
Collaborative Expert Portfolio Management

David Stern
Ralf Herbrich
Thore Graepel

Microsoft Research Ltd.
Cambridge, UK

{dstern,rherb,thoreg}@microsoft.com

Horst Samulowitz
National ICT Australia

and University of Melbourne,
Victoria, Australia

horst@csse.unimelb.edu.au

Luca Pulina
Armando Tacchella

Universita di Genova
Viale Causa,
Genova, Italy

{luca.pulina,tac}@dist.unige.it

Abstract

We consider the task of assigning experts from a port-
folio of specialists in order to solve a set of tasks. We
apply a Bayesian model which combines collaborative
filtering with a feature-based description of tasks and
experts to yield a general framework for managing a
portfolio of experts. The model learns an embedding
of tasks and problems into a latent space in which affin-
ity is measured by the inner product. The model can be
trained incrementally and can track non-stationary data,
tracking potentially changing expert and task character-
istics. The approach allows us to use a principled de-
cision theoretic framework for expert selection, allow-
ing the user to choose a utility function that best suits
their objectives. The model component for taking into
account the performance feedback data is pluggable, al-
lowing flexibility. We apply the model to manage a port-
folio of algorithms to solve hard combinatorial prob-
lems. This is a well studied area and we demonstrate
a large improvement on the state of the art in one do-
main (constraint solving) and in a second domain (com-
binatorial auctions) created a portfolio that performed
significantly better than any single algorithm.

Introduction

When faced with a diverse set of difficult tasks, a general
approach which would be effective for all of them is likely
to be complex. In a given domain a specialist approach to a
subset of tasks is often simpler and more effective at those
tasks. This suggests a divide and conquer approach using a
portfolio of specialist experts.

An example of this is the case where the expert is an
algorithm [Smith-Miles, 2008; Gomes and Selman, 1997;
Horvitz et al., 2001; Rice, 1976; Streeter and Smith, 2008].
A portfolio approach means that several parallel and inde-
pendent efforts to design an algorithm for a task can be com-
bined so as to leverage the best aspects of each of them. An
example class of tasks where an algorithm portfolio can be
beneficial is hard combinatorial problems where typically
there does not exist one single approach that outperforms
any other across a range of real-world problems [Xu et al.,
2008; Leyton-Brown, Nudelman, and Shoham, 2009]. Be-

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cause of their exponentially large search spaces, these prob-
lems are in general computationally intractable and depend-
ing on the properties of the problem one particular solver
performs better than another according to some measure
(e.g., run-time). A vast discrepancy in performance arises
because solvers commit to different heuristic choices or em-
ploy different techniques. There is a successful line of re-
search showing that the variance in algorithm performance
can be exploited by machine learning methods to produce
a portfolio of algorithms that greatly outperforms any in-
dividual algorithm in domains such as constraint reasoning
[Pulina and Tacchella, 2009; Xu et al., 2008; Gomes and
Selman, 1997] and combinatorial auctions [Leyton-Brown,
Nudelman, and Shoham, 2009].

The goal of this paper is to address some of the limita-
tions of previous work and provide a general framework for
solving diverse tasks with a portfolio of experts. Besides al-
gorithms, other examples of expert portfolios to which we
are interested in applying this approach include program-
ming languages1 and Yahoo Answers (where the experts are
humans). We consider the following properties desirable:

• The system should select a specific scheduling strat-
egy for each task (based on task features) [Streeter and
Smith, 2008].

• The model must be trained on-line so the model can
immediately take account of each outcome to improve
future decisions. The computation cost of this update
should not depend on the number of previously seen
problems [Pulina and Tacchella, 2008].

• The system should adapt continuously over time, track-
ing a changing domain and changing expert character-
istics.

• There should be a principled method to choose an ex-
pert at any point in time when performing a task.

• The sub-system for taking into account performance
should be pluggable as depending on the type of task,
feedback comes in different forms. For example, for
constraint solving we have data for solution speed
whereas for the task of assigning human experts to an-
swer questions we might have human judgments of the
quality of the answer.

1See http://shootout.alioth.debian.org/

179

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

We require a model which takes a description of each task
(in the form of a set of features) and predicts which expert,
from a set of experts, would be best suited to solve it (based
on past performance). There appears to be a striking similar-
ity between this problem and the well studied challenge of
recommending items to users of a web service (e.g. Amazon
or Netflix), where users are analogous to tasks and items are
analogous to experts. Two approaches are typically avail-
able in that case. Firstly, content-based approaches make
use of descriptions (feature vectors) of users and items. For
example, items may be described by properties such as au-
thor and manufacturer. Secondly, collaborative filtering ap-
proaches allow us to learn about a user by the items they
have previously rated and the users who have rated items in
common with them, using implicit descriptions of users and
items obtained from a (sparse) matrix of previous ratings
of items by users [Breese, Heckerman, and Kadie, 1998;
Varian and Resnick, 1997].

Matchbox [Stern, Herbrich, and Graepel, 2009] is a
recommendation system model which combines these two
sources of information and here we apply it to recommend-
ing experts to tasks. Unlike other collaborative filtering
models, Matchbox takes feature vectors of the task and ex-
pert as the input. It maps these features into a shared latent
space in which the performance of an expert on a task is
measured by the inner product. For expert recommendation
we crucially rely on this combination of collaborative filter-
ing with generalising features as we usually need to predict
the best expert for a task which has not been previously seen.
In addition, Matchbox addresses the other desiderata: it is a
full Bayesian model and hence allows us to use a princi-
pled decision theoretic approach to expert selection, it can
be trained incrementally and it is able to dynamically track
non-stationary distributions. Finally, it allows free choice of
feedback model.

Expert Portfolio Management Model

A Bi-linear Model of Expert Performance Initially, let
us assume that each time a task has been attempted by an ex-
pert we have available a triple (x,y, r) of task descriptions
x ∈ R

n, expert descriptions y ∈ R
m and a performance

score r ∈ R indicating the degree of success of the expert
on this task. Following Stern, Herbrich, and Graepel [2009],
we define the K dimensional task trait vector as s = Ux
where U is a K × n matrix of latent task traits where each
element uki is the contribution of feature i to user trait di-
mension k. Similarly we define the K dimensional expert
trait vector as t = Vy for a K × m expert trait matrix, V.
We also model a bias, b = x⊤u + y⊤v where u and v are
the biases for each element in the task and expert description
vectors. Now, the performance, r, of the expert is modeled
as

p(r|s, t, b) = N (r|s⊤t + b, β2)

where β is the standard deviation of the observation noise.
Thus we adopt a bi-linear form in which the performance of
an expert on a task is given by the inner product of a vector of
task traits and a vector of expert traits. The expected rating
is proportional to the lengths ||s|| and ||t|| of the trait vectors

Figure 1: A learned embedding of the 11 solvers and 2570
problems into a 2-dimensional trait space for K = 2. The
mean of the first solver trait v(0)i is plotted against the mean
of the second solver trait v(1)j to produce the blue dots. The
mean of the first problem trait u(0)i is plotted against the
mean of the second problem trait u(1)j to produce the red
crosses. Similarity in this space depends on the angle be-
tween trait vectors.

and the cosine of the angle between them.

The model parameters to be learned are the variables U
and V which determine how tasks and experts are mapped
to the K dimensional trait space, and u and v, the value
of bias features for the rating. We represent our prior be-
liefs about the values of these parameters by independent
Gaussian distributions on each of the components of the
matrices U and V and u and v. For example we have

p(U) =
∏K

k=1

∏n

i=1 N (uki; µki, σ
2
ki). We choose this fac-

torizing prior because it reduces memory requirements to
two parameters (a mean and variance) for each component
and allows us to perform efficient inference. We set the
mean of each Gaussian prior to zero and the variance to
unity.

Or approach allows us to track the performance of ex-
perts on tasks dynamically in order to adapt to changing
conditions. The characteristics of experts and tasks may
change with time. For example if the expert is an algo-
rithm then it could be modified in situ by applying an up-
date. We model these dynamics by assuming that the la-
tent variables U,V,u and v drift with time by the ad-
dition of Gaussian noise each time step. For the exam-

ple we have p(u
(t+1)
ki |u(t)

ki) = N (u
(t+1)
ki ; u

(t)
ki , γ2) where t

is an index over time steps. At time t0 we use the prior

p(u
(0)
ki) = N (uki; µki, σ

2
ki). Analogous models may be

used for each of the other latent variables.

Inference

The model described above can be further factorized by in-
troducing some intermediate latent variables zk to represent
the result of each component, sktk, of the inner product.
That is, p(zk|sk, tk) = I(zk = sktk). Now the latent perfor-

180

Solver # Solved Mean Time per Task Utility

2clsQ 738 25.2 -837
Nenofex 866 22.4 -582
QMRes 595 17.5 -1109

Quantor 3.0 834 16.5 -637
QuBE 3.0 1008 13.6 -289
QuBE 6.1 1966 14.3 1603

sKizzo 1723 21.3 1103
ssolve A 837 21.5 -638
ssolve B 840 22.7 -634
ssolve C 818 12.7 -663
yQuaffle 886 13.6 -530

Table 1: Individual solver performances on the 2282 test
problems. Shown are the number of solved instances and the
mean time per solved instances per solver. The total utility,
u, is also shown for c = 1

T
and b = 1.

mance (before adding noise) is given by p(r̃|z, b) = I(r̃ =
∑

k zk + b). We have that p(sk|U,x) = I(sk =
∑

i ukixi)
and p(tk|V,y) = I(tk =

∑

j vkjyj) and p(b|x,y,u,v) =

I(b = x⊤u + y⊤v). Therefore the joint distribution of all
the variables factorizes as p(s, t,U,V,u,v, z, r̃, r|x,y)

= p(r|r̃)p(r̃|z, b)p(b|x,y,u,v)p(U)p(V)p(u)p(v)

·
K
∏

k=1

p(zk|sk, tk)p(sk|U,x)p(tk|V,y).

The posterior distribution over the U, V, u and v variables
given an observation, (x,y, r), is given by summing out the
latent variables: p(U,V,u,v|r,x,y) ∝

∫

s

∫

t

∫

z

∫

r̃

p(s, t,U,V,u,v, z, r̃, r|x,y) ds dt dz dr̃.

This inference is performed by approximate message pass-
ing on the equivalent factor graph [Kschischang, Frey, and
Loeliger, 2001]. We assume a full factorization of the joint
distribution and minimize an α-divergence (a generalization
of the Kullback-Leibler divergence) between the true and
approximate marginals [Minka, 2005]. We approximate all
factors by Gaussian distributions. The factor graph for this
model and details of all the message calculations and update
schedule are given in Stern, Herbrich, and Graepel [2009].

Once the posterior marginals for the variables U, V, u
and v have been calculated, we can discard all of the mes-
sages and continue, using this posterior as the prior for the
variables for the next rating. In this way we obtain a one-
pass, on-line algorithm with low memory overhead.

Application and Evaluation

A Time-Based Feedback Model In order to evaluate
Matchbox for expert portfolio selection we consider two do-
mains in which the experts are algorithms and the perfor-
mance feedback is run-time. For each each task, there is
a time-out, T , after which the algorithm is terminated and
the problem is not solved. Typically, the distribution over
the time it takes for algorithms to solve hard combinatorial

problems has a long tail [Gomes et al., 2000]. With a modest
time-out this means many problems are solved quite quickly
but also many reach time-out with the remaining solution
times being roughly evenly distributed between the time-out
and the peak of fast solutions. To handle this, we model
run time as a uniform distribution given the latent rank, l,
of the performance of the algorithm on this task leading to a
piecewise constant predictive distribution for time:

p(t|l = 1) = I(t = T) (time out),

p(t|l = 2) =

{

1
T−tc

if tc < t < T

0 otherwise
(slow), (1)

p(t|l = 3) =

{

1
tc

if t < tc
0 otherwise

(fast),

where tc is the (fixed) cut-off time between a ‘fast’ solution
and a ‘slow’ solution, typically tc ≪ T . If l = 1 the al-
gorithm reached time out, if l = 2 the algorithm solved the
problem slowly and if l = 3 the algorithm solved the prob-
lem quickly.

The mapping from rank to latent performance may not
be linear and this mapping can change from solver to
solver. We relate the latent performance r to ranks l via a
cumulative threshold model [Chu and Ghahramani, 2005;
Stern, Herbrich, and Graepel, 2009]. For each solver, v,
we maintain solver-specific thresholds hv ∈ R

2 which di-
vide the latent rating axis into three consecutive intervals
(hv(i−1), hv(i)) each of which representing the region in
which this solver attains a performance in the same rank.
Formally, we define a generative model of a ranking as

p(l = a|hv, r) =

I(r < h̃v0)I(r < h̃v1) if a = 1

I(r > h̃v0)I(r < h̃v1) if a = 2

I(r > h̃v0)I(r > h̃v1) if a = 3

,

where p(h̃vi|hvi, τ) = N (h̃vi; hvi, τ
2), and we place an

independent Gaussian prior on the thresholds so p(hvi) =
N (hvi; µi, σ

2
i). The indicator function I(·) is equal to 1 if

the proposition in the argument is true and 0 otherwise. In-
ference for the ordinal regression observation model is per-
formed by approximate Gaussian Expectation Propagation
(EP) message passing on the factor graph as described in de-
tail for this model in [Stern, Herbrich, and Graepel, 2009].
Note that the marginal distribution for each solver threshold
must be stored.

Utility Function Faced with a fresh task, we must decide
which algorithm to apply. We assume that there is some ben-
efit for the user in solving the task but also a cost for each
additional unit of time spent. Also, we realise that the bal-
ance between these objectives may vary from user to user so
we use a parametrized utility function with two parameters:
b, the benefit of solving a problem and c, the cost per unit
time spent. The utility function is defined as

u(t) =

{

b − ct if t < T
−cT otherwise

. (2)

For the applications here, we represent each solver by only
its identity, y, so y is a unit vector with a one in posi-
tion y. We choose a solver to apply to a task by ŷ =
argmax y E [u(t)]p(t|x,y) .

181

Solver K Features #Solved Time Utility

Matchbox 1 Basic 2060 15.6 1784
Matchbox 2 Basic 2064 14.1 1797
Matchbox 3 Basic 2052 13.1 1777
Matchbox 1 Combo 1978 13.5 1629
Matchbox 2 Combo 1890 17.8 1442
Matchbox 3 Combo 1818 19.8 1294
Matchbox 1 All 2052 13.0 1777
Matchbox 2 All 2102 13.7 1873
Matchbox 3 All 2032 15.9 1728

QuBE6.1 - - 1966 14.3 1603
AQME - All 1818 11.1 1320
Oracle - - 2240 12.8 2150

Table 2: Batch training QBF solver portfolio performance -
number solved, time per task and total utility for c = 1

T
and

b = 1. The model is first trained on the training data and then
used to select which solver to use for each problem in the
test problems. One solver is tried for each test problem. The
performances of AQME, the best individual solver (QuBE
6.1), and the Oracle portfolio solver are included.

Solver E R Se Sk
2clsQ

√
Nenofex

√
QMRES

√
Quantor

√ √
QuBE 3.0

√
QuBE 6.1

√ √
sKIZZO

√
ssolve

√
yQuaffle

√

Table 3: Main techniques used by QBF solvers in
the data-set (E=Expansion, R=Resolution, Se=Search,
Sk=Skolemization)(see e.g.[Pulina and Tacchella, 2009]).

Application 1: Constraint Solving Quantified Boolean
Formulas (QBF) are a powerful logical formalism to repre-
sent real-world problems, and a range of QBF solvers ex-
ist to tackle problems represented in this language [Samu-
lowitz, 2008]. Due to the vast computational complexity of
this problem, solvers display a large discrepancy in perfor-
mance which is mainly due to different heuristic choices or
employed solving techniques. Pulina and Tacchella [2009]
introduced a self-adaptive version of an algorithm portfolio
(AQME) to increase the robustness of QBF solving. AQME
is self-adaptive in the sense that a classifier is retrained of-
fline based on the information collected during execution.
After finishing a run this new data point is added to the ini-
tial training set and the policy of the portfolio is updated
accordingly to adapt to non-stationary data and increase the
size of the training set.

We consider the following 11 QBF solvers: 2clsQ,
Nenofex, QMRES, Quantor, QuBE (3.0 & 6.1), sKIZZO,
ssolve (A, B, & C), and yQuaffle [Pulina and Tacchella,
2009]. Table 3 broadly characterizes each solver by the
main techniques employed in QBF solving. The time-out

Solver Pre-train tl #Solved Time Utility

Matchbox Yes 0 2100 14.0 1869
Matchbox Yes 10 2169 16.6 1996
Matchbox Yes 20 2172 18.8 1993
Matchbox Yes 30 2176 21.4 1992
Matchbox Yes 40 2174 23.2 1981

Matchbox No 0 1960 14.3 1591
Matchbox No 10 2139 14.9 1942
Matchbox No 20 2156 18.9 1962
Matchbox No 30 2163 22.0 1964
Matchbox No 40 2161 23.9 1954

QuBE6.1 - - 1966 14.3 1603
AQME Yes 10 2155 18.0 1963
Oracle - - 2240 12.8 2150

Table 4: On-line training, ‘Trust the Predicted Solver’, time-
out 600s, c = 1

T
and b = 1. For this experiment the model

was trained incrementally after each formula was attempted.
For each problem we first allocate tl seconds to each solver
to attempt the problem, ordering the solvers by the expected
utility. If none of the solvers can solve the problem in tl sec-
onds then we give the rest of the time before timeout to the
best solver predicted by the model.

is T = 600 seconds and the value for tc was set to 50s
(manually tuned). We performed experiments using 2282
test problems and 288 training instances2.

First, we show in Figure 1 a learned embedding of
the solvers and problems into a 2-dimensional trait space.
Matchbox was trained on the full data set with 20 iterations
of message passing. The mean of the first solver trait v(0)i

is plotted against the mean of the second solver trait v(1)j to
produce the blue dots. The mean of the first problem trait
u(0)i is plotted against the mean of the second problem trait
u(1)j to produce the red crosses. Similarity in this space de-
pends on the angle between trait vectors so similar solvers
should be close in this space (in terms of angle) and this is
indeed the case (except for ssolve), as shown in Figure 1.

Now we evaluate the performance of a portfolio of solvers
using Matchbox and the utility function (2) for b = 1 and
c = 1

T
. AQME3 only uses a subset of the solvers, leaving out

Nenofex, QMRES, QuBE 3.0 and ssolve (A,B) so we also
leave out these solvers from our test set. Table 2 shows the
performance of Matchbox when learning on 288 training in-
stances and predicting a solver on the test instances without
on-line adaptation. We show results for different numbers
of latent dimensions K and different subsets of features (de-
fined by Pulina and Tacchella [2009]) and the performance
of AQME and the ideal portfolio manager (the oracle which
always selects the fastest algorithm for each task). In terms
of pure runtime we also outperform AQME (Matchbox total
run-time is 111,597s versus 273,397s for AQME). We also
compare the performance of the individual solvers on the

2The features and run-time information for each solver as
well as the split in training and test data are available at
www.qbfeval.org/2008

3We used AQME that employs QuBE 6.0 (not QuBE 3/5), and
to our knowledge its performance is identical to QuBE 6.1.

182

Algorithm K #Solved Time Utility

GL - 2531 1025 1249
CASS - 861 207 -1768

CPLEX - 2648 445 1672
Matchbox 1 2648 445 1672
Matchbox 2 2677 232 1804
Matchbox 3 2680 240 1807

Oracle - 2704 248 1851

b c Number Solved Mean Time

1 1
T

2677 232
1 0 2686 266

0 1
T

2667 223

Table 5: Combinatorial Auction Winner Determination.
Top: performance of Matchbox portfolio compared with
different individual solvers and the Oracle, c = 1

T
and b = 1.

Bottom: Comparing the effects of different utility function
parameter values.

same data in Table 1.

In Table 4 we show the performance of Matchbox in the
on-line setting. Here we use T = 600s, c = 1

T
and b = 1,

K = 2, and all features. We attempt each problem in two
stages according to the ‘Trust the Predicted Solver’ (TTPS)
technique [Pulina and Tacchella, 2009]: Firstly, we allocate
tl seconds to each solver to attempt the problem, ordering
the solvers by the expected utility. In this round AQME sorts
the solvers according to the ranking determined in the QBF
competition 2006. If none of the solvers can solve the prob-
lem in tl seconds then we enter the second round in which
we give the remaining time to the best solver predicted by
the model. In this way the setting of tl allows for a trade-off
between speed and robustness. The motivation for this ap-
proach is due to the long-tailed distribution of run-times: an
algorithm is most likely to either solve a problem quickly or
time out [Horvitz et al., 2001]. After all attempts to solve
this problem we train Matchbox for the solver that solved it.
In addition, if the best predicted solver times out in the sec-
ond round then we update Matchbox based on this. We show
results for Matchbox with and without pre-training. Pre-
training means that the model was trained on the training
data before running through the test data. No pre-training
means the training data was not used so at the start of the run
Matchbox predicts a uniform distribution over solvers. The
results show that on-line adaption is beneficial and Match-
box is able to solve more instances than in the batch setting.
In terms of solved instances and average run-time per solved
instance Matchbox is able to outperform AQME and QuBE
6.1. The best results for Matchbox with pre-training (util-
ity 1996) and without pre-training (utility 1964) show that it
outperforms AQME (utility 1963). The time cost of training
Matchbox is less than one millisecond for each problem and
learning is incremental so cost does not increase with the
number of problems previously seen, unlike previous work
[Pulina and Tacchella, 2008].

Up to this point we have assumed that a solver must al-

Figure 2: Learned embedding of LP solvers (compare to
Figure 1). Note the separation of simplex and IPM solvers
and of primal and dual approaches.

ways be run from scratch each time and that solver state
could not be stored in memory. Our final result for the
QBF application is for the scenario where we allow dynamic
switching between solvers (‘suspend and resume’ [Streeter
and Smith, 2008]). In this case, once per second we re-
calculate the expected utility for each solver, and switch to
the best predicted solver at that point. In practice this yields
an algorithm which behaves similarly to TTPS, because of
the form of the predictive distribution of run time: after a
solver is run for a time approaching tc the expected utility
for this solver drops off as a fast solution using this solver
looks unlikely, leading to other solvers to be tried instead. In
this way we obtain a principled approach to the scheduling
problem [Streeter and Smith, 2008]. Using this method we
can solve 2195 problems in the test set.

Finally, we performed a similar analysis for Linear Pro-
gram (LP) solvers (see e.g. [Hooker, 2006]). The portfolio
consisted of 6 variants of a simplex solver and 7 variants of
an interior point method (IPM) solver from Microsoft Solver
Foundation4. We trained Matchbox to predict run-times on a
set of 4000 problems, including the Netlib LP problem set5,
among others. Figure 2 shows the latent space embedding
that Matchbox learns for these solvers. Note how Matchbox
separates the simplex solvers from the IPM solvers, suggest-
ing these two techniques are suited to different types of prob-
lems. Note also that the embedding separates the primal and
dual approaches along an orthogonal axis.

Application 2: Combinatorial Auction Winner Determi-
nation Next we focus on the task of determining the win-
ner of a combinatorial auction [Leyton-Brown, Nudelman,
and Shoham, 2009]. Combinatorial auctions involve self-

4http://www.solverfoundation.com
5http://www.netlib.org/lp/data/

183

interested agents bidding for bundles of goods while being
guaranteed that the allocation of a bundle is all or nothing.
The winner determination problem aims at answering the
question of which bids should be accepted or not in an op-
timal fashion. This is a derivative of the weighted set pack-
ing problem and is therefore in general a hard computa-
tional problem (NP-hard). Leyton-Brown, Nudelman, and
Shoham [2009] develop a model for determining winners
in combinatorial auctions and in order to do so appropriate
instances were created and a set of solvers was utilized to
solve them. In addition, they define features that character-
ize instances and use several machine learning techniques
to manage a portfolio. We used the same data6 (run times
and features) to analyze the performance of Matchbox in
this domain. Table 5 (top) shows the performance of the
individual solvers GL, CASS, CPLEX, the Matchbox port-
folio with different numbers of latent space dimensions K ,
and the Oracle. The time-out T was set to 7500 seconds.
The performance is shown in terms of solved instances, the
mean time required per solved instance per solver, and the
utility (c = 1

T
and b = 1). When using low dimensional

latent spaces, Matchbox sticks to the best single perform-
ing solver CPLEX. However, as K increases, the number of
solved instances increases slightly and the average run-time
is halved. Consequently, the utility of Matchbox in the best
setting (K = 3) is better than the one achieved by any sin-
gle solver (in terms of runtime and number solved) and is
comparable to the one achieved by Leyton-Brown, Nudel-
man, and Shoham while having the advantage of incremen-
tal training. Finally, Table 5 (bottom) shows how different
choices for the utility function affect the number of solved
problems and the time per problem.

Conclusions

Matchbox provides a practical and scalable approach to
managing a portfolio of experts. The model can learn on-
line and dynamically adapt to non-stationary data. We allow
free choice of the feedback model and utility function. The
system was designed to be of general use and we see the
examples here as the tip of an iceberg of applications.

Acknowledgements

We thank John Oberon and David Lao for the LP run-times.

References

Breese, J. S.; Heckerman, D.; and Kadie, C. 1998. Empirical
analysis of predictive algorithms for collaborative filtering.
In Proceedings of the 14th ACM Conference on Uncertainty
in Artificial Intelligence, 34–52.

Chu, W., and Ghahramani, Z. 2005. Gaussian processes for
ordinal regression. Journal of Machine Learning Research
1019–1041.

Gomes, C. P., and Selman, B. 1997. Algorithm portfolio
design: Theory vs. practice. In Proceedings of the 13th ACM
Conference on Uncertainty in Artificial Intelligence, 190–
197.

6
http://www.cs.ubc.ca/˜kevinlb/downloads.html

Gomes, C. P.; Selman, B.; Crato, N.; and Kautz, H. 2000.
Heavy-tailed phenomena in satisfiability and constraint sat-
isfaction problems. Journal of Automated Reasoning 24(1-
2):67–100.

Hooker, J. N. 2006. Integrated Methods for Optimization.
Springer-Verlag New York.

Horvitz, E.; Ruan, Y.; Gomes, C.; Kautz, H.; Selman, B.;
and Chickering, M. 2001. A Bayesian approach to tackling
hard computational problems. In Proceedings of the 17th
ACM Conference on Uncertainty in Artificial Intelligence,
235–244.

Kschischang, F. R.; Frey, B.; and Loeliger, H.-A. 2001.
Factor graphs and the sum-product algorithm. IEEE Trans.
Inform. Theory 47(2):498–519.

Leyton-Brown, K.; Nudelman, E.; and Shoham, Y. 2009.
Empirical hardness models: Methodology and a case study
on combinatorial auctions. Journal of the ACM.

Minka, T. 2005. Divergence measures and message passing.
Technical Report MSR-TR-2007-173, Microsoft Research
Ltd.

Pulina, L., and Tacchella, A. 2008. Time to learn or time
to forget? strengths and weaknesses of a self-adaptive ap-
proach to reasoning in quantified Boolean formulas. In In-
ternational Conference on Principles and Practice of Con-
straint Programming (Doctoral Programme).

Pulina, L., and Tacchella, A. 2009. A self-adaptive multi-
engine solver for quantified Boolean formulas. Constraints
Journal 80–116.

Rice, J. R. 1976. The algorithm selection problem. In
Advances in computers, volume 15. New York: Academic
Press. 65–118.

Samulowitz, H. 2008. Solving Quantified Boolean Formu-
las. Ph.D. Dissertation, University of Toronto.

Smith-Miles, K. A. 2008. Cross-disciplinary perspectives on
meta-learning for algorithm selection. ACM Comput. Surv.
41(1):1–25.

Stern, D.; Herbrich, R.; and Graepel, T. 2009. Matchbox:
Large scale online Bayesian recommendations. In WWW
’09: Proceedings of the 18th International Conference on
World Wide Web, 111–120. New York, NY, USA: ACM
Press.

Streeter, M. J., and Smith, S. F. 2008. New techniques for
algorithm portfolio design. In Proceedings of the 24th ACM
Conference on Uncertainty in Artificial Intelligence, 519–
527.

Varian, H. R., and Resnick, P. 1997. Recommender systems.
Communications of the ACM 40:56–58.

Xu, L.; Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2008.
Satzilla: Portfolio-based algorithm selection for SAT. Jour-
nal of Artificial Intelligence Research 32:565–606.

184

