
Lazy Theta*: Any-Angle Path Planning and Path Length Analysis in 3D
Alex Nash∗ and Sven Koenig

Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781, USA
{anash,skoenig}@usc.edu

Craig Tovey
School of Industrial and Systems Engineering

Georgia Institute of Technology
Atlanta, GA 30332-0205, USA
craig.tovey@isye.gatech.edu

Abstract

Grids with blocked and unblocked cells are often used to rep-
resent continuous 2D and 3D environments in robotics and
video games. The shortest paths formed by the edges of 8-
neighbor 2D grids can be up to ≈ 8% longer than the short-
est paths in the continuous environment. Theta* typically
finds much shorter paths than that by propagating informa-
tion along graph edges (to achieve short runtimes) without
constraining paths to be formed by graph edges (to find short
“any-angle” paths). We show in this paper that the short-
est paths formed by the edges of 26-neighbor 3D grids can
be ≈ 13% longer than the shortest paths in the continuous
environment, which highlights the need for smart path plan-
ning algorithms in 3D. Theta* can be applied to 3D grids
in a straight-forward manner, but it performs a line-of-sight
check for each unexpanded visible neighbor of each expanded
vertex and thus it performs many more line-of-sight checks
per expanded vertex on a 26-neighbor 3D grid than on an
8-neighbor 2D grid. We therefore introduce Lazy Theta*, a
variant of Theta* which uses lazy evaluation to perform only
one line-of-sight check per expanded vertex (but with slightly
more expanded vertices). We show experimentally that Lazy
Theta* finds paths faster than Theta* on 26-neighbor 3D
grids, with one order of magnitude fewer line-of-sight checks
and without an increase in path length.

Introduction
We are interested in path planning for robotics and video
games. Path planning consists of discretizing a contin-
uous environment into a graph (generate-graph problem)
and propagating information along the edges of this graph
in search of a short path from a given start vertex to
a given goal vertex (find-path problem) (Wooden 2006;
Murphy 2000). Roboticists and video game developers
solve the generate-graph problem by discretizing the contin-
uous environment into regular 2D grids composed of squares

∗Alex Nash was supported by the Northrop Grumman Corpo-
ration. This material is based upon work supported by, or in part
by, NSF under contract/grant number 0413196, ARL/ARO under
contract/grant number W911NF-08-1-0468 and ONR in form of a
MURI under contract/grant number N00014-09-1-1031. The views
and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies,
either expressed or implied, of the sponsoring organizations, agen-
cies or the U.S. government.
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: NavMesh: Shortest Path Formed by Graph Edges
(left) vs. Truly Shortest Path (right), adapted from (Patel
2000)

(square grids), hexagons or triangles; regular 3D grids com-
posed of cubes (cubic grids); visibility graphs; waypoint
graphs; circle based waypoint graphs; space filling volumes;
navigation meshes (NavMeshes, tessellations of the contin-
uous environment into n-sided convex polygons); hierar-
chical data structures such as quad trees or framed quad
trees; probabilistic road maps (PRMs) or rapidly exploring
random trees (Björnsson et al. 2003; Choset et al. 2005;
Tozour 2004). Roboticists and video game developers typi-
cally solve the find-path problem with A* because A* is sim-
ple, efficient and guaranteed to find shortest paths formed
by graph edges when used with admissible heuristics. A*
and other traditional find-path algorithms propagate infor-
mation along graph edges and constrain paths to be formed
by graph edges. However, shortest paths formed by graph
edges are not necessarily equivalent to the truly shortest
paths (in the continuous environment). This can be seen in
Figure 1 (right), where a continuous environment has been
discretized into a NavMesh. Each polygon is either blocked
(grey) or unblocked (white). The path found by A* can be
seen in Figure 1 (left) while the truly shortest path can be
seen in Figure 1 (right). In this paper, we therefore develop
sophisticated any-angle find-path algorithms that, like A*,
propagate information along graph edges (to achieve short
runtimes) but, unlike A*, do not constrain paths to be formed
by graph edges (to find short “any-angle” paths). The short-
est paths formed by the edges of square grids can be up to
≈ 8% longer than the truly shortest paths. We show in this
paper that the shortest paths formed by the edges of cubic
grids can be ≈ 13% longer than the truly shortest paths,
which highlights the need for any-angle find-path algorithms
in 3D. We therefore extend Theta* (Nash et al. 2007), an ex-
isting any-angle find-path algorithm, from an algorithm that
only applies to square grids to an algorithm that applies to

147

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)



Figure 2: Truly Shortest Path in 3D

any Euclidean solution of the generate-graph problem. This
is important given that a number of different solutions to the
generate-graph problem are used in the robotics and video
game communities. However, Theta* performs a line-of-
sight check for each unexpanded visible neighbor of each
expanded vertex and thus it performs many more line-of-
sight checks per expanded vertex on 26-neighbor cubic grids
than on 8-neighbor square grids. We therefore introduce
Lazy Theta*, a variant of Theta* which uses lazy evaluation
to perform only one line-of-sight check per expanded vertex
(but with slightly more expanded vertices). We show exper-
imentally that Lazy Theta* finds paths faster than Theta* on
cubic grids, with one order of magnitude fewer line-of-sight
checks and without an increase in path length.

Path Planning in 3D
Path planning is more difficult in continuous 3D environ-
ments than it is in continuous 2D environments. Truly short-
est paths in continuous 2D environments with polygonal ob-
stacles can be found by performing A* searches on visibil-
ity graphs (Lozano-Pérez and Wesley 1979). However, truly
shortest paths in continuous 3D environments with polyhe-
dral obstacles cannot be found by performing A* searches
on visibility graphs because the truly shortest paths are not
necessarily formed by the edges of visibility graphs (Choset
et al. 2005). This can be seen in Figure 2, where the truly
shortest path between the start and goal does not contain any
vertex of the polyhedral obstacle. In fact, finding truly short-
est paths in continuous 3D environments with polyhedral
obstacles is NP-hard (Canny and Reif 1987). Roboticists
and video game developers therefore often attempt to find
reasonably short paths by performing A* searches on cubic
grids. The shortest paths formed by the edges of 8-neighbor
square grids can be up to ≈ 8% longer than the truly short-
est paths, however we show in this paper that the shortest
paths formed by the edges of 26-neighbor cubic grids can be
≈ 13% longer than the truly shortest paths. Thus, neither
A* searches on visibility graphs nor A* searches on cubic
grids work well in continuous 3D environments. We there-
fore develop more sophisticated find-path algorithms.

Notation and Definitions
Cubic grids are 3D grids composed of (blocked and un-
blocked) cubic grid cells, whose corners form the set of all
vertices V . sstart ∈ V is the start vertex of the search, and
sgoal ∈ V is the goal vertex of the search. L(s, s′) is the
line segment between vertices s and s′, and c(s, s′) is the
length of this line segment. lineofsight(s, s′) is true iff ver-
tices s and s′ have line-of-sight, that is, the line segment

Main()1
open := closed := ∅;2
g(sstart) := 0;3
parent(sstart) := sstart;4
open.Insert(sstart, g(sstart) + h(sstart));5
while open 6= ∅ do6

s := open.Pop();7
[SetVertex(s)];8
if s = sgoal then9

return “path found”;10

closed := closed ∪ {s};11
foreach s′ ∈ nghbrvis(s) do12

if s′ 6∈ closed then13
if s′ 6∈ open then14

g(s′) := ∞;15
parent(s′) := NULL;16

UpdateVertex(s, s′);17

return “no path found”;18
end19
UpdateVertex(s, s’)20

gold := g(s′);21
ComputeCost(s, s′);22
if g(s′) < gold then23

if s′ ∈ open then24
open.Remove(s′);25

open.Insert(s′, g(s′) + h(s′));26

end27
ComputeCost(s, s’)28

/* Path 1 */29
if g(s) + c(s, s′) < g(s′) then30

parent(s′) := s;31
g(s′) := g(s) + c(s, s′);32

end33

Algorithm 1: A*

L(s, s′) neither traverses the interior of blocked cells nor
passes between blocked cells that share a face. For sim-
plicity, we allow L(s, s′) to pass between blocked cells that
share an edge or vertex, but this assumption is not required
for the find-path algorithms in this paper to function cor-
rectly. nghbrvis(s) ⊆ V is the set of visible neighbors of
vertex s, that is, neighbors of s with line-of-sight to s.

A*
All find-path algorithms discussed in this paper build on A*
(Hart, Nilsson, and Raphael 1968), shown in Algorithm 1
[Line 8 is to be ignored].1 To focus its search, A* uses an
h-value h(s) for every vertex s, that approximates the goal
distance of the vertex. We use the 3D octile distances as
h-values in our experiments because the 3D octile distances
cannot overestimate the goal distances on 26-neighbor cubic
grids if paths are formed by graph edges. The 3D octile dis-

1open.Insert(s, x) inserts vertex s with key x into the open list.
open.Remove(s) removes vertex s from the open list. open.Pop()
removes a vertex with the smallest key from the open list and re-
turns it.

148



Figure 3: Cubic Grid: Shortest Path Formed by Graph Edges
(top) vs. Shortest Vertex Path (bottom)

tances are the distances on 26-neighbor cubic grids without
blocked cells. More information on computing the length of
the shortest path on a 26-neighbor cubic grid can be found
in the next section. A* maintains two values for every ver-
tex s: (1) The g-value g(s) is the length of the shortest path
from sstart to s found so far. (2) The parent parent(s) which
is used to extract the path after the search halts by follow-
ing the parent pointers from sgoal to sstart. A* also maintains
two global data structures: (1) The open list is a priority
queue that contains the vertices considered for expansion.
(2) The closed list is a set that contains the vertices that have
already been expanded. A* updates the g-value and parent
of an unexpanded visible neighbor s′ of a vertex s in pro-
cedure ComputeCost by considering the path from sstart to s
and from s to s′ in a straight line (Line 30). It updates the
g-value and parent of s′ if this new path is shorter than the
shortest path from sstart to s′ found so far.

Analytical Results
A* finds shortest paths formed by graph edges when used
with admissible heuristics. We now prove that the shortest
paths formed by the edges of 26-neighbor cubic grids and
thus the paths found by A* can be ≈ 13% longer than the
truly shortest paths. To prove this result, we introduce the
notion of vertex paths, which are sequences of (straight)
line segments whose end points are vertices. An example
of a shortest vertex path on a 26-neighbor cubic grid can be
seen in Figure 3 (bottom). The relationship between truly
shortest paths and shortest vertex paths is simple since truly
shortest paths are at most as long as shortest vertex paths.
We argued earlier that the shortest vertex path is equivalent
to the truly shortest path for continuous 2D environments
(Figure 1 (right)), but that they are not necessarily equiva-
lent for continuous 3D environments. The relationship be-
tween shortest vertex paths and shortest paths formed by
graph edges is simple as well since shortest vertex paths are
at most as long as shortest paths formed by graph edges. For

26-neighbor cubic grids the shortest paths formed by graph
edges can be longer than the shortest vertex path, which can
be seen in Figure 3 (top and bottom). The question is how
large can this difference be. We now prove that the shortest
paths formed by the edges of 26-neighbor cubic grids can be
up to ≈ 13% longer than the shortest vertex paths and thus
can be ≈ 13% longer than the truly shortest paths.

For the proof, consider an arbitrary 26-neighbor cubic
grid composed of (blocked and unblocked) cubic grid cells,
whose corners form the set of all vertices V . Construct
two graphs. Graph G = (V,E) contains an edge (v, w)
iff lineofsight(v, w). Graph G′ = (V,E′) contains an edge
(v, w) iff v and w are visible neighbors. Let P be a shortest
path from sstart to sgoal in G (that is, a shortest vertex path).
Let d(u, v) be the length of this path. We construct a path P ′
from P which is a shortest path from sstart to sgoal inG′ (that
is, a shortest path formed by the edges of the 26-neighbor
cubic grid). Let d′(u, v) be the length of this path. Both P
and P ′ are sequences of line segments.

Theorem 1. If there exists a path P between sstart and
sgoal in G, then d′(sstart, sgoal) ≤

√
9− 2

√
2− 2

√
2
√

3 ·
d(sstart, sgoal) ≈ 1.1281 ·d(sstart, sgoal). This bound is asymp-
totically tight.

Proof. We apply Lemma 1 (see below) to the sequence
of line segments that compose P to yield a sequence
of paths in G′, each of length at most ≈ 1.1281 times
the length of the corresponding line segment. Hence,
d′(sstart, sgoal) ≤

√
9− 2

√
2− 2

√
2
√

3 · d(sstart, sgoal) ≈
1.1281 · d(sstart, sgoal). This bound is asymptotically tight
because Lemma 1 is a special case of Theorem 1.

Lemma 1 is a special case of Theorem 1 where path P
is a single edge and thus a straight line. Its proof contains
two parts: (1) We show that the path P ′ can be chosen to
be formed of only edges of cells the interior of which P
traverses. This allows us to determine the length d′(u, v)
of P ′ for a given length d(u, v) of P independent of which
cells are blocked. (2) We maximize the ratio of the lengths
of P ′ and P .

Lemma 1. If (u, v) ∈ E, then d′(u, v) ≤√
9− 2

√
2− 2

√
2
√

3 · d(u, v) ≈ 1.1281 · d(u, v).
This bound is asymptotically tight.

Proof. Assume without loss of generality that u is at the
origin, that is, u = (0, 0, 0). If the edge (u, v) ∈ E can
be formed by edges in E′, then the theorem trivially holds.
Otherwise, consider the prefixL of line segmentL(u, v) that
ends at the first reached vertex (that is, corner of a cell),
which we call t = (r′, u′, b′). Assume without loss of gen-
erality that r′ > b′ ≥ u′ ≥ 1 since the 2D case has been
analyzed before and the r′ = b′ case is trivial. We convert L
into a step sequence of right (R), back (B) and up (U) stpng.
R, B and U stpng increase the x, z and y coordinate (respec-
tively) by one. We assign coordinates to cells, namely the
coordinates of their corners that are farthest away from the
origin. We start with the empty step sequence and traverse L
from u to t. Whenever we leave the interior of one cell c and

149



enter the interior of another cell c′, we append one or two
stpng to the step sequence depending on the 6 possible dif-
ferences between the coordinates of c′ and c. We append R
for (1, 0, 0), B for (0, 0, 1), U for (0, 1, 0), BR for (1, 0, 1),
RU for (1, 1, 0) and BU for (0, 1, 1). The resulting step se-
quence moves from (1, 1, 1) to t = (r′, u′, b′). The cell with
coordinates (1, 1, 1) and all cells with coordinates that are
reached after each underlined step are unblocked because L
traverses their interior. The step sequence always has at least
one R between two Bs and two Us (or the start and a U), and
at least one B between two Us (or the start and a U), and
ends in an R (Step Sequence Property).

We convert the step sequence into a move sequence of
right (r), right-back (rb) and right-back-up (rbu) moves. r
moves increase the x coordinate by one and have length 1;
rb moves increase the x and z coordinates by one each and
have length

√
2; and rbu moves increase the x, y and z co-

ordinates by one each and have length
√

3. We start with
the move sequence that contains a single rbu and use the
following algorithm to append moves to the move sequence
(the underlined statements are redundant and could be re-
moved):

1. Set storeR := 0 and set storeB := 0

2. IF the next step in the step sequence is R THEN (IF storeR = 1
THEN append r and set storeR := 1 ELSE set storeR := 1)

3. ELSE (IF the next step in the step sequence is B THEN (IF
storeR = 1 and storeB = 1 THEN append rb and set
storeR := 0 and set storeB := 1 ELSE set storeB := 1))

4. ELSE (IF the next step in the step sequence is U THEN (IF
storeR = 1 and storeB = 1 THEN append rbu and set
storeR := 0 and set storeB := 0 ELSE append rbu and
set storeR := 0 and set storeB := 0 and delete the step af-
ter U (an R) from the step sequence))

5. Delete the step just processed from the step sequence
6. IF there are stpng remaining in the step sequence THEN go to 2

ELSE (IF storeR = 1 and storeB = 1 THEN append rb and
set storeR := 0 and set storeB := 0 ELSE (IF storeR = 1
THEN append r and set storeR := 0))

The algorithm does not cover some cases because they are
impossible. First, if the next step in the step sequence is B,
then it cannot be that storeR = 0 and storeB = 1. Only a
B without any Rs or Us afterwards can result in storeR = 0
and storeB = 1 (because Rs result in storeR = 1, Us re-
sult in storeB = 0 and only Bs result in storeB = 1).
Thus, the next step in the step sequence cannot be B due
to the Step Sequence Property. Second, if the next step in
the step sequence is U, then it cannot be that storeB = 0.
Only a U (or the start of the step sequence) followed by zero
or more Rs can result in storeB = 0 (because Bs result
in storeB = 1). Thus, the next step in the step sequence
cannot be U due to the Step Sequence Property. Third, if
there are no stpng remaining in the step sequence, then it
cannot be that storeR = 0 and storeB = 1, because the
step sequence ends in R and thus either storeR = 1 (if
the algorithm processes R on Line 1) or storeR = 0 and
storeB = 0 (if the algorithm processes R on Line 4).

The algorithm has one requirement (as stated in the algo-
rithm). If the next step in the step sequence is U and it is

not the case that storeR = 1 and storeB = 1, then the
step after U in the step sequence must be R. If the next step
in the step sequence is U, then we have already shown that
storeB = 1, which implies storeR = 0. Thus, the step
before U in the step sequence must have been B (because
Rs result in storeR = 1, Us result in storeB = 0 and only
Bs result in storeB = 1). Thus, the step after U in the step
sequence must be R since it cannot be B or U due to the Step
Sequence Property.

By design, the algorithm obeys the following invariant at
the end of each iteration. Consider the cell with the coordi-
nates reached from (1, 1, 1) after the execution of all stpng
deleted so far. Decrease its x coordinate by one iff storeR =
1. Decrease its z coordinate by one iff storeB = 1. The
move sequence created so far moves from (0, 0, 0) to ex-
actly these coordinates. In particular, the move sequence
at the end of the last iteration moves from u = (0, 0, 0) to
t = (r′, u′, b′). It is a shortest path from u to t in G′ due to
the following two properties. First, every U step in the step
sequence corresponds to an rbu move in the move sequence.
(When the algorithm processes the U step, it creates the rbu
move.) Every B step in the step sequence that does not corre-
spond to an rbu move corresponds to an rb move. (When the
algorithm processes the B step, it either creates the rb move
or sets storeB := 1 and later creates the rb move.) Thus, the
length of the move sequence is

√
3u′+

√
2(b′−u′)+(r′−b′),

and no path from u to t in G′ can be shorter. Second, it is
formed of edges in G′ since all moves either traverse the
edges, the faces or the interior of the cell with coordinates
(1, 1, 1) or cells with coordinates that are reached after each
underlined step, which are known to be unblocked.

Now we begin part 2 of the proof. Let x3 be the num-
ber of moves of length

√
3, x2 be the number of moves of

length
√

2 and x1 be the number of moves of length 1. We
now maximize the ratio of the lengths of L′ and L by using
Lagrange Multipliers. We want to minimize f(x1, x2, x3)
subject to g(x1, x2, x3) = c for some constant c, where
f(x1, x2, x3) =

√
(x1 + x2 + x3)2 + (x2 + x3)2 + x2

3 =
d(u, t) and g(x1, x2, x3) = x1 +

√
2x2 +

√
3x3 = d′(u, t),

resulting in:

L(x1, x2, x3, λ) = f(x1, x2, x3) + λ(g(x1, x2, x3)− c).

We remove the square root from the minimization because
it is a monotonic function. ∇L = 0 then implies the system
of equations:

∂L
∂x1

= 0 : 2x1 + 2x2 + 2x3 = −λ(1)
∂L
∂x2

= 0 : 2x1 + 4x2 + 4x3 = −λ
√

2(2)
∂L
∂x3

= 0 : 2x1 + 4x2 + 6x3 = −λ
√

3.(3)

From Equations 1, 2 and 3 we get x3 = 1
2 (
√

3−
√

2)(−λ),
x2 = 1

2 (2
√

2 −
√

3 − 1)(−λ) and x1 = 1
2 (2 −

√
2)(−λ).

The worst case ratio of the lengths of L′ and L is:

150



Figure 4: Projection of L onto x-z and x-y Planes

d′(u, t)
d(u, t)

=
x1 +

√
2x2 +

√
3x3√

(x1 + x2 + x3)2 + (x2 + x3)2 + x2
3

(4)

=
2−
√

2 +
√

2(2
√

2−
√

3− 1) +
√

3(
√

3−
√

2)√
1 + (

√
2− 1)2 + (

√
3−
√

2)2

=
√

9− 2
√

2− 2
√

2
√

3 ≈ 1.1281.

This bound is asymptotically tight. Consider a 26-
neighbor cubic grid without blocked cells where sstart =
(0, 0, 0) and sgoal = (bx1c+bx2c+bx3c, bx3c, bx2c+bx3c).
As λ → −∞, d′(u,t)

d(u,t) approaches, but never reaches ≈
1.1281.

There is an interesting geometric relationship between L
and L′. Figure 4 shows the spherical coordinates θ and
φ, which are the angles of the projection of L onto the
x-z and x-y planes, respectively. It holds that tan(θ) =
(x2 + x3)/(x1 + x2 + x3) =

√
2 − 1 = tan(π/8) and

tan(φ) = x3/(x1 + x2 + x3) =
√

3 −
√

2 for a suitable
coordinate system, which implies that θ = π/8 and that
φ = 1

2 × arctan(1/
√

2) since tan(2φ) = 2 tan(φ)/(1 −
tan2(φ)) = 1/

√
2. Thus, θ is exactly half of the smaller

angle between ~vxz = (1, 0, 1) and ~vx = (1, 0, 0) (that is,
π/4) and φ is exactly half of the smaller angle between
~vxz = (1, 0, 1) and ~vxyz = (1, 1, 1) (that is, arctan(1/

√
2)).

Thus, L diverges from L′ as much as possible.
Equation 4 applies to grids with different numbers of

neighbors. For example, we obtain the following known re-
sult by setting x3 = 0 and thus eliminating moves of length√

3: The shortest paths formed by the edges of 8-neighbor
square grids can be up to

√
4− 2

√
2 ≈ 8% longer than the

shortest vertex paths and thus also the truly shortest paths.
The geometric relationship between L and L′ continues to
hold since tan(θ) = x2/(x1 + x2) =

√
2− 1 = tan(π/8),

which implies θ = π/8. This angle is exactly half of the
smaller angle between ~vxy = (1, 1) and ~vx = (1, 0) (that is,
π/4). Thus, L diverges from L′ as much as possible.

A* with Post Smoothing
We proved that the paths found by A* on 26-neighbor
cubic grids can be ≈ 13% longer than the truly short-
est paths. However, simple post processing stpng can be
used to shorten these paths. For example, A* with Post-
Smoothing (A* PS) first runs A* to find a shortest path

ComputeCost(s, s’)34
if lineofsight(parent(s), s′) then35

/* Path 2 */36
if g(parent(s)) + c(parent(s), s′) < g(s′) then37

parent(s′) := parent(s);38
g(s′) := g(parent(s)) + c(parent(s), s′);39

else40
/* Path 1 */41
if g(s) + c(s, s′) < g(s′) then42

parent(s′) := s;43
g(s′) := g(s) + c(s, s′);44

end45

Algorithm 2: Theta*

formed by graph edges and then smoothes this path by re-
peatedly removing a vertex from the path that is between
two vertices on the path with line-of-sight. A* PS typi-
cally finds shorter paths than A*, but is not guaranteed to
find truly shortest paths because it only considers paths that
are formed by graph edges during the search, which of-
ten makes post smoothing ineffective (Nash et al. 2007;
Ferguson and Stentz 2006). This can be seen in Figure 3
(top), where post smoothing deletes only vertexA3U , result-
ing in a path that is still longer than the shortest vertex path
in Figure 3 (bottom). This insight led to the development of
smarter any-angle find-path algorithms, such as Theta*.

Existing Work: Theta*
Theta* is an any-angle find-path algorithm that empirically
finds shorter paths on square grids than both A* and A* PS
with a similar runtime (Nash et al. 2007).2 Theta* is shown
in Algorithm 2. All procedures other than ComputeCost are
identical to those of Algorithm 1 and thus are not shown
[Line 8 is still to be ignored]. We use the straight line dis-
tances c(s, sgoal) as h-values in our experiments because the
3D octile distances can overestimate the goal distances on
26-neighbor cubic grids if paths do not have to be formed
by graph edges. The key difference between Theta* and A*
is that Theta* allows the parent of a vertex to be any ver-
tex, while A* restricts the parent of a vertex to be a visible
neighbor of that vertex. Theta* is identical to A* except that
Theta* updates the g-value and parent of an unexpanded vis-
ible neighbor s′ of a vertex s in procedure ComputeCost by
considering two paths: Path 1: Like A*, Theta* considers
the path from sstart to s and from s to s′ in a straight line
(Line 42). Path 2: To allow for any-angle paths, Theta*
also considers the path from sstart to parent(s) and from
parent(s) to s′ in a straight line (Line 37). It considers
Path 2 if s′ and parent(s) have line-of-sight since Path 2
is guaranteed to be no longer than Path 1 due to the triangle
inequality. Otherwise, it considers Path 1. Theta* updates
the g-value and parent of s′ if the considered path is shorter
than the shortest path from sstart to s′ found so far.

An example trace of Theta* can be seen in Figure 5. Ver-

2There is no known analytical bound on the ratio of the lengths
of the paths found by Theta* and the truly shortest paths.

151



Figure 5: Example Trace of Theta*

tices are labeled with arrows pointing to their parents, larger
spheres represent expanded vertices, and the hollow sphere
represents the vertex currently being expanded. The start
vertex C1L is expanded first, followed by B2L and B3U

(Figure 5). When B3U with parent C1L is being expanded,
A3U is an unexpanded visible neighbor of B3U which does
not have line-of-sight to C1L and thus is updated according
to Path 1. B4U is an unexpanded visible neighbor of B3U

which does have line-of-sight to C1L and thus is updated
according to Path 2.

Extending Theta*: Lazy Theta*
We can easily extend Theta* from an algorithm that only
applies to square grids to an algorithm that applies to any
Euclidean solution of the generate-graph problem (e.g. cu-
bic grids) without any changes to the pseudo code.3 This is a
result of the fact that Theta* is based on the triangle inequal-
ity which is guaranteed to hold for any Euclidean solution to
the generate-graph problem. We only need to adapt its line-
of-sight checks to the solution of the generate-graph prob-
lem. However, Theta* is less efficient on cubic grids than
square grids because it performs a line-of-sight check for
each unexpanded visible neighbor of each expanded vertex.
Line-of-sight checks on grids can be implemented efficiently
with line drawing algorithms (Bresenham 1965), but the run-
time per line-of-sight check can still be linear in the num-
ber of cells and there are many more line-of-sight checks
per expanded vertex on 26-neighbor cubic grids than on 8-
neighbor square grids. Line-of-sight checks for other solu-
tions of the generate-graph problem, such as NavMeshes,
typically cannot be implemented as efficiently. We there-
fore reduce the number of line-of-sight checks that Theta*

3It is important that Theta* be easy to extend given that a num-
ber of different solutions to the generate-graph problem are used
in the robotics and video game communities. While A* can be ex-
tended in a similar manner, interpolation based any-angle find-path
algorithms cannot. For example, Field D* is based on a closed form
linear interpolation equation which requires that the search be per-
formed on square grids (Ferguson and Stentz 2006). The extension
of Field D* from an algorithm that only applies to square grids to
and algorithm that applies to cubic grids requires substantial mod-
ifications and additional approximations (Carsten, Ferguson, and
Stentz 2006).

SetVertex(s)46
if NOT lineofsight(parent(s), s) then47

/* Path 1*/48
parent(s) :=49
argmins′∈nghbrvis(s)∩closed(g(s′) + c(s′, s));

g(s) := mins′∈nghbrvis(s)∩closed(g(s′) + c(s′, s));50

end51
ComputeCost(s, s’)52

/* Path 2 */53
if g(parent(s)) + c(parent(s), s′) < g(s′) then54

parent(s′) := parent(s);55
g(s′) := g(parent(s)) + c(parent(s), s′);56

end57

Algorithm 3: Lazy Theta*

performs. Our inspiration is provided by PRMs, where lazy
evaluation has been used to reduce the number of line-of-
sight checks (collision checks) by delaying them until they
are absolutely necessary (Bohlin and Kavraki 2000). We
therefore introduce Lazy Theta*, a variant of Theta* which
uses lazy evaluation to perform only one line-of-sight check
per expanded vertex (but with slightly more expanded ver-
tices), while Theta* performs a line-of-sight check for each
unexpanded visible neighbor of each expanded vertex. Lazy
Theta* is shown in Algorithm 3. All procedures other than
ComputeCost are identical to those of Algorithm 1 and thus
are not shown [Line 8 is to be executed from now on].

Theta* updates the g-value and parent of an unexpanded
visible neighbor s′ of a vertex s in procedure ComputeCost
by considering Path 1 and Path 2. It considers Path 2 if s′ and
parent(s) have line-of-sight. Otherwise, it considers Path 1.
Lazy Theta* optimistically assumes that s′ and parent(s)
have line-of-sight without performing a line-of-sight check.
Thus, it delays the line-of-sight check and considers only
Path 2. This assumption may of course be incorrect. There-
fore, Lazy Theta* performs the line-of-sight check in proce-
dure SetVertex immediately before expanding vertex s′. If s′
and parent(s′) indeed have line-of-sight (Line 47), then the
assumption was correct and Lazy Theta* does not change
the g-value and parent of s′. If s′ and parent(s′) do not
have line-of-sight, then Lazy Theta* updates the g-value and
parent of s′ according to Path 1 by considering the path from
sstart to each expanded visible neighbor s′′ of s′ and from s′′

to s′ in a straight line and choosing the shortest such path.
We know that s′ has at least one expanded visible neighbor
because s′ was added to the open list when Lazy Theta* ex-
panded such a neighbor.

An example trace of Lazy Theta* can be seen in Figure 6,
which is annotated in the same manner as Figure 5. When
B3U with parent C1L is being expanded, A4U is an unex-
panded visible neighbor of B3U . Lazy Theta* optimisti-
cally assumes that A4U has line-of-sight to C1L. A4U is
expanded next. Since A4U and C1L do not have line-of-
sight, Lazy Theta* updates the g-value and parent of A4U

according to Path 1 by considering the paths from the start
vertex C1L to each expanded visible neighbor s′′ of A4U

(namely, B3U ) and from s′′ to A4U in a straight line. Lazy

152



Figure 6: Example Trace of Lazy Theta*

Theta* sets the parent of A4U to B3U since the path from
C1L to B3U and from B3U to A4U in a straight line is the
shortest such path. In this example, Lazy Theta* and Theta*
find the same path from the start vertex C1L to the goal ver-
tex A4U , but Lazy Theta* performs 4 line-of-sight checks,
while Theta* performs 36 line-of-sight checks.

Variants of Lazy Theta*
We now introduce two variants of Lazy Theta* that will help
us better understand the performance of Theta* with differ-
ent lazy evaluation techniques.

• Lazy Theta*-R: Lazy Theta*-R is identical to Lazy
Theta* except for procedure SetVertex. If Lazy Theta*-R
considers a vertex s for expansion and updates it accord-
ing to Path 1 in procedure SetVertex, it re-inserts s into
the open list with an updated key (which we call a key
update) and continues on Line 7 rather than expanding
s. The idea behind deferring the expansion of s is that it
gives Lazy Theta*-R the opportunity to discover shorter
paths from sstart to s since the shortest path from sstart to
s cannot change once s is expanded.
• Lazy Theta*-P: Lazy Theta*-P is identical to A* except

for procedure SetVertex. Like A*, Lazy Theta*-P updates
the g-value and parent of an unexpanded visible neighbor
s′ of a vertex s in procedure ComputeCost by consider-
ing only Path 1. Unlike A*, Lazy Theta*-P updates the
g-value and parent of s′ in procedure SetVertex by con-
sidering Path 2 immediately before expanding s′. During
procedure SetVertex Lazy Theta*-P checks whether or not
s′ has line-of-sight to parent(parent(s′)). If they have
line-of-sight, Lazy Theta*-P updates the g-value and par-
ent of s′ according to Path 2, namely the path from sstart to
parent(parent(s′)) and from parent(parent(s′)) to s′
in a straight line. Thus, in procedure ComputeCost, Lazy
Theta*-P pessimistically assumes that an unexpanded vis-
ible neighbor s′ of a vertex s does not have line-of-sight
to parent(s), while Lazy Theta* optimistically assumes
that it does. Both Lazy Theta*-P and Lazy Theta* then
check their assumption in procedure SetVertex and, if nec-
essary, correct it immediately before expanding s′. The
idea behind the pessimistic assumption is that it allows
Lazy Theta*-P to maintain a desirable property of Theta*,
namely that every vertex in the open list has line-of-sight
to its parent. This property is required by some variants

of Theta*, such as Incremental Phi* (Nash, Koenig, and
Likhachev 2009).

Experimental Results
We now compare the average path lengths (Path Length),
runtimes (Time), number of vertex expansions (Exp) and
number of line-of-sight checks (LOS) of Theta*, Lazy
Theta* (Lazy), Lazy Theta*-R (Lazy-R) and Lazy Theta*-P
(Lazy-P) when finding paths on 100×100×100 26-neighbor
cubic grids. We average over 100 path planning problems
with different percentages of randomly blocked cells (0%,
5%, 10%, 20% and 30%). The start vertex is always the ori-
gin (0, 0, 0), and the goal vertex is (99, y, z) for randomly
chosen values of y and z. Table 1 compares, from left to
right, the ratio of the lengths of the paths found by A* and
the different any-angle find-path algorithms and the ratios of
the number of expanded vertices, the number of line-of-sight
checks and the runtimes of Theta* and the other any-angle
find-path algorithms. Larger values imply better results. We
make the following observations. Experiments on smaller
grids yield similar results.

• Path Length: The lengths of the paths found by all any-
angle find-path algorithms are similar to one another and
shorter than the lengths of the paths found by A*. The
shortest paths on 8-neighbor square grids and thus the
paths found by A* can be at most ≈ 8% longer than the
truly shortest paths. Thus, the paths found by A* can be
at most ≈ 8% longer than the paths found by Theta*. Ta-
ble 1 shows that the shortest paths found by A* on 26-
neighbor cubic grids without blocked cells (0%) are on
average more than ≈ 8% longer than the shortest paths
found by Theta* and thus also the truly shortest paths.

• Expansions: Lazy Theta* (which makes optimistic as-
sumptions) and Lazy Theta*-P (which makes pessimistic
assumptions) both expand more vertices than Theta*
(which makes no assumptions). The assumptions made
by both Lazy Theta* and Lazy Theta*-P make their g-
values (and thus the keys of the vertices in the open list)
less informed than those of Theta*. Lazy Theta* expands
more vertices than Lazy Theta*-R, but Lazy Theta*-R
performs about two key updates for every vertex that it
expands, which increases both its runtime and the num-
ber of line-of-sight checks that it performs.

• Line-of-Sight: Theta* performs more line-of-sight
checks than any of the other any-angle find-path algo-
rithms because it does not use lazy evaluation to reduce
the number of line-of-sight checks that it performs. Lazy
Theta*-R performs more line-of-sight checks than Lazy
Theta* and Lazy Theta*-P since it can repeatedly con-
sider a vertex for expansion, each of which requires a
line-of-sight check. Lazy Theta*-P performs more line-
of-sight checks than Lazy Theta* because it expands more
vertices than Lazy Theta*.

• Runtime: Theta* has a longer runtime than any of the
other any-angle find-path algorithms. Lazy Theta* has a
shorter runtime than any of the other any-angle find-path
algorithms, which is not surprising since the runtime is

153



% Theta* Lazy Lazy-R Lazy-P Lazy Lazy-R Lazy-P Lazy Lazy-R Lazy-P Lazy Lazy-R Lazy-P
0 1.0836 1.0836 1.0836 1.0836 1.00 1.00 0.45 18.12 18.12 8.11 5.72 5.51 2.33
5 1.0807 1.0803 1.0806 1.0788 0.66 0.95 0.37 11.55 4.87 6.54 1.54 1.04 0.95

10 1.0816 1.0811 1.0816 1.0795 0.81 1.02 0.53 13.04 5.31 8.58 1.66 1.03 1.07
20 1.0761 1.0749 1.0762 1.0719 0.79 1.00 0.54 11.53 5.08 7.88 1.33 0.96 0.98
30 1.0761 1.0748 1.0762 1.0712 0.85 1.04 0.62 11.43 5.09 8.36 1.31 0.92 1.08

A* Path Length / Path Length Theta* Exp / Exp Theta* LOS / LOS Theta* Time / Time

Table 1: Experimental Results

heavily influenced by the number of line-of-sight checks
and Lazy Theta* performs the fewest line-of-sight checks.

To summarize, the experimental results demonstrate that
all variants of Lazy Theta* are superior to Theta* and that
Lazy Theta* has the best tradeoff between the number of
line-of-sight checks and runtime on one hand and path
length on the other hand. Our experimental results may
represent a conservative estimate of the runtime advantage
of Lazy Theta* over Theta* because our line-of-sight check
implementation was optimized by taking advantage of both
the techniques described in (Vykruta 2002) and the simplic-
ity of cubic grids. Each Theta* search performed on the
order of 50,000 line-of-sight checks. The runtime advantage
of Lazy Theta* over Theta* is thus likely larger on solutions
of the generate-graph problem, such as NavMeshes, where
line-of-sight checks may take longer.

Conclusions
We showed in this paper that the shortest paths formed by
the edges of 26-neighbor cubic grids and thus the paths
found by A* can be ≈ 13% longer than the truly short-
est paths. We therefore extended Theta*, an existing any-
angle find-path algorithm, from square grids to cubic grids.
We introduced Lazy Theta*, a variant of Theta*, that prop-
agates information along graph edges (to achieve short run-
times), like A*, but unlike A*, does not constrain paths to
be formed by graph edges (to find short “any-angle” paths).
Lazy Theta*, unlike Theta*, uses lazy evaluation to perform
only one line-of-sight check per expanded vertex (but with
slightly more expanded vertices). We showed experimen-
tally that Lazy Theta* finds paths faster than Theta* on 26-
neighbor cubic grids, with one order of magnitude fewer
line-of-sight checks and without an increase in path length.
Theta* and Lazy Theta* apply to any Euclidean solution
of the generate-graph problem without any changes to the
pseudo code, which is important given that a number of dif-
ferent solutions to the generate-graph problem are used in
the robotics and video game communities.

References
Björnsson, Y.; Enzenberger, M.; Holte, R.; Schaeffer, J.; and
Yap, P. 2003. Comparison of different grid abstractions for
pathfinding on maps. In Proceedings of the International
Joint Conference on Artificial Intelligence.
Bohlin, R., and Kavraki, L. 2000. Path planning using lazy
PRM. In Proceedings of the IEEE Transactions on Robotics
and Automation.

Bresenham, J. 1965. Algorithm for computer control of a
digital plotter. IBM Systems Journal 4:25–30.
Canny, J., and Reif, J. 1987. New lower bound techniques
for robot motion planning problems. In Proceedings of the
Symposium on the Foundations of Computer Science.
Carsten, J.; Ferguson, D.; and Stentz, A. 2006. 3D Field
D*: Improved path planning and replanning in three dimen-
sions. In Proceedings of the IEEE International Conference
on Intelligent Robots and Systems.
Choset, H.; Lynch, K.; Hutchinson, S.; Kantor, G.; Bur-
gard, W.; Kavraki, L.; and Thrun, S. 2005. Principles of
Robot Motion: Theory, Algorithms, and Implementations.
MIT Press.
Ferguson, D., and Stentz, A. 2006. Using interpolation to
improve path planning: The Field D* algorithm. Journal of
Field Robotics 23:79–101.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics 4:100–
107.
Lozano-Pérez, T., and Wesley, M. 1979. An algorithm for
planning collision-free paths among polyhedral obstacles.
Communication of the ACM 22:560–570.
Murphy, R. 2000. Introduction to AI Robotics. MIT Press.
Nash, A.; Daniel, K.; Koenig, S.; and Felner, A. 2007.
Theta*: Any-angle path planning on grids. In Proceedings
of the AAAI Conference on Artificial Intelligence.
Nash, A.; Koenig, S.; and Likhachev, M. 2009. Incremental
Phi*: Incremental Any-Angle Path Planning on Grids. In
Proceedings of the International Joint Conference on Artifi-
cial Intelligence.
Patel, A. 2000. Amit’s Game Programming Informa-
tion. available online at http://theory.stanford.edu/∼amitp/
GameProgramming/MapRepresentations.html.
Tozour, P. 2004. Search space representations. In Rabin, S.,
ed., AI Game Programming Wisdom 2. Charles River Media.
85–102.
Vykruta, T. 2002. Simple and efficient line-of-sight for 3D
landscapes. In Rabin, S., ed., AI Game Programming Wis-
dom. Charles River Media. 83–89.
Wooden, D. 2006. Graph-based Path Planning for Mobile
Robots. Ph.D. Dissertation, Georgia Institute of Technology.

154




