
Understanding the Success of Perfect Information
Monte Carlo Sampling in Game Tree Search

Jeffrey Long and Nathan R. Sturtevant and Michael Buro and Timothy Furtak
Department of Computing Science, University of Alberta

Edmonton, Alberta, Canada T6G 2E8
{jlong1|nathanst|mburo|furtak}@cs.ualberta.ca

Abstract

Perfect Information Monte Carlo (PIMC) search is a practi-
cal technique for playing imperfect information games that
are too large to be optimally solved. Although PIMC search
has been criticized in the past for its theoretical deficiencies,
in practice it has often produced strong results in a variety of
domains. In this paper, we set out to resolve this discrepancy.
The contributions of the paper are twofold. First, we use syn-
thetic game trees to identify game properties that result in
strong or weak performance for PIMC search as compared to
an optimal player. Second, we show how these properties can
be detected in real games, and demonstrate that they do in-
deed appear to be good predictors of the strength of PIMC
search. Thus, using the tools established in this paper, it
should be possible to decide a priori whether PIMC search
will be an effective approach to new and unexplored games.

Introduction

Imperfect information is a common element of the world
that all humans or agents must deal with in one way or an-
other. The ideal solution, at least for two-player zero-sum
games, is to use a solution technique that can produce a Nash
equilibrium, guaranteeing perfect play against perfect oppo-
nents. This is, however, computationally infeasible in all but
the most simple of games.

One popular way of dealing with imperfect information
has been to avoid the issue. Instead of solving a full game,
perfect information worlds from the game are sampled and
solved either exactly or heuristically. This approach, also
called Perfect Information Monte Carlo (PIMC), has pro-
duced expert-caliber players in games like Bridge (Ginsberg
2001) and Skat (Buro et al. 2009), and has produced strong
play in games like Hearts (Sturtevant 2008). Yet this work
has often been criticized for avoiding the issue of imperfect
information. For instance, in the 2nd edition of their AI text-
book, Russell and Norvig (Russell and Norvig 2002) write
that PIMC search (which they call “averaging over clair-
voyancy”) suggests a course of action that “no sane person
would follow” in a simple example that they present.

While these criticisms are technically correct, they do not
explain the true mystery of why PIMC has been successful.
If PIMC was fundamentally the wrong approach, one would

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

expect that no program of reasonable quality could use it to
play at any level approaching human strength. This paper
represents the first attempt to answer why PIMC has been
successful in practice.

We hypothesize that there should be a small number of
concise properties which can describe the general properties
of a game tree and measure, from these properties, whether
PIMC as an approach is likely to be successful or not. Sev-
eral properties are proposed and used to build small syn-
thetic trees which can be solved and also played with PIMC.
We show that these properties directly influence the perfor-
mance of PIMC, and that they can be measured in real games
as well. Thus, we are able to show that in many classes of
games PIMC will not suffer large losses in comparison to a
game-theoretic solution.

Background and Related Work

The first big success for PIMC search emerged from the
work of Ginsberg (Ginsberg 2001), creator of the GIB com-
puter player for contract bridge. Prior to 1994, Ginsberg
describes computer players in bridge as “hopelessly weak”.
Ginsberg’s program GIB, introduced in 1998, was the first
full-featured computer bridge player to make use of PIMC
search, and by 2001, GIB was claimed to be the strongest
computer bridge player in the world and of roughly equiva-
lent playing strength to human experts. Most of the strength
came from PIMC search, however a number of other tech-
niques were used to correct for errors introduced by PIMC.

Ginsberg improves GIB’s card play further by introduc-
ing the concept of alpha-beta search over lattices. This al-
lows the program to search over sets of card configurations
in which the declarer makes the contract, instead of over
the numeric interval normally used in evaluation functions.
With this enhancement, GIB is able to capture the imperfect
information of bridge to a greater extent; however, Ginsberg
only uses this technique for GIB’s declarer card play, and
it still assumes that the defenders have perfect information
of the game. Furthermore, this enhancement only improves
GIB’s performance by 0.1 IMPs per deal (the standard per-
formance measure for bridge), which Ginsberg states is only
significant because GIB’s declarer card play was already its
strongest component and on par with human experts.

In 1998, Frank and Basin published an extensive cri-
tique of the PIMC approach to imperfect information games

134

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

(Frank and Basin 1998). They showed that the nature of
PIMC search makes it prone to two distinct types of errors,
irrespective of the number of hypothetical worlds examined.
The first of these errors is termed strategy fusion. Strategy
fusion arises because PIMC search (incorrectly) believes it
can use a different strategy in each world, whereas in real-
ity there are situations (or information sets) which consist of
multiple perfect information scenarios. In the full imperfect
information game, a player cannot distinguish between these
situations, and must choose the same strategy in each one;
but PIMC search erroneously assumes that it can choose a
strategy tailored to each individual scenario.

We illustrate strategy fusion in Figure 1(a). The maxi-
mizing player is represented as an upward pointing triangle,
and the minimizing player by a downward triangle. Termi-
nal nodes are squares with payoffs for the max player below
them. There are two worlds which would be created by a
chance node higher in the tree. We assume neither player
knows whether they are in world 1 or 2, so we do not show
this information in the tree.

At the root, the maximizing player has the choice of mov-
ing to the right to node (c) where a payoff of 1 is guaranteed,
no matter the world. The maximizing player can also get a
payoff of 1 from the nodes marked (a) in World 1 and the
nodes marked (b) in World 2. PIMC search will think that it
can always make the right decision above nodes (a) and (b),
and so both moves at the root look like wins. However, in
reality the max player is confused between worlds 1 and 2
and may actually make a mistake in disambiguation on the
left side of the tree. We note that there are two conditions
required for strategy fusion to actually cause an error in the
play of PIMC search. First, there must be moves which are
anti-correlated values (nodes (a) and (b)) on one portion of
the tree, and second, there must be a move which is guaran-
teed to be better on the other side of the tree. If node (c) had
the value -1, PIMC search would make the correct decision,
although it would overestimate the value of the tree.

The second error identified by Frank and Basin is termed
non-locality. Non-locality is a result of the fact that in a
perfect information game, the value of a game tree node is
a function only of its subtree, and therefore the value of a
node is completely determined by a search starting with its
children. In an imperfect information game, a node’s value
may depend on other regions of the game tree not contained
within its subtree, primarily due to the opponent’s ability to
direct the play towards regions of the tree that he knows (or
at least guesses) are favorable for him, using private infor-
mation that he possesses but we do not. This phenomenon
creates non-local dependencies between potentially distant
nodes in the tree.

We illustrate non-locality in Figure 1(b). In this figure
there is a chance node at the top of the tree. The maxi-
mizing player knows the chance action, but the minimizing
player cannot distinguish between the states within the dot-
ted rectangle. In this tree PIMC search would make a ran-
dom move for the minimizing player. But, in fact, the min-
imizing player can always know the correct move. Because
the maximizing player will take the win in world 1 if possi-
ble, the minimizing player will only have an opportunity to

Figure 1: Examples of strategy fusion and non-locality.

play if he is in world 2, when the maximizing player moves
to the left to avoid the immediate loss. Thus, the minimizing
player can infer the correct world and the correct action.

While we will not create these structures explicitly in our
game model, we will be able to tune the probability that they
occur and that PIMC search will be confused. We can also
measure how often this occurs in actual game trees.

Domains

We use two illustrative domains in this paper. The first is
a class of trick-based card games. The precise rules for the
domain are not important for our purposes, but the actions
in the domain are. In a trick-based card game an action is to
play a card from one’s hand onto the table face up. This has
two implications. First, information is revealed and informa-
tion sets are split when actions take place. Second, there are
many possible legal actions. Most western games use a 52
card deck, allowing up to 52 possible actions at each node in
the game tree. Some European card games use a short deck
of 32 cards, resulting in at most 32 actions in each state.

The second domain we examine is Poker. Again, there
are many variants of poker which we will not discuss here.
What is important is that there are a limited number of ac-
tions (bet, raise, call, fold), and actions do not directly reveal

135

any hidden information. Therefore, the number of true game
states in each information set in poker does not change with
the action of a player in the game.

Between 2003 and 2010 the size of Poker game trees that
can be solved has grown by 5 orders of magnitude, from
107 states (Billings et al. 2003) to 1012 states (Zinkevich
et al. 2008). The most recent gains are a result of the
Counter-factual Regret algorithm (CFR) (Zinkevich et al.
2008), which is able to approximately solve games in space
proportional to the number of information sets and in time
O(I2N), where I is the number of information sets and N
is the number of games states.

Further Motivation

Ultimately, the decision about what technique used to solve
or approximate a solution to a game depends primarily on
the cost of generating that solution and the quality of the
resulting solution. CFR requires building strategies for all
players and iterating over all information sets. There are ef-
fective abstractions which have been applied to poker which
are able to significantly reduce the size of the game trees that
must be solved without significantly reducing the quality of
play. This works particularly well in poker because player
actions do not directly reveal information about the state of
the game. Consider, however, a trick-based card game.

First, we analyze a 4-player card game with 52 cards, such

as Bridge. There are
(

52

13

)

≈ 6.35× 1011 possible hands that
can be dealt to each player. Thus, the number of hands for a
single player already approaches the limits of the number of
states that can be solved with CFR, and this doesn’t include
the hands for the opponents and possible lines of play. So,
completely solving such games is out of the question.

What about smaller trick-based card games? Skat is a 3-
player card game with 32 cards, from which 10 are dealt

to each player. There are
(

32

10

)

= 364, 512, 240 hands each

player can have and H :=
(

22

10

)(

12

10

)

= 42, 678, 636 hands
for the other players which is what constitutes an informa-
tion set at the start of a game. At the beginning of each
trick, the trick leader can choose to play any of his remain-
ing cards. Therefore, there are at least 10!H ≈ 1.54 · 1014

information sets. But, from an opponents perspective there
are actually 20 or 22 unknown cards that can be lead, so this
is only a loose lower bound on the size of the tree. This
should clearly establish that even when using short decks it
is infeasible to solve even a single game instance of a trick-
based card game.

We have worked on solving sub-portions of a game. For
instance, if a game is still undecided by the last few plays it
is possible to build and solve the game tree using CFR and
balance the possible cards that the opponents hold using ba-
sic inference. In the game of Skat approximately 15% of
games are still unresolved when there are three tricks left in
the game, based on analyzing thousands of games played
on a Skat server. Over a randomly selected set of 3,000
unresolved games PIMC makes mistakes that cost a player
0.42 tournament points (TPs) per deal on average against the
solution computed by CFR. We must also note the caveat
that CFR is not guaranteed to produce optimal solutions to

multi-player games such as Skat; however, in practice, it of-
ten seems to do so, especially for small games of the type
considered here. If we assume the value of 0.42 to be close
to the true loss against a Nash-optimal player, then as only
15% of games are unresolved at this point, PIMC’s average
loss is only 0.063 TP per deal. In a series of 180 deals for
each player in typical Skat tournaments the expected loss
amounts to 11.3 TPs, which is dwarfed by the empirical TP
standard deviation of 778. Thus, the advantage over PIMC
in the endgame hardly matters for winning tournaments.

Finally, we have also looked into methods for abstract-
ing trick-based game trees to make solutions more feasible.
While this approach has shown limited success, it has not, on
average, shown to be a better approach than existing PIMC
methods. While we may eventually make progress in this
area, we have pursued the work described here in order to
better understand why PIMC has been so strong in the do-
mains we are interested in.

Methodology
As outlined in the background above, work by Frank and
Basin has already formalized the kinds of errors made by
PIMC search through the concepts of strategy fusion and
non-locality. However, not only does the mere presence of
these properties seem difficult to detect in real game trees
where computing a full game-theoretic solution is infeasible,
but as we have previously argued, their presence alone is not
enough to necessarily cause PIMC search to make mistakes
in its move selection.

Therefore, instead of focusing on the concepts of strategy
fusion and non-locality directly, our approach is to measure
elementary game tree properties that probabilistically give
rise to strategy fusion and non-locality in a way that causes
problems for PIMC search. In particular, we consider three
basic properties.

• Leaf Correlation, lc, gives the probability all sibling, ter-
minal nodes have the same payoff value. Low leaf node
correlation indicates a game where it is nearly always pos-
sible for a player to affect their payoff even very late in a
game.

• Bias, b, determines the probability that the game will fa-
vor a particular player over the other. With very high or
very low bias, we expect there to be large, homogeneous
sections of the game, and as long as a game-playing algo-
rithm can find these large regions, it should perform well
in such games.

• Disambiguation factor, df , determines how quickly the
number of nodes in a player’s information set shrinks with
regard to the depth of the tree. For instance, in trick-taking
card games, each play reveals a card, which means the
number of states in each information set shrinks drasti-
cally as the game goes on. Conversely, in a game like
poker, no private information is directly revealed until the
game is over. We can determine this factor by considering
how much a player’s information set shrinks each time the
player is to move.

All of these properties can easily be measured in real game
trees, as we describe below.

136

Figure 2: A sample of a depth 2 synthetic tree, with 2 worlds per
player. Max nodes in boxes and min nodes with the same shading
are in the same information set respectively.

Measuring Properties in Real Games

To measure leaf correlation, bias, and the disambiguation
factor in real games (i.e. large games) we suggest using ran-
dom playouts to sample the terminal nodes (unless there is
some a priori reason to discard portions of the game tree
as uninteresting or irrelevant). Once a terminal node is
reached, the bias and correlation may be estimated from the
local neighbourhood of nodes. Along these random play-
out paths the size of the information set to which each node
belongs may be computed in a straightforward manner, and
compared to the subsequent size when next that player is to
move. It is then straightforward to convert the average re-
duction ratio into a df value for one’s desired model.

Experiments

In this section, we first perform experiments on synthetic
trees measuring the performance of PIMC search in the face
of various tree properties, and then show the measurement of
these properties in the real games that make up our domains
of interest.

Synthetic Trees

We construct the simple, synthetic trees used in our experi-
ments as follows. We assume, for simplicity’s sake, that our
trees represent a two-player, zero-sum, stochastic imperfect
information game. We may also assume, without loss of
generality, that the game has alternating moves between the
two players, and that all chance events that occur during the
game are encapsulated by a single large chance node at the
root of the game tree. Each player node is of degree 2, while
the degree of the beginning chance node is defined in terms
of worlds per player, W . Furthermore, the information con-
cerning these worlds is assumed to be strictly disjoint; for
each world of player p1, there are initially W worlds for
player p2 that p1 cannot distinguish. We restrict ourselves to
this disjoint case because in cases where the players’ infor-
mation overlaps, the game collapses to a perfect information
stochastic game (i.e. there may be information unknown to
both players, but at least they are in the same boat). There-
fore, the total degree of the chance node is W 2. Game tree
nodes are initially partitioned into information sets based on
these worlds. We assume that all player moves are observed
by both players, in the sense that both players know whether
the player to move chose the ‘left’ or ‘right’ branch at each

of their information sets. Finally, terminal payoffs are re-
stricted to be either 1 (a win for p1) or -1 (a win for p2). A
small sample of such a tree is presented in Figure 2.

Now, under the above assumptions, we define our three
properties in the synthetic tree context, each one of which
is continuous valued in the range [0, 1]. We describe below
the effect of these parameters on the construction of the syn-
thetic trees.

• Leaf Correlation, lc: With probability lc, each sibling
pair of terminal nodes will have the same payoff value
(whether it be 1 or -1). With probability (1 − lc), each
sibling pair will be anti-correlated, with one randomly
determined leaf having value 1 and its sibling being as-
signed value -1.

• Bias, b: At each correlated pair of leaf nodes, the nodes’
values will be set to 1 with probability b and -1 otherwise.
Thus, with bias of 1, all correlated pairs will have a value
of 1, and with bias of 0.5, all correlated pairs will be ei-
ther 1 or -1 at uniform random (and thus biased towards
neither player). Note that anti-correlated leaf node pairs
are unaffected by bias.

• Disambiguation factor, df : Initially, each information set
for each player will contain W game nodes. Each time p
is to move, we recursively break each of his information
sets in half with probability df (thus, each set is broken
in two with probability df ; and if a break occurs, each re-
sulting set is also broken with probability df and so on).
If df is 0, then p never gains any direct knowledge of his
opponent’s private information. If df is 1, the game col-
lapses to a perfect information game, because all infor-
mation sets are broken into sets of size one immediately.
Note that this generative model for df is slightly different
than when measuring disambiguation in real games trees.

Note that we do not specifically examine correlation within
an information set; rather, we hypothesize that these proper-
ties represent the lowest level causes of tree structures that
result in problems for PIMC search, and that if they are
present with sufficient frequency, then higher-level confu-
sion at the information set level will occur.

Experiments on Synthetic Game Trees

Using the synthetic game tree model outlined above, we
performed a series of experiments comparing the playing
strength of both PIMC search and a uniform random player
against an optimal Nash-equilibrium player created using
the CFR algorithm. In each experiment, synthetic trees were
created by varying the parameters for leaf correlation, bias
and disambiguation. Tree depth was held constant at depth
8, and we used 8 worlds per player at the opening chance
node, for a total chance node size of 64. Playing strength
is measured in terms of average score per game, assuming 1
point for a win and -1 for a loss. For each triple of parame-
ter values, we generated 10000 synthetic trees and played 2
games per tree, with the competing players swapping sides
in the second game.

The results of these tests are presented in figures 3 through
5. For ease of visualization, each figure plots two parameters

137

Figure 3: Performance of PIMC search against a Nash equilibrium. Darker regions indicate a greater average loss for PIMC. Disambiguation
is fixed at 0.3, bias at 0.75 and correlation at 0.5 in figures a, b and c respectively.

Figure 4: Performance of random play against a Nash equilibrium. Darker regions indicate a greater average loss for random play. Disam-
biguation is fixed at 0.3, bias at 0.75 and correlation at 0.5 in figures a, b and c respectively.

against each other on the x and y axes, while the third pa-
rameter is held constant. Figures 3 and 4 shows the playing
performance of the challenging player (either PIMC search
or uniform random) against the equilibrium player. White
shaded regions are areas of the parameter space where the
challenger breaks even with equilibrium. The darker the
shading, the greater the challenger’s loss against the equilib-
rium. Figure 5 is similar, except that the shading represents
the gain of PIMC search over the random player when play-
ing against equilibrium. Dark regions of these plots repre-
sent areas where PIMC search is performing almost no bet-
ter than the random player, whereas lighter regions indicate a
substantial performance gain for PIMC search over random.

These plots show that PIMC search is at its worst when
leaf node correlation is low. This is true both in absolute
performance, and in PIMC’s relative improvement over ran-
dom play. The most likely explanation for this behavior is
that when anti-correlation occurs deep in the game tree –
particularly at the leaves – then PIMC search always be-
lieves that the critical decisions are going to come ‘later’ and
that what it does higher up the tree does not actually matter.
Of course, when an information set structure (which PIMC
ignores at every node except the root of its own search) is
imposed on the tree, early moves frequently do matter, and
thus the superior play of the equilibrium player. When corre-
lation is medium to low, bias also seems to play a role here,
with more extreme bias resulting in better performance for
PIMC, although the effect of bias is generally small. The
performance gain due to bias for PIMC is likely because a
more extreme bias reduces the probability of interior nodes

that are effectively anti-correlated occuring perhaps one or
two levels of depth up from the leaves of the tree. Note that,
of course, in the case of maximum bias and correlation, even
the random player will play perfectly, since the same player
is guaranteed to win no matter what the line of play (we can
only suppose these would be very boring games in real life).

The situation with the disambiguation factor initially ap-
pears counter-intuitive; it appears that a low disambiguation
factor is good for the absolute performance of PIMC search,
while the worst case is a mid-range disambiguation factor.
However, in the relative case of PIMC’s gain over random,
the trend is very clearly reversed. The explanation for this
lies in the fact that the random player performs relatively
well in games with a low disambiguation factor. In some
sense, because there is so much uncertainty in these games,
there is a lot of ‘luck,’ and there is only so much an opti-
mal player can do to improve his position. As we increase
the disambiguation factor, the performance of the random
player deteriorates rapidly, while PIMC search is much more
successful at holding its own against the optimal player. As
disambiguation approaches 1, the performance of PIMC im-
proves drastically, since the game is approaching a perfect
information game. Finally, we note that with a high dis-
ambiguation in the 0.7-0.9 range, low correlation is actually
good for PIMC’s performance. This is a result of the fact
that these games become perfect information games very
quickly, and low correlation increases the probability that
a win is still available by the time the PIMC player begins
playing optimally in the perfect information section of the
tree.

138

Figure 5: Performance gain of PIMC search over random against a Nash equilibrium. Darker regions indicate minimal performance gain for
using PIMC search over random play. Disambiguation is fixed at 0.3, bias at 0.5 and correlation at 0.75 in figures a, b and c respectively.

Figure 6: Parameter space estimation for Skat game types and Hearts. Dark regions correspond to a high density of games with those
measured parameters. Values were sampled using 10000 games for each skat type and 3000 games for hearts. Bias is given in terms of score
w.r.t. a fixed player.

Real Games

To test the predictive powers of our three properties, we esti-
mated the distribution of those parameters for actual games.
The first game so measured is Skat. Although the exact
rules are unimportant, the specific type of Skat game varies
depending on an initial auction phase. The winner of the
auction (the soloist) chooses the game type and competes
against the two other players (who now form a temporary
coalition). The two most common game types are suit games
and grand games; both have a trump suit and are concerned
with taking high-valued tricks. The third type of game is
null, in which the soloist tries not to win any tricks (and
loses if even one trick is won).

For each game type, 10000 human-bid games were ex-
plored using random actions from the start of the cardplay
phase. In each game correlation and bias were measured
1000 times near the leaves. To do this, we walk down the
tree, avoiding moves which lead to terminal positions (af-
ter collapsing chains of only one legal move). When all
moves lead directly to terminal positions we take their value
to be the game value with respect to the soloist (to emulate
the values of the fixed depth synthetic trees). We say these
“pre-terminal” nodes are correlated if all move values are the
same, and compute bias as the fraction of correlated nodes
which are soloist wins.

Disambiguation was measured by comparing the change
in the number of possible (consistent) worlds since the cur-

rent player was last to move. Only 10 disambiguation roll-
outs were performed per world, since the resulting ratios
were tightly clustered around df = 0.6. The observed dis-
tributions are shown in Fig. 6. In this figure, we also display
results for Hearts, which, like Skat, is a trick-taking card
game, but played with a larger deck and different scoring
rules. 3000 Hearts games using 500 sample points per game
were used to generate this data.

For both the skat and hearts games, the resulting graphs
show a very high level of correlation (from 0.8 to nearly
1.0), with bias varying more widely and disambiguation very
close to 0.6, as mentioned above. Examining Figures 3(b)
and 5(b) puts skat in a parameter space where the PIMC
player loses only 0.1 points per game against equilibrium
and gains 0.4 points over random play (recalling that our
synthetic trees use payoffs from -1 to 1), with perhaps plus
or minus 0.05 points depending on the bias of the individ-
ual hand. This seems like relatively good performance for
PIMC search, which coincides with our motivating evidence
that PIMC search seems to perform well in these games in
practice.

The second game we measured is Kuhn poker, a highly
simplified poker variant for which Nash-optimal solutions
are known. In this game two players are each dealt one card
out of a deck of three. The game proceeds as: both players
ante; player 1 may check or raise; player 2 may fold, check,
call, or raise as appropriate; if the game is still proceeding,

139

Opponent

Player: Nash Best-Response

Random (p1) -0.161 -0.417
Random (p2) -0.130 -0.500
PIMC (p1) -0.056 -0.083
PIMC (p2) 0.056 -0.166

Table 1: Average payoff achieved by random and PIMC
against Nash and best-response players in Kuhn poker.

player 1 may fold or call. The player with the high card
then wins the pot. With Nash-optimal strategies player 1 is
expected to lose 1/18 = 0.05̄ bets per game and player 2 to
win 1/18 bets per game.

This game has a disambiguation factor of 0, since no cards
are revealed (if at all) until the end, and the size of an infor-
mation set is never decreased. By inspecting the game tree
and using our notion of pre-terminal nodes the correlation
and bias can be seen to be 0.5 and 0.5 respectively. These
parameters are very different from skat and hearts and lie
in the portion of parameter space where we would predict
that PIMC search performs more poorly and offers little im-
provement over random play. This is then, perhaps, at least
one explanation of why research in the full game of poker
has taken the direction of finding game-theoretic solutions to
abstract versions of the game rather than tackling the game
directly with PIMC search.

We present results comparing play between a random
player, PIMC player and Nash player in Table 1. Kuhn
poker is not symmetric, so we distinguish the payoffs both
as player 1 and player 2. Because the PIMC player does not
take dominated actions, when playing against a Nash equi-
librium this player achieves the equilibrium payoff, while
a random player loses significantly against even an equilib-
rium player. If an opponent is able to build a best-response
against a PIMC player, then the PIMC player is vulnerable to
significant exploitation as player 2, while the random player
loses -0.5 as the second player, where 0.056 could have been
won. Thus, these results present the experimental evidence
showing that PIMC is not a good approach in practice for
a game like poker. Although it plays better and is less ex-
ploitable than a random player, PIMC may lose significantly
to a opponent that can model its play.

Conclusion and Future Work

In this paper, we performed experiments on simple, syn-
thetic game trees in order to gain some insight into the
mystery of why Perfect Information Monte Carlo search
has been so successful in a variety of practical domains in
spite of its theoretical deficiencies. We defined three proper-
ties of these synthetic trees that seem to be good predictors
of PIMC search’s performance, and demonstrate how these
properties can be measured in real games.

There are still several open issues related to this problem.
One major issue that we have not addressed is the potential
exploitability of PIMC search. While we compared PIMC’s
performance against an optimal Nash-equilibrium in the
synthetic tree domain, the performance of PIMC search
could be substantially worse against a player that attempts

to exploit its mistakes. Another issue is that the real games
we consider in this paper represent the ‘extremes’ of the pa-
rameter space established by our synthetic trees. It would be
informative if we could examine a game that is in between
the extremes in terms of these parameters. Such a game
could provide further evidence of whether PIMC’s perfor-
mance scales well according to our properties, or whether
there are yet more elements of the problem to consider.

Finally, we have seen that in games like skat that there
isn’t a single measurement point for a game, but a cloud of
parameters depending on the strength of each hand. If we
can quickly analyze a particular hand when we first see it,
we may be able to use this analysis to determine what the
best techniques for playing are on a hand-by-hand basis and
improve performance further.

Acknowledgements

The authors would like to acknowledge NSERC, Alberta In-
genuity, and iCORE for their financial support.

References

Billings, D.; Burch, N.; Davidson, A.; Holte, R. C.; Schaef-
fer, J.; Schauenberg, T.; and Szafron, D. 2003. Approximat-
ing game-theoretic optimal strategies for full-scale poker. In
IJCAI, 661–668.

Buro, M.; Long, J. R.; Furtak, T.; and Sturtevant, N. R. 2009.
Improving state evaluation, inference, and search in trick-
based card games. In IJCAI, 1407–1413.

Frank, I., and Basin, D. 1998. Search in games with in-
complete information: A case study using bridge card play.
Artificial Intelligence 87–123.

Ginsberg, M. 2001. GIB: Imperfect Information in a Com-
putationally Challenging Game. Journal of Artificial Intelli-
gence Research 303–358.

Russell, S., and Norvig, P. 2002. Artificial Intelligence: A
Modern Approach. Englewood Cliffs, NJ: Prentice Hall, 2nd
edition.

Sturtevant, N. R. 2008. An analysis of UCT in multi-player
games. In Computers and Games, 37–49.

Zinkevich, M.; Johanson, M.; Bowling, M.; and Piccione,
C. 2008. Regret Minimization in Games with Incomplete
Information. In Advances in Neural Information Processing
Systems 20, 1729–1736.

140

