order but uses f -costs to prune states that exceed a cost
threshold. We only need to perform one iteration with the
presumed cost of an optimal solution as the threshold.

Lossy compression methods using cliques and their gen-
eralization are very effective for the 4-peg Towers of Hanoi
problem (Felner et al. 2007). Compressing by several orders
of magnitude still preserves most information. Even with
additive PDBs it is most efficient to construct a PDB with
as many discs as possible, compress it to fit in memory, and
use the remaining discs in a small uncompressed PDB. The
state of the art for this problem (Korf and Felner 2007) uses
a 22-disc PDB compressed to the size of a 15-disc PDB by
ignoring the positions of the seven smallest discs. We limit
our experiments to PDBs that can be constructed in two gi-
gabytes of memory. Thus, our largest PDB uses 16 discs.

Experimental results using a 16-disc and a 2-disc PDB on
the 18-disc problem with different levels of compression are

43

Comp. h(s) Generated Time Size

1 Two-Bit 164 355,856,206 333 1,024
2 161 163 373,045,641 355 1,024
3 1.6-Bit 164 355,856,206 336 820
4 162 161 400,505,833 387 256
5 163 159 443,154,284 443 64

Table 5: Solving the 18-disc Towers of Hanoi problem using
a 16-disc PDB

shown in Table 5. The columns are the same as in Table 1.
With a maximum entry of 161 and one byte per entry, the
uncompressed 16-disc PDB would have required four giga-
bytes of memory, and so is not feasible. The first row has
results using our two-bit PDB, the second row uses the same
amount of memory compressing the same PDB by a factor
of four by ignoring the smallest disc. The third row uses our
1.6-bit PDB. The fourth and the fifth row ignore the smallest
two and three discs, respectively. One can see that very little
information is lost using lossy compression.

As mentioned earlier, the state of the art for this problem
uses a PDB with as many discs as possible, compressed to fit
in memory by ignoring a set of the smallest pattern discs. It
is possible to compress these inconsistent PDBs even further
storing the heuristic values modulo some number. The PDBs
compressed by the positions of the smallest one and two disc
have a maximum IRE of two and three, respectively. There-
fore, both can be stored using three bits per entry. The PDBs
compressed by the positions of the smallest three and four
discs have a maximum IRE of five and seven, respectively.
Thus, both can be stored using four bits per entry and be
compressed by another factor of two, assuming one byte per
entry suffices otherwise. Ignoring more than four discs re-
quires more than four bits per entry.

In short, because of cliques and generalized cliques lossy
compression is so powerful that we can only achieve a slight
improvement with our compression methods. We can only
compress by a factor of at most five, while Felner et al. can
always compress by another factor of four by ignoring an
additional disc with a very small impact on performance.

The Sliding-Tile Puzzles

The best existing heuristic for the 24 puzzle is the 6-6-6-6
partitioning and its reflection about the main diagonal. No
major improvements using compression were reported by
Felner et al. (2007). As mentioned earlier, Korf and Felner
(2002) compressed these 6-tile PDBs by the position of the
blank, making them inconsistent. While constructing these
6-tile PDBs, we calculated their maximum IRE, which is
7. Therefore, we could store the heuristic values modulo 15
using four bits per entry. However, the uncompressed PDBs
can be stored in four bits per entry by storing just the ad-
dition above the Manhattan distance. Therefore, there is no
advantage of using our compression method in this domain.

Conclusions

We have introduced a lossless compression method for
PDBs which stores a consistent heuristic in just 1.6 or al-

ternatively, two bits per state. For the Top-Spin puzzle and
for Rubik’s cube, 1.6 and two-bit PDBs are the best known
compressed PDBs. For Rubik’s cube, our best implementa-
tion beats the fastest solver currently available, which uses
regular and dual lookups, by a factor of four when limited to
two gigabytes of memory. For the 4-pegs Towers of Hanoi
problem and the 24 puzzle we were able to report only mi-
nor or no improvements at all. In general, two-bit PDBs are
useful where lossy compression using cliques or their gen-
eralization is not possible, or where adjacent entries in the
PDB are not highly correlated.

Acknowledgment

This research was supported by NSF grant No. IIS-0713178
to Richard E. Korf. Thanks to Satish Gupta and IBM for
providing the machine these experiments were run on.

References

Chen, T., and Skiena, S. S. 1996. Sorting with fixed-length
reversals. Discrete Applied Mathematics 71:269–295.

Cooperman, G., and Finkelstein, L. 1992. New methods for
using Cayley graphs in interconnection networks. Discrete
Applied Mathematics 37:95–118.

Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.

Felner, A.; Zahavi, U.; Schaeffer, J.; and Holte, R. C. 2005.
Dual lookups in pattern databases. In IJCAI-05, 103–108.

Felner, A.; Korf, R. E.; Meshulam, R.; and Holte, R. C.
2007. Compressed pattern databases. JAIR 30:213–247.

Frame, J. S. 1941. Solution to advanced problem 3918.
American Mathematical Monthly 48:216–217.

Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths.
Systems Science and Cybernetics 4(2):100–107.

Korf, R. E., and Felner, A. 2002. Disjoint pattern database
heuristics. Artif. Intell. 134(1–2):9–22.

Korf, R. E., and Felner, A. 2007. Recent progress in heuris-
tic search: A case study of the four-peg Towers of Hanoi
problem. In IJCAI-07, 2324–2329.

Korf, R. E.; Zhang, W.; Thayer, I.; and Hohwald, H. 2005.
Frontier search. J. ACM 52(5):715–748.

Korf, R. E. 1985. Iterative-deepening-A*: An optimal ad-
missible tree search. In IJCAI-85, 1034–1036.

Korf, R. E. 1997. Finding optimal solutions to Rubik’s cube
using pattern databases. In AAAI-97, 700–705.

Stewart, B. 1941. Solution to advanced problem 3918.
American Mathematical Monthly 48:217–219.

Zahavi, U.; Felner, A.; Schaeffer, J.; and Sturtevant, N. R.
2007. Inconsistent heuristics. In AAAI-07, 1211–1216.

Zahavi, U.; Felner, A.; Holte, R. C.; and Schaeffer, J. 2008.
Duality in permutation state spaces and the dual search al-
gorithm. Artif. Intell. 172(4–5):514–540.

Zhou, R., and Hansen, E. A. 2006. Breadth-first heuristic
search. Artif. Intell. 170(4):385–408.

44

