
Filtering Bounded Knapsack Constraints in Expected Sublinear Time∗

Yuri Malitsky, Meinolf Sellmann
Brown University, PO Box 1910

Providence, RI 02912
{ynm,sello}@cs.brown.edu

Radoslaw Szymanek
Ecole Polytechnique Federale de Lausanne

INR (Batiment IN), 1015 Lausanne, Switzerland
radoslaw.szymanek@gmail.com

Abstract

We present a highly efficient incremental algorithm for propa-
gating bounded knapsack constraints. Our algorithm is based
on the sublinear filtering algorithm for binary knapsack con-
straints by Katriel et al. and achieves similar speed-ups of one
to two orders of magnitude when compared with its linear-
time counterpart. We also show that the representation of
bounded knapsacks as binary knapsacks leads to ineffective
filtering behavior. Experiments on standard knapsack bench-
marks show that the new algorithm significantly outperforms
existing methods for handling bounded knapsack constraints.

Introduction

Linear resource constraints are important building blocks of
many applications, including scheduling, configuration, and
network design. Accordingly, knapsack has been the sub-
ject of intense research efforts in the optimization commu-
nity. There exist highly efficient methods for solving pure
knapsack problems (see, e.g., (Pisinger 2005)). The great
practical importance of knapsack however is not as an op-
timization problem by itself, but as one constraint among
many in a great variety of applications. Therefore, in con-
straint programming (CP) the knapsack constraint has been
studied since 2000 (Fahle & Sellmann 2000). Efficient ap-
proximated and exact filtering algorithms have been devel-
oped (Fahle & Sellmann 2002; Sellmann 2003).

The most efficient filtering algorithm to date is from Ka-
triel et al. (Katriel et al. 2007). It works in expected sub-
linear time and is designed exclusively for binary knapsack
constraints. Using their work as a starting point, we gen-
eralize the method to handle the much more general case
of bounded knapsack constraints. Through rigorous experi-
ments we show that the new algorithm dramatically boosts
filtering effectiveness over modeling bounded knapsacks us-
ing binary knapsack constraints. Moreover, we show that the
algorithm works up to two orders of magnitude faster than
existing methods for filtering bounded knapsack constraints.

∗This work was supported in part by the National Science
Foundation through the Career: Cornflower Project (award num-
ber 0644113).
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Filtering Binary Knapsack Constraints

Formal Background

Let us begin by reviewing the binary case.

Definition 1 (Binary Knapsack Problem (2KP)). Given n
items X = {x1, . . . , xn}, profits p1, . . . , pn ∈ IN, weights
w1, . . . , wn ∈ IN, and a capacity C ∈ IN, the binary
knapsack problem consists in finding a subset of items S ⊆
{x1, . . . , xn} such that

∑
xi∈S wi ≤ C and the total profit∑

xi∈S pi is maximized.

The choice of adding an item xi to S is commonly mod-
eled by a binary variable Xi that is set to 1 iff xi ∈ S. In
the linear relaxation of this representation, we are allowed to
select fractions of items. Unlike the integer problem, which
is NP-hard, the fractional problem is easy to solve (Dantzig
1957): First, we arrange the items in non-increasing order
of efficiency, i.e., we assume that p1/w1 ≥ · · · ≥ pn/wn.
Then, we greedily insert the most efficient item, until doing
so would exceed the capacity of the knapsack, i.e., until we
have reached the item xs such that

s−1∑

j=1

wj ≤ C and

s∑

j=1

wj > C.

We say that xs is the critical item for our knapsack instance.
We then select the maximum fraction of xs that can fit into

the knapsack, i.e., C −∑s−1
j=1 wj weight units of xs. The

total profit for the fractional problem is then P̃ =
∑s−1

j=1 pj+
ps

ws

(C −∑s−1
j=1 wj).

Definition 2 (Binary Knapsack Constraint). Given a
lower bound B ∈ IN, the (global) binary knapsack con-
straint enforces that

∑
i wiXi ≤ C and

∑
i piXi ≥ B,

where the domain of each variable Xi is Di = {0, 1}.
Achieving generalized arc consistency for the constraint

is NP-hard, but relaxed consistency with respect to the linear
relaxation bound can be achieved in polynomial time (Fahle
& Sellmann 2002): If an item taken in full lowers the profit
for the fractional relaxation below B then this item cannot
belong to an integral solution of quality B or better. If an
item must belong to every fractional solution of profit at least
B, then it must also belong to every integral solution of this
quality.

141

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

We classify an item xi as mandatory iff the fractional op-
timum of the instance (X \{xi}, C) has profit less than B,
i.e., when without xi we cannot achieve a relaxed profit of at
least B. Then, we remove the value 0 from Di. On the other
hand, we classify xi as forbidden iff the optimal fractional
profit of the instance (X\{xi}, C −wi) is less than B − pi,
i.e., if a solution that includes xi cannot achieve a relaxed
profit of B. Then, we remove value 1 from Di. Clearly, the
items in {x1, . . . , xs−1} are not forbidden and the items in
{xs+1, . . . , xn} are not mandatory. Our task, then, is to de-
termine which of {x1, . . . , xs} are mandatory and which of
{xs, . . . , xn} are forbidden. From here on we consider the
problem of identifying the mandatory items only as the case
of forbidden items works analogously.

Filtering 2KPs in Amortized Linear Time

In (Sellmann 2003), as a by-product of an algorithm that
achieves approximated ε-consistency for knapsack con-
straints, an algorithm was developed that can identify the
mandatory items in O(n log n) time. More precisely, the al-
gorithm runs in linear time plus the time it takes to sort the
items by efficiency once at the root node. Thus, when the
status of a number of items (to be included in or excluded
from the knapsack) or the current profit bound or the ca-
pacity changes, the remaining items are already sorted and
the computation can be re-applied in linear time. The total
time spent on m invocations of the filtering algorithm on the
same constraint is therefore Θ(n logn + mn). We describe
this algorithm below.

For each i < s, let ei = pi/wi be the efficiency of xi. If
we give up a total of w̃i weight of this efficiency (whereby
we allow w̃i > wi), we lose w̃iei units of profit. On the
other hand, we can insert w̃i units of weight using the items
that are not part of the fractional knapsack solution.

We define Q(w) to be the maximum profit obtainable with

a total weight of at most w using the 1−(C−∑s−1
j=1 wj)/ws

unused fraction of item xs and the items {xs+1, . . . , xn}.
Then w̃i is chosen such that

P̃ − w̃iei + Q(w̃i) = B. (1)

Then, an item xi is mandatory if and only if w̃i < wi.

The core observation in (Sellmann 2003) is the follow-
ing: If, for two items xi and xj , we have that ei ≥ ej , then
w̃i ≤ w̃j . Hence, if we traverse the items of {x1, . . . , xs}
in that order (i.e., by non-increasing efficiency), then all
w̃i’s can be identified by a single linear scan of the items
of {xs, . . . , xn}, starting at xs. That is, the computation of
w̃1 starts at the critical item and then, for each consecutive
w̃i, we begin our search at the last position which monoton-
ically advances to the right. If we constantly keep track of
the sum of weights and the sum of profits of all items up to
the current position, we only need to spend linear time to
determine all mandatory items.

Example: Consider the example in Table 1. The linear
continuous relaxation inserts items x1, x2, x3 fully, and
80% of x4, which is the critical item. The value of the
relaxation is P̃ = 9 + 3 + 12 + 0.8 ∗ 5 = 28, which is

item 1 2 3 4 5 threshold

profit 9 3 12 5 1 B = 25
weight 3 1 6 5 2 C = 14

efficiency 3 3 2 1 0.5 P̃ = 28

Table 1: Binary Knapsack Constraint.

greater than B = 25. To determine whether x1 is manda-
tory, we compute w̃1. Clearly, we can afford to replace 1
weight unit of x1 with the unused 20% of the critical item as

1(e1 − e4) = 2 ≤ 3 = P̃ − B. However, we cannot afford
to replace two additional weight units of x1 with the help of

x5 as 1(e1 − e4) + 2(e1 − e5) = 2 + 5 > 3 = P̃ − B, so
the computation of Q(w̃1) stops at x5.

We have now found that the new position is x5. We com-
pute w̃1, which we already know is between 1 and 3: w̃1 = 7

5

since 1(e1 − e4) + 0.4(e1 − e5) = 2 + 1 = 3 = P̃ − B.
Consequently, we cannot afford to lose more than 1.4 weight
units of x1 which weighs 3. And thus, x1 is mandatory.

For x2, we already know that w̃2 ≥ w̃1, and we can there-
fore begin the search for the next position at x5. Again, re-
placing additional weight using all weight units of item x5 is

infeasible as 1(e2−e4)+2(e2−e5) = 2+5 > 3 = P̃−B. In
fact, as e2 = e1, we find that w̃2 = w̃1 = 7

5 . However, since
x2 only weighs 1, we can afford to lose this item completely,
and it is not mandatory.

Finally, for x3 we have that w̃3 ≥ w̃2 = 7
5 . Again, we

begin the search for the new position at the old one and find
that replacing all weight units of x5 is infeasible: 1(e3 −
e4) + 2(e3 − e5) = 1 + 3 = 4 > 3 = P̃ − B. We find

w̃3 = 7
3 as 1(e3− e4) + 4

3 (e3− e5) = 1 + 2 = 3 = P̃ −B.
As the weight of x3 is 6, we cannot afford to lose this item,
and consequently determine its status as mandatory.

Note that the current position increases monotonically
with w̃i, and consequently the total effort for these compu-
tations is linear once the efficiency order is known.

Filtering 2KPs in Expected Sublinear Time

In (Katriel et al. 2007), an improved version of the previous
algorithm was developed which is based on the following
observation:

Lemma 1. Let xi, xj ∈ {x1, . . . , xs−1} such that ei ≥ ej

and wi ≥ wj . If xi is not mandatory, then xj is not manda-
tory.

This means that, if an item xi is not mandatory, then we
can skip over all following items xj in the efficiency or-
dering that have a weight wj ≤ wi. Since we know that
w̃j ≥ w̃i ≥ wi we can even skip over all items xj with
weight wj ≤ w̃i as these cannot be mandatory either. This
improvement was named strong skipping in (Katriel et al.
2007).

Based on this idea, we do not need to compute w̃i for all
items xi but only for some. Not much would be gained,
though, if the search for the new position was conducted
linearly as described before. Therefore, (Katriel et al. 2007)
proposed computing the next position by binary search. This
can be implemented efficiently using finger trees so that the

142

search effort is limited to the logarithm of the difference of
the new and the old position (Katriel et al. 2007). Note
that, in the equilibrium equation for w̃i (see Equation 1), the
fractional contribution of the critical item is constant, and
the contribution of the items between the critical item and
the item at the current position is simply the sum profit of
all items in between. Therefore, it is sufficient to maintain
finger trees that store information about cumulative profits
and weights of items sorted by decreasing efficiencies.

Then, after O(n log n)-time preprocessing (to sort the
items by efficiency), every repetition of the propagator re-
quires O(d log n+ l log(n/l)+k log(n/k)) additional time,
where d is the number of elements whose status was deter-
mined (potentially also by other constraints) to be manda-
tory since the last invocation of the filtering algorithm, l ≤ n
is the number of items that are being filtered, and k ≤ n
is the number of items that are considered but which are
not mandatory. Note that k is bounded from above by the
longest increasing and decreasing subsequences when con-
sidering the weights of the items sorted by their efficien-
cies. Note further that, if the weights of the items were
independent of the efficiencies, we expect the lengths k of
the longest increasing and decreasing subsequences to be in
O(
√

n). For the more realistic case where weights and prof-
its are uncorrelated, (Katriel et al. 2007) showed that the
lengths k of the longest increasing and decreasing subse-

quences are expected to be in O(n
2

3).
Since the status of any element, represented by its binary

variable, can be settled at most once on the path from the
root to a leaf node in the search tree, the first two terms of the
complexity are bounded by O(n log n) for the entire path.
In total, m repetitions of the propagator down a path of the
search tree take O(n log n + mk log(n/k)) = O(n log n +

mn
2

3 log n) time. That is, the average call to the filtering

algorithm costs O(n log n

m
+ n

2

3 log n) which is sublinear for
sufficiently large m ∈ ω(log n).

Filtering Bounded Knapsack Constraints

In this paper, we consider the generalization of the knapsack
problem where there may exist multiple copies of each item.
This setting is actually much more common as in CP the
domains of variables are rarely binary.

Formal Background

Definition 3 (Bounded Knapsack Problem (BKP)). Given
n items X = {x1, . . . , xn}, profits p1, . . . , pn ∈ IN,
weights w1, . . . , wn ∈ IN, numbers of copies of each item
u1, . . . , un, and a capacity C ∈ IN, the bounded knapsack
problem (BKP) consists in finding an assignment Xi ←
xi ∈ {0, . . . , ui} for all i such that

∑
wixi ≤ C and the

total profit
∑

pixi is maximized.

Analogously to the binary case, we can compute an up-
per bound on this maximization problem: After arranging
the items in non-increasing order of efficiency, we greed-
ily include all copies of the most efficient items, until do-
ing so would exceed the capacity of the knapsack, i.e., until

we have reached the item xs such that
∑s−1

j=1 wjuj ≤ C

item 1 2 3 4 threshold

profit 3 4 5 1 B = 25
weight 1 2 5 2 C = 14
copies 4 3 1 2

efficiency 3 2 1 0.5 P̃ = 28

Table 2: Bounded Knapsack Constraint.

and
∑s

j=1 wjuj > C. We say again that xs is the critical

item for our knapsack instance. We then select the maxi-
mum number of copies plus some fraction of another copy

of xs that can fit into the knapsack, i.e., C −∑s−1
j=1 wjuj

weight units of xs (the integral part of this quantity divided
by ws is the number of full copies of xs plus some frac-
tional part of one additional copy). The total profit is then

P̃ =
∑s−1

j=1 pjuj + ps

ws

(C −∑s−1
j=1 wjuj).

Definition 4 (Bounded Knapsack Constraint). Given a
lower bound B ∈ IN, the (global) bounded knapsack con-
straint enforces that

∑
i wiXi ≤ C and

∑
i piXi ≥ B, and

for the domain of each Xi it holds Di ⊆ {0, . . . , ui}.
Note that we do not need to consider lower bounds on

the number of copies that must be included in the knapsack
as these can obviously be set to zero after modifying ac-
cordingly the upper bounds, the profit threshold B, and the

capacity C. Furthermore note that, if P̃[Xi≥li] ≥ B and

P̃[Xi≤ui] ≥ B, then P̃[Xi=bi] ≥ B for all bi ∈ {li, . . . , ui}.
Consequently, we will focus on computing new upper and
lower bounds for each variable domain. As computing the
upper bounds works analogously to the algorithm that we
present in the following, we will focus here on the computa-
tion of new lower bounds for each variable domain.

The motivation for considering bounded instead of binary
knapsacks is the following. Of course, we could model a
bounded knapsack problem by replicating multiple copies of
the same item. While this is neither elegant nor efficient, the
real problem is lacking filtering effectiveness. Assume that
the binary representation of a bounded knapsack constraint
infers that one copy of an item is mandatory. Then, for rea-
sons of symmetry, this also holds for all other copies! This
is bad news, as it implies that the binary representation will
only ever filter an item when its lower bound can be set to its
upper bound! Consequently, filtering will be largely ineffec-
tive and search trees will be large. The bounded knapsack
constraint, on the other hand, allows to infer arbitrary upper
and lower bounds on the variables’ domains.

Filtering BKPs in Amortized Linear Time

Given a bounded knapsack constraint, we can easily com-
pute the critical item in linear time once the efficiency or-
dering is known. Analogous to the binary case, beginning at
the critical item we can compute the values w̃i in one linear
scan (Sellmann 2003).

Example: Consider the bounded knapsack constraint in Ta-
ble 2. The linear continuous relaxation inserts four copies
of item x1, three copies of x2, and 80% of x3, which

is the critical item. The value of the relaxation is P̃ =

143

4 ∗ 3 + 3 ∗ 4 + 0.8 ∗ 5 = 28, which is greater than the
profit threshold B = 25.

To determine a new lower bound on the number of copies
of x1, we compute w̃1. We can afford to replace 1 weight
unit of x1 with those remaining 20% of the critical item as

1(e1 − e3) = 2 ≤ 3 = P̃ − B. However, we cannot afford
to replace additionally all weight units of all copies of x4 as

1(e1 − e3) + 4(e1 − e4) = 2 + 10 > 3 = P̃ −B.
We have now found that the new position is x4. We com-

pute w̃1, which we already know is between 1 and 5: w̃1 = 7
5

since 1(e1−e3)+0.4(e1−e4) = 2+1 = 3 = P̃−B. Conse-
quently, we cannot afford to lose more than 1.4 weight units
of x1, one copy of which weighs 1. And thus, we can afford
to lose at most ⌊ 1.4

1 ⌋ = 1 copy of x1. Therefore, the number

of copies of x1 which are mandatory is u1 − ⌊ 1.4
1 ⌋ = 3.

For x2, we have that w̃2 ≥ w̃1 = 7
5 . We begin the search

for the new position at the old and find that replacing all
weight units of all copies of x4 is infeasible: 1(e2 − e3) +

4(e2 − e4) = 1 + 6 = 7 > 3 = P̃ − B. We find w̃2 = 7
3

as 1(e2 − e3) + 4
3 (e2 − e4) = 1 + 2 = 3 = P̃ − B. As

the weight of one copy of x2 is 2, we can afford to lose at
most ⌊ 7

3∗2⌋ = 1 copy. Therefore, the number of copies of
x2 which are mandatory is u2 − 1 = 2.

Note again that the current position of the last fractional
item used in the computation of Q(w̃i) increases monoton-
ically with w̃i, and consequently the total effort for these
computations is linear once the efficiency order is known.

Filtering BKPs in Expected Sublinear Time

We propose to handle bounded knapsack constraint directly,
without reverting to a binary representation, and therefore
achieve much better filtering effectiveness. Our challenge
is to compute the critical item and the number of manda-
tory copies faster than by a linear scan. Following the same
approach as in (Katriel et al. 2007), to compute the criti-
cal item and the quantities w̃i we use finger trees as our core
data structures (Mehlhorn 1980). Finger trees are essentially
binary search trees with one shortcut from each node to its
right brother (or first cousin, or second cousin, etc) on the
same level. These trees allow us to quickly decide which
items i need to be analyzed and also to compute the cor-
responding quantities w̃i, whereby the cost for these com-
putations is logarithmic in the number of items that we can
skip over. Consequently, we can hope for a sublinear effort
when the number of items whose bounds may change (we
call these the analyzed items) is small, while the finger tree
data structure still ensures that the total effort for this task
will be linear in the worst case.

In particular, we maintain three finger trees. For the first
two, at the leaf level we store the weight or profit times the
number of copies of each item, whereby the order of the
items belonging to leaves from left to right is given by de-
creasing efficiency of the items. Internal nodes in the tree
store the cumulative weight or cumulative profit of all leaves
in the corresponding subtree. In the final finger tree, we store
again the weight times the number of copies of each item
at the leaf level, in the same ordering of leaf nodes as be-

fore. However, in this tree internal nodes store the maximum
weight of any leaf in the corresponding subtree.

We use the first two finger trees to compute the critical
item and the quantities w̃i, and the third finger tree for find-
ing the next potentially mandatory item as in (Katriel et al.
2007). The two latter operations, finding the next candidate
item and computing its corresponding value w̃i, take time
logarithmic in the number of items between the position of
the old and the new leaf. If we need to consider k items for
filtering, the total time is thus bounded by O(k log(n/k)).
For large k close to n, this gives a worst-case linear time
complexity. As we mentioned in our review of the binary
case, k is bounded by the length of the longest increasing
sub-sequence of weights when items are ordered with re-
spect to efficiencies. When we assume that the total weight
of each item is independent of its efficiency, we know that
the length of the longest increasing subsequence of total
weights is in k ∈ O(

√
n) (Aldous & Diaconis 1999). Con-

sequently, for the filtering task we achieve an expected run-
time in O(

√
n log n). That is to say, in the bounded case it

is even more likely that skipping will occur often as long as
the per copy weights and/or the numbers of copies per item
are independent of the items’ efficiencies.

So far the adaptation of the algorithm in (Katriel et al.
2007) was straight forward. The actual challenge for us is
to efficiently update the data-structures that the filtering is
based on. Such an update is necessary right before filtering
whenever the domain bounds have changed (by our own or
by other constraints). Note that fast incremental updates are
key to practical efficiency. In our experiments, two thirds of
the propagation-time is spent on updates.

In the binary case, we can simply update the finger-trees
by walking from the affected leaves to the root for each item
that has changed its status. Since the height of the trees
is logarithmic and since each item can change its status at
most once on each path down the search tree, the total up-
date effort for the entire path is bounded by O(n log n), and
thus amortized at most linear when the search tree is at lest
Ω(log n) deep. In BKPs, however, the bounds on the num-
ber of copies can change multiple times for each item, and
consequently the update method from (Katriel et al. 2007)
can require Θ(cn logn) (where c is the number of copies
per item) for all updates on a path down the tree. Conse-
quently, for large c the existing method has amortized worst-
case super-linear runtime when used for BKPs.

We propose the following procedure: When the number
of mandatory copies of an item is increased above zero then
we subtract the corresponding amount from the capacity, the
profit threshold, and the number of available copies of this
item. In this way, the internal lower bound for each item re-
mains zero. To adjust the upper bound, we only need to up-
date the number of available copies. In both cases, we need
to adjust our three finger trees as the total weight and profit
of items have changed. The important idea is to perform
these updates for all items that have changed their bounds
simultaneously. We update the finger trees level by level,
from the leaf level up, whereby on each level we only con-
sider those nodes whose value has changed. We thus prevent

144

Items 100 1, 000 10, 000

Algorithm bin lin bkp bin lin bkp bin lin bkp

UC

1% 23 42 24 99 352 27 1.0K 3.3K 52

2% 14 39 17 96 332 16 866 3.0K 71

5% 10 35 10 91 324 10 937 3.2K 40

10% 9.8 32 6.4 86 315 8.2 854 3.1K 39

WC

1% 15 37 11 98 343 13 1.0K 3.4K 43

2% 12 35 7.3 96 344 10 990 3.4K 40

5% 11 35 5.0 90 341 7.7 937 3.4K 40

10% 9.5 34 4.0 81 333 6.6 875 3.3K 39

SC

1% 14 36 8.7 98 336 12 1.0K 3.3K 44

2% 11 35 5.7 97 332 9.4 993 3.3K 40

5% 10 34 4.0 91 326 6.8 938 3.2K 39

10% 9.8 32 3.3 86 317 6.6 871 3.1K 38

AS

1% 15 36 8.6 97 336 12 1.0K 3.3K 44

2% 12 34 5.7 95 333 8.9 1.0K 3.3K 40

5% 8.7 33 3.6 86 326 6.9 957 3.2K 39

10% 8.3 32 3.0 70 318 5.9 890 3.1K 38

Table 3: Knapsack filtering in the presence of a profit thresh-
old of 1%, 2%, 5%, or 10% below the linear relaxation
value. We report the average CPU-time [µ-sec] of the sub-
linear time filtering algorithm by (Katriel et al.’07) on the bi-
nary representation (bin), the linear-time bounded knapsack
filtering algorithm by (Sellmann’03) (lin), and the algorithm
introduced in this paper (bkp) on benchmark sets with 100
instances each. Instances have 100, 1,000, or 10,000 items
each and have uncorrelated (UC), weakly correlated (WC),
strongly correlated (SC), or almost strongly correlated (AS)
profits and weights. The number of copies of each item was
drawn uniformly at random in {1, 2, 5, 10, 20, 50, 100}.

that nodes on higher levels in the tree get updated multiple
times and we are therefore sure to touch each node in the
finger tree at most once. This already gives us a worst-case
linear time guarantee. A more careful analysis shows that,
when d items change their bounds, we will touch at most
O(d(log(n

d
) + 1)) nodes in the tree. It follows:

Theorem 1. For a previously initialized bounded knapsack
constraint with n items, assume that the capacity, profit
threshold, and lower and upper bounds of d items have
changed. Assume further that our filtering algorithm can
set tighter bounds on l items while analyzing another k
items whose bounds do not change. The total effort is then
bounded by O(d log(n

d
) + l log(n

l
) + k log(n

k
)). When the

total weight of items is independent of the items’ efficiency,
we expect k ∈ O(

√
n). Therefore, when the number of items

that change their bounds is not extremely large (for example,
when d, l ∈ O(n

log n
)), we expect a sublinear running time.

In the worst-case, filtering takes at most linear time.

Numerical Results
Theorem 1 is very encouraging, but it is based on the as-
sumptions that the longest increasing subsequences are not
too long, and that not too many items change their bounds
between two invocations of the filtering algorithm. If this
was not the case, we would be better off using the worst-case
linear-time algorithm from (Sellmann 2003) which requires
much less maintenance of internal datastructures. Therefore,
in this section we test and quantify the speed-ups that the
new method achieves in practice.

Items 1,000 10,000
Algorithm bin lin bkp bin lin bkp

copies 1 14 332 14 39 3.3K 39
2 14 330 14 74 3.3K 39
5 21 330 14 184 3.3K 40

10 37 331 14 373 3.3K 40
20 71 331 14 745 3.3K 40
50 175 330 14 1.8K 3.3K 40

100 357 331 13 3.5K 3.3K 40

Table 4: Knapsack filtering for a profit threshold of 2% be-
low the linear relaxation value. We report the average CPU-
time [µ-sec] of the sublinear-time filtering algorithm by (Ka-
triel et al.’07) on the binary representation (bin), the linear-
time bounded knapsack filtering algorithm by (Sellmann’03)
(lin), and the algorithm introduced in this paper (bkp) on
benchmark sets with 100 instances each. Each instance has
either 1,000 or 10,000 items with uncorrelated profits and
weights. In each benchmark set we keep the number of
copies per item the same and vary this number between 1,
2, 5, 10, 20, 50, and 100 copies of each item.

We first conduct the analogous experiment as in (Katriel
et al. 2007): We filter bounded knapsack constraints which
are generated according to the established standard knapsack
distributions where profits and weights of items are either
uncorrelated, weakly correlated, almost strongly correlated,
or strongly correlated (Pisinger 2005; Katriel et al. 2007).
For each item we randomly select a maximum number of
copies in {1, 2, 5, 10, 20, 50, 100}. The profit threshold is
set to 1%, 2%, 5%, or 10% below the linear relaxation value.
All experiments were run on a Dell 1855 blade with two
Xeon 800MHz processors and 8GB of RAM.

Table 3 summarizes the runtime comparison between the
binary representation where we introduce one binary vari-
able for each copy of each item (bin), the linear-time filter-
ing algorithm that achieves relaxed consistency for bounded
knapsacks by (Sellmann 2003) (lin), and the approach pre-
sented in this paper (bkp). We observe that the old linear-
time state-of-the-art for bounded knapsacks by (Sellmann
2003) is not competitive. Algorithm bkp is up to 80 times
faster than algorithm lin, whereby the speed-ups scale up
with the size of the instances.

Note that lin and bkp obtain the exact same filtering
power. Algorithm bin, however, is much less effective in
its filtering as it can only infer that all copies of an item are
either all mandatory or all forbidden. Therefore, we would
have expected that bin runs faster at the cost of being less
effective. However, this is not the case. The reason why it
takes up to 25 times more time than bkp is that it needs to
perform a lot more work when indeed all copies of an item
are consecutively found to be mandatory or forbidden.

In Table 4 we present the filtering times for uncorrelated
knapsack instances where all items have 1, 2, 5, 10, 20,
50, or 100 copies each. We see clearly that the increase in
the number of copies does not affect the algorithms lin and
bkp which handle bounded knapsacks directly, while the bi-
nary representation becomes more and more inefficient as
the maximum number of copies per item increases. This is
again due to the fact that bin needs to consider each individ-

145

Figure 1: Optimizing 100 item BKP instances with algo-
rithms bin and bkp. Instances with 1 copy per item are light
stars, 2 copies light dots, 5 grey circles, 10 grey Xs, 20 dark
grey crosses, 50 dark grey squares, 100 black diamonds.

ual copy of an item when filtering occurs.
The real advantage of using bkp over bin is however when

an actual tree-search is conducted. Figure 1 compares the
times needed to optimize bounded knapsack problems sam-
pled from the standard instance distributions using bin and
bkp. For bkp, we branch on the critical item and round it
down first (and up upon backtracking). For bin we emu-
late the same branching behavior by setting the appropriate
number of variables belonging to copies of this item to zero
(or one upon backtracking). We observe up to two orders of
magnitude speed-ups of bkp over bin mostly due to the fact
that bkp visits much fewer search nodes thanks to its better
filtering effectiveness.

The latter is amplified when we consider problems with
more than one bounded knapsack constraint. In Figure 2, we
show the times and number of search nodes when optimiz-
ing instances with 50 items and three uncorrelated bounded
knapsack constraints. For both approaches, we branch on
one of the critical items whereby we pick the one where
most of the other BKP constraints agree whether it should be
rounded down or up (i.e., depending on whether it is more
or less efficient than the critical item of that constraint). We
first branch in the direction of that bias introduced by the
other constraints. We observe that the improved filtering
power of bkp reduces the number of nodes by up to three
orders of magnitude (some outliers are caused by diverging
branching behavior caused by a lack of filtering in bin). An-
alyzing our data, we found that bkp visits on average 99.5%
less search nodes that bin needs to consider. On average, bkp
then works more than 750 times faster.

Conclusion
We introduced a fast filtering algorithm for bounded knap-
sack constraints which is based on the skipping heuristic in-
troduced in (Katriel et al. 2007). We proved that this fil-

Figure 2: Maximizing instances with 50 items and randomly
selected numbers of copies in {1, 2, 5, 10, 20, 50, 100}with
algorithms bin and bkp. Each instance consists of three BKP
constraints with weights uncorrelated to profits.

tering algorithm runs in expected sublinear time when the
number of items that change their bounds is not excessively
large and when the total weights of all copies of the items
are independent of their efficiencies.

Numerical results show that the new method massively
outperforms the linear-time state-of-the-art relaxed consis-
tency algorithm for bounded knapsack constraints by (Sell-
mann 2003). For large numbers of items, the new method is
almost up to two orders of magnitude faster while achieving
the same filtering power.

We also compared the new method against a sublinear fil-
tering algorithm for a binary representation of the bounded
knapsack constraint. The new algorithm has strictly bet-
ter filtering effectiveness, it never works slower and often
faster per search node depending on the number of copies
per item. Systematic search experiments on problems with
one or more bounded knapsack constraints show that han-
dling bounded knapsack constraints directly is highly desir-
able as the stronger filtering power frequently reduces the
number of choice points by several orders of magnitude.

Acknowledgement: We would like to thank Wadeck Fol-
lonier for his help in implementing the initial version of
bounded knapsack constraint in the constraint solver JaCoP.

References
Aldous, D., and Diaconis, P. 1999. Longest increasing subse-
quences: from patience sorting to the Baik-Deift-Johansson theo-
rem. Bull. of the Amer. Math. Society, 36(4):413–432.

Brodal, G. S. 2005. Finger search trees. In Handbook of Data
Structures and Applications. CRC Press.

Dantzig, G. 1957. Discrete variable extremum problems. Opera-
tions Research, 5:226–277.

Fahle, T., and Sellmann, M. 2002. Cost-based filtering for the
constrained knapsack problem. AOR, 115:73–93.

Fahle, T., and Sellmann, M. 2000. Constraint Programming Based
Column Generation with Knapsack Subproblems. CPAIOR, 33–43.

Katriel, I., Sellmann, M., Upfal, E., Van Hentenryck, P. 2007.
Propagating Knapsack Constraints in Sublinear Time. AAAI, 231–
236.

Mehlhorn, K. 1980. A New Data Structure for Representing Sorted
Lists. WG, 90–112.

Pisinger, D. 2005. Where are the hard knapsack problems? Com-
puters and Operations Research, 32:2271–2282.

Sellmann, M. 2003. Approximated consistency for knapsack con-
straints. CP’03, 679–693.

146

