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Abstract

An AI system that is to create a story (autonomously or in in-
teraction with human users) requires capabilities from many
subfields of AI in order to create characters that themselves
appear to act intelligently and believably in a coherent story
world. Specifically, the system must be able to reason about
the physical actions and verbal interactions of the characters
as well as their perceptions of the world. Furthermore it must
make the characters act believably–i.e. in a goal-directed yet
emotionally plausible fashion. Finally, it must cope with (and
embrace!) the dynamics of a multiagent environment where
beliefs, sentiments, and goals may change during the course
of a story and where plans are thwarted, adapted and dropped
all the time. In this paper, we describe a representational
and algorithmic framework for modelling such dynamic story
worlds, Continual Multiagent Planning. It combines contin-
ual planning (i.e. an integrated approach to planning and ex-
ecution) with a rich description language for modelling epis-
temic and affective states, desires and intentions, sensing and
communication. Analysing story examples generated by our
implemented system we show the benefits of such an inte-
grated approach for dynamic plot generation.

Introduction
To tell a story is a challenging task that involves many (if
not most) aspects of human intelligence. If the storyteller
is an AI system it must effectively simulate a coherent story
world and control a number of virtual characters in a man-
ner that seems believable to humans, much as in the Turing
Test. Thus, creating believable stories, whether interactively
or not, can be considered an “AI-complete” task and requires
methods from many subfields of AI, e. g., planning, virtual
agents and multiagent systems, reasoning about beliefs and
intentions, affective computing, and dialogue systems.

Among these methodologies, planning has probably re-
ceived the most attention in story generation (Meehan 1977;
Lebowitz 1985; Riedl and Young 2004; Si, Marsella, and
Riedl 2008). Its relevance results from the structural simi-
larity between plans and plots, both of which describe tem-
poral and causal relations between events. Indeed, temporal-
causal coherence, as modeled by the semantics of classical
STRIPS-like planning formalisms, can be considered a nec-
essary condition for stories (at least non-postmodern ones).
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Yet, Planning research follows a different research agenda
than Narrative Intelligence and therefore has developed rep-
resentations and algorithms that are only of limited use to
plot creation. As a result, while plans are used in story-
telling systems, many interesting aspects of narrative, e. g.,
motivation and emotion, must be handled outside the plan-
ner. While this is fine in itself, it prevents long-time plotting,
usually done by a planner, from taking these aspects into ac-
count, e. g. say, planning for motivation changes based on
emotional reactions to events. Therefore, in this work, we
try to integrate ideas from many of the AI fields mentioned
above directly into the planning formalism and algorithm to
make it directly suitable for narrative generation.

The paper is structured as follows. We first review rele-
vant work in fields outside narrative research. Then we de-
scribe a planning formalism that integrates many of these
relevant aspects. We then describe a planning algorithm us-
ing this representation, Continual Multiagent Planning, and
briefly present our implementation. Analysing a story gener-
ated by our program we discuss the benefits of our approach.
We conclude with a discussion of its relation to previous
work in narrative generation and its possible future uses and
extensions.

Related Work I

Our work integrates ideas from several subfields of AI,
in particular classical and distributed planning, multiagent
systems, knowledge representation and reasoning (mainly
about perceptions, beliefs, and emotions) and dialogue sys-
tems. Due to space limits, we can only discuss few prototyp-
ical inspirations here. At the end of the paper, we will relate
our approach to previous work in storytelling research.

Most stories feature several characters and can thus be re-
garded as multiagent environments. To model the beliefs of
different agents (and their reasoning about each other) we
will integrate multiagent epistemic modalities into the plan-
ning representation (Fagin et al. 1995). Additionally, simi-
larly to BDI models of multiagent cooperation, we will ex-
plicitly model the desires and intentions of different agents
(Grosz and Kraus 1996). In order to describe how charac-
ters gather new information, we will need to model commu-
nication and perception as well. Here, we are inspired by
approaches to collaborative dialogue (Lochbaum 1998) and
planning with sensing (Petrick and Bacchus 2002).
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Algorithmically, our work is based on the intuition that
the dynamics of plots are hard to describe naturally with a
single plan. Often, plots depend on plans failing or being
thwarted, then being dropped or adapted, and finally succeed
or fail (where which is which often lies in the eye of the be-
holder), i.e. as a series of planning and execution cycles per-
formed by the characters. Therefore, what we develop is a
Distributed Continual Planning (DCP) method (DesJardins
et al. 1999; Brenner and Nebel 2009).

Modelling Story Worlds in a Multiagent

Planning Formalism

Story worlds usually are multiagent environments. To de-
scribe plausible behaviour in such worlds, we need to rea-
son about their dynamics. Thus, we must be able to repre-
sent not only the physical actions that agents can perform,
but also their perceptual and communicative capabilities as
well as their (mutual) beliefs and (joint) goals. To do this in
a domain-independent fashion, we use a formal descripition
language, the Multiagent Planning Language MAPL (Bren-
ner and Nebel 2009). In this section, we present MAPL in-
formally and discuss the extensions made for this paper.

MAPL is a multiagent variant of PDDL (Planning Do-
main Definition Language), the de facto standard language
for classical planning. Instead of propositions, MAPL uses
multi-valued state variables (MVSVs). For example, a state
variable color(ball) would have exactly one of its possible
domain values red, yellow, or blue, as compared to the three
semantically unrelated propositions (color ball red), (color
ball yellow), (color ball blue). MVSVs have successfully
been used in classical planning in recent years,but they also
provide distinct benefits when representing story worlds: a)
Incomplete knowledge can be expressed by adding an un-
known value to the domain of a MVSV, b) this idea can be
extended to model beliefs and mutual beliefs among char-
acters (Fagin et al. 1995) c) knowledge-seeking actions
can be modelled as supplying a yet unknown MVSV value.
Thus, sensing and communicative acts are modelled like wh-
questions (what colour? where? etc.), d) due to the mutual
exclusivity of MVSV values, they are well suited for Initial
State Revision (Riedl and Young 2006).

In addition to the usual preconditions and effects, MAPL
actions have a controlling agent who executes the action.
MAPL assumes that the controlling agents are fully au-
tonomous when executing actions, i. e. there is no external
synchronization or scheduling component. Consequently,
an action will only be executed if, in addition to its pre-
conditions being satisfied, the controlling agent knows that
they hold. Implicitly, all MAPL actions are extended with
such knowledge preconditions. Similarly, implicit com-
mitment preconditions describe, intuitively, that if action a

controlled by agent A is included in agent B’s plan, this can
only be done if A has agreed to perform a.

MAPL models three different ways to affect the beliefs
of agents: sensing, copresence, and communication. Sensor
models describe under which conditions the current value of
a MVSV can be perceived. Copresence models are multia-
gent sensor models that induce mutual belief about the per-

ceived state variable. Informally, agents are copresent when
they are in a common situation where they can not only per-
ceive the same things but also each other. Communicative
acts in MAPL include declarative statements, questions, re-
quests, and acknowledgments. While declarative statements
change the belief state of another agent similarly to sensory
actions, the other types of communicative acts affect aspects
of the agent that are typically considered static in AI Plan-
ning, namely the goals of agents.

MAPL goals are first-order formulae, like in PDDL. For
storytelling we mostly use them in a specific conditional
form: By introducting a new MAPL keyword, “currently”,
we can refer to the current state of the world and the agents’
beliefs about it in such a conditional goal formula. MAPL
also has temporary subgoals (TSGs), which must be sat-
isfied at some point in the plan, but may be violated in
the final state. TSGs are represented as explicit symbols
in MAPL and thus can be reasoned about by a planner.
In particular, they can be active or inactive. This is also
true for conditional goals, whose antecedent (condition) may
hold in the current state or not. Both kinds of goal activa-
tion mimic how commitment turns desires into intentions in
BDI models of human practical reasoning (Bratman, Israel,
and Pollack 1988; Cohen and Levesque 1990). Through-
out, the paper we will often refer to activated goals as inten-
tions. Assertions are counterfactual statements, e. g., “If I
knew where to find a sword, I could slay the dragon”, that
the continual planner may use as temporary subgoals in or-
der to gather missing information necessary to achieving its
main goal. Assertions enable the agent to postpone plan-
ning for subproblems until it has gained more knowledge,
i. e. by partially executing a plan and then switching back to
more detailed planning. Thus, assertions encourage proac-
tive goal-driven information gathering (Brenner and Nebel
2009), which for plot generation often seems to be a desir-
able character trait.

MAPL plans are partially ordered, using different kinds
of causal links. This is advantageous for plot generation
because plans provide explanations for the behaviour of the
characters. In contrast to other plan-based approaches we
will not use plans directly to represent the whole plot. Since
during a continual planning episode usually multiple plans
are being generated, executed, and revised, we consider as
the plot the execution history of the episode, annotated with
relevant (possibly false) beliefs and goals. This plot graph
comprises a totally ordered “fabula”, i. e. the sequence of
events that occur. Yet, it also uses explanations from plans
and plan monitoring to relate actions to each other by various
types of causal links. Such causally annotated histories can
be naturally regarded as plots in the sense of E. M. Forster
(Forster 1927) and provide ample information for discourse
generation, i. e. the presentation of the plot.

Continual Multiagent Planning

How can we generate MAPL plot graphs? The method
presented in this section, Continual Multiagent Planning
(CMP), is a distributed algorithm, i. e. it describes planning
by multiple agents, who all have different motivations and
beliefs about the world. Being fully distributed, it can be ap-
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plied to large interactive environments, e. g., multiplayer on-
line role-playing games. However, it also models planning
for multiple agents, since even the individual agents’ plans
may involve several agents if that is necessary to achieve her
goals. For storytelling, this means that CMP allows for both
character-centric and author-centric plot generation.

The CMP algorithm is shown in algorithm 1 (its subpro-
cedures will only be presented informally). CMP extends
Continual Collaborative Planning (CCP), an approach de-
veloped in the context of situated human-robot interaction
(Brenner and Nebel 2009). Like in CCP, CMP agents de-
liberately switch between planning, (partial) plan execution,
monitoring, plan adaptation and communication. However,
CMP agents are not required to be benevolent and always
willing to adopt any TSGs proposed by other agents – luck-
ily, since this would prevent conflict, intrigue and drama in
the generated plots.

Algorithm 1 CMP AGENT(S, G)

P = ∅

Received no message:
if S satisfies G do

return “goal reached”
else

P = MONITORINGANDREPLANNING(S, G, P )
if P = ∅ then

return “cannot achieve goal G”
else

e = EXECUTENEXTACTION(S, P )
(S, P ) = STATEESTIMATION(S, e)

Received (tell-val vx) from agent a:
add v

.
=x to S

Received request(sg) from agent a:
if cooperative(self, a) 6∈ S then

send “will not adopt request sg” to a
P = MONITORINGANDREPLANNING(S, G ∪ sg, ∅)
if P = ∅ then

send “cannot execute request sg” to a
else

add sg to G as temporary subgoal
send “accept request sg” to a

When used for centralised planning (i. e. one planner con-
trols all agents) or when no communication is taking place,
a CMP agent alternates between (re-)planning and execu-
tion. Subprocedure MONITORINGANDREPLANNING first
determines whether a new planning phase should be trig-
gered, either because the agent has sensed an external event
that has invalidated its previous plan, or because her goals
themselves have changed, or because of an assertion that
was previously used to advance planning despite missing in-
formation and whose detailed planning is now triggered be-
cause additional knowledge has become available (Brenner
and Nebel 2009). If, for any of the above reasons, planning
is triggered the agent replans for those parts of its plan that
are no longer valid. The details of the actual (re)planning are
irrelevant for the purpose of this paper (any state-of-the-art
PDDL planner may be adapted for the purpose); it results in
an asynchronous MAPL plan that specifies actions for (pos-
sibly) several agents and the causal and temporal relation

between them necessary for achieving the planning agent’s
goal. If the plan involves other agents than the planning
agent or those characters she can directly control, the new
plan must ensure that they are commited to the (sub)goals
their actions contribute to. In the original CCP the new plan
would have included maximally one negotiate plan(a) ac-
tion for each agent a appearing in the plan, since all agents
were supposed to be cooperative and their exact role in the
plan could freely be discussed in the negotation phase. This
is different in CMP, where the planning agent must consider
different options for making a commit to a subgoal. This
can either be done by negotiation as before, if a is known to
be cooperative, or by some form of persuasion, i. e. indirect
activation of a conditional goal of a. For example, a hunter
may present a bear with a honey comb to raise its appetite
and make it walk into a trap. Indirect activation may also
be recursive, e. g., when a bank robber r threatens a bank
clerk c, thereby making cooperative(c,r) true and thus make
c open for “requests” in the next step.

As soon as a CMP agent has found (or repaired)
a valid plan it enters the execution phase (function
EXECUTENEXTACTION). First, an action e on the first level
of the plan, i. e. one whose preconditions are satisfied in
the current state, is chosen non-deterministically. If the ac-
tion is executable by the CMP agent himself (this includes
communicative actions), it is executed. If not, the planning
agent tries to determine whether the action was executed
by its controlling agent, i. e. it actively observes changes in
the environment relevant for its plans. In both cases, the
CMP agent will try to update its knowledge about the world
state based on the expected effects and the actual perceptions
made (function STATEESTIMATION).

Implementation In our view plots do not only con-
sist of plans, but also of their execution, and the resulting
re-evaluation of beliefs, goals, and plans by all character
agents. Such an approach can best be implemented in a sim-
ulation environment. This is most obvious in interactive nar-
rative, where some characters are not controlled by the sys-
tem, but by human users. Yet simulation is also a convenient
way to compute the complex results of several characters
acting simultaneously in a common environment, observing
and influencing each other constantly, even if controlled by a
single “author”. Therefore we have implemented MAPSIM,
a software environment that automatically generates mul-
tiagent simulations from MAPL domains. In other words,
MAPSIM interprets the MAPL domain both as the planning
domain for each CMP character, but also as an executable
model of the environment, so that it can determine the re-
sults of the execution of the characters’ actions.

Note that while for generating the story analysed in the
following section, we invoked MAPSIM non-interactively
to emphasise the autonomy of the approach, MAPSIM can
also be used interactively. Human users may “play” the
role of any character and send MAPL commands to the
simulation directly.
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Figure 1: A story in the Quests domain non-interactively
created by MAPSIM.

1 This is a story about Smaug, King Arthur and Prince
Valiant.

2 King Arthur was in the castle. 3 The treasure was in the
cave. 4 King Arthur rode to the cave. 5 King Arthur saw
that Smaug was in the cave.

6 King Arthur rode to the castle. 7 King Arthur saw that
Prince Valiant was in the castle. 8 ’Please bring me the
treasure, Prince Valiant,’ King Arthur said. 9 ’As you
wish, King Arthur,’ Prince Valiant replied. 10 ’Where is
the treasure, King Arthur?’ Prince Valiant asked. 11 ’The
treasure is in the cave, Prince Valiant,’ King Arthur said.
12 ’Thank you,’ Prince Valiant said.

13 Prince Valiant rode to the cave. 14 Prince Valiant saw
that Smaug was in the cave. 15 Smaug tried to kill Prince
Valiant - but failed! 16 Prince Valiant saw that Smaug was
not dead. 17 Prince Valiant killed Smaug.

18 Prince Valiant took the treasure. 19 Prince Valiant rode
to the castle. 20 Prince Valiant gave King Arthur the trea-
sure. 21 ’Thank you for bringing me the treasure, Prince
Valiant,’ said King Arthur.

22 King Arthur and Prince Valiant lived happily ever after.
Smaug did not.

Analysis of a Worked Example

In order to show the benefits of our integrated approach, we
will now analyse a story generated by MAPSIM. It is repro-
duced in figure 1. During the creation of the story a total of
20 different plans were created by the three characters and
the simulation itself. On a 1.6 GHz Intel Pentium and 1GB
RAM the total planning time was less than 500ms.

As input, MAPSIM was given a formal MAPL domain
description and individual goals and beliefs for each of the
three characters as well as the true initial world state. The
resulting plot graph is (for reasons of space) only shown
partly in figure 2. It roughly corresponds to lines 9–15 of
figure 1 and gives an impression of the MAPL representa-
tion of the plot. The first and last line of figure 1 have no
direct correspondence in the plot graph, but are directly pro-
duced by MAPSIM: In line 1 the characters are introduced,
whereas in line 22 MAPSIM reports on which of the agents
have achieved their goal and which have not.1

Multimodal interaction Note first that characters’ be-
haviour as generated by CMP seamlessly interleaves phys-
ical action, sensing, and communication, e. g. in lines 6–
8. Due to the explicit representation of epistemic states
and information-gathering actions, the characters will plan

1Obviously the textual output could be vastly improved, e. g.,
by proper generation of referring expressions. This output was gen-
erated using action-specific English templates that the MAPL do-
main can be annotated with. This way, plot graphs from arbitrary
domains can quickly be rendered into a readable natural-language
output.

which gaps in their knowledge they need to fill in order to
further detail their plans. This may result in active observa-
tion (as in line 5, where Arthur checks whether the cave is
empty) or in information-seeking subdialogues (as in lines
10–12).

Plan dynamics When Arthur arrives at the cave, he ob-
serves that the dragon, Smaug, is there. Arthur knows that he
cannot take the treasure while the dragon is present. Thus,
CMP detects, in its monitoring phase, that Arthur’s plan has
become invalid. Arthur generates a new plan, this time a
multiagent plan in which Valiant is supposed to help him
get the treasure. Switching to the new plan, Arthur leaves
the cave and returns to the castle. We claim that it would be
quite difficult to describe the plot so far with a single plan, let
alone generate it with a single planner run. Continual plan-
ning, on the other hand, seems like the natural way to model
how a character reacts to the obstactles she encounters.

A form of proactive continual planning is exemplified in
lines 8-13. Prince Valiant initially does not know the lo-
cation of the treasure. Thus he could normally not find a
plan to get it and therefore would have to decline Arthur’s
request. However, the planning domain contains a counter-
factual assertion stating, informally: “If I knew where the
treasure was, I could make a plan to bring it somewhere
else”. Using this assertion, Valiant is able to deliberately
postpone part of the planning process and first engage in the
short subdialogue of lines 10–12 in order to gather the miss-
ing information (Brenner and Nebel 2009). The semantics
of assertions is such that, when the missing information be-
comes available, a new planning phase is triggered. It pro-
vides Valiant with a more detailed plan – which he executes
until he also encounters Smaug and must again extend the
plan to include fighting the dragon. In a different setting
(“If I knew where the grail was...”) satisfying the replanning
condition of the assertion, i. e. closing the knowledge gap,
may be the more complex part and constitute most of the
resulting plot.

Goal dynamics The standard use of continual planning
is to adapt plans to changing conditions in the outside world
or an agent’s belief about it. However, in real life (and
thus in stories) motivations change, too. CMP agents can
adopt temporary subgoals, e. g., when accepting a request
by another agent, as in lines 9 and 12 of figure 1. Such
changing goals usually lead to more substantial changes in
the plot than mere plan adaptation for the same goal. Only
after Arthur’s request (line 8), Valiant gets involved in the
story at all. In particular, this prompts a nice example of
mixed-initiative behaviour (line 10), where Valiant immedi-
ately asks back to get more information necessary to achieve
his new goal.

Characterisation by affective goal activation As noted
above, changes in an agent’s goals may lead to substantial
changes in her behaviour. Indeed, it can be argued that a
character is better characterised by her motivations than her
(fairly volatile) current state of knowledge. However, a com-
plex character has many motivations. Depending on her in-
ternal (or some external) context, motivations may be ac-
tive (i. e. they drive her current behaviour) or inactive. Such
context-dependent goal activation allows for a more fine-
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Figure 2: Plot graph (excerpt) for the Quest story generated by MAPSIM. Legend: temporal links (bold black), causal links
(black), threat prevention links (blue), false belief links (red), TSG achievement (olive box). For clarity, causal links with facts
that are true at the beginning have been omitted.

grained characterisation. e. g., in our story, the dragon will
only want to kill humans when they have entered its lair.

Using MAPL’s currently keyword, we can refer to the
current state in a goal formula and describe the conditions
for goal activation and deactivation.Several such conditional
goals can be defined for a character. Together they can de-
fine a multi-faceted personality whose concrete intentions
may change depending on the current situation, but who will
show consistent behaviour in similar situations.

It is important for storytelling that the conditional goals
characterising an agent can refer to emotions or mental
attitudes directed towards other agents and objects, e. g.,
angry(a), loves(a,b), etc. For example, if the dragon
only attacked intruders when angry, but was willing to share
the treasure when happy, another story might tell how Prince
Valiant charmed the dragon and thus could acquire the trea-
sure without violence. This also opens CMP for use in af-
fective storytelling (Pizzi and Cavazza 2007).

Beliefs, desires, intentions Through MAPL’s commit-
ment preconditions CMP enforces characters to commit to
a goal/desire before they can actively pursue it, i.e. make
it an intention first (Bratman, Israel, and Pollack 1988;
Cohen and Levesque 1990). In the multiagent case this
means that if character A is not directly controllable by an-
other agent B, B must first somehow persuade A to commit
to a new goal before B can assume A’s working towards it.
In our story, Arthur knows that he cannot “use” Valiant in his
plan to get the treasure unless Valiant commits to that goal
himself, i. e. makes it an intention of his own. Here, CMP
finds a plan for Arthur to achieve this using a simple request
(lines 8–9), since in the MAPL description Valiant has been

modelled as being cooperative towards Arthur. On the other
hand, before CMP could include actions of the dragon into
Arthur’s plans, it would first have to indirectly activate one
of the dragon’s own desires.

False beliefs are important for plots, as they result in
misunderstandings, in misguided or unsuccessful behaviour.
Again, continual planning can be used to reason about the
consequences of believing something wrongly. To show
this, the example domain is set up such that the “stronger”
character always wins a fight. Here, Smaug falsely believes
to be stronger than Prince Valiant and attacks him (line 15),
which eventually leads to his own death.

Chekhov’s gun The plot graph describes which facts
and objects are used in the plot. Those facts should be men-
tioned so that the reader/player can follow the reasoning of
the characters. Crucially, the plot graph does not only point
to preconditions of actions that characters actually perform,
but also to those beliefs never used in an executed plan (be-
cause of the plan or the belief becoming obsolete first), but
that are necessary to explain the changing motivations and
plans of the characters.

Related Work II

Having presented our approach to planning for storytelling,
we can finally relate it to existing storytelling systems
(again, only few representative ones). It should be kept in
mind, though, that we do not claim this to be a full sto-
rytelling framework, but only to provide planning repre-
sentations and algorithms appropriate for being used inside
such a system. MAPSIM is only a research prototype and a
domain-independent testbed to evaluate variants of CMP.
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CMP, when used by individual agents in a multiagent sim-
ulation like MAPSIM, works as a character-centric approach
to storytelling (in contrast to author-centric and story-centric
approaches (Mateas and Sengers 1999)) in the tradition of
Meehan’s Tale-Spin (Meehan 1977). However, since the
intentions of several characters are reasoned about explic-
itly and individually in each plan, it also integrates aspects
of author-centric approaches. In this respect, our approach
seems closest to Fabulist (Riedl and Young 2004). When
CMP is used in the context of a simulation its capabil-
ity to deliberately devise plans that may fail and to reason
about dynamic goals of characters makes it quite suitable to
be used for dynamic, interactive storytelling like Emergent
Narrative (EM) (Aylett 1999).

Thus, MAPL and CMP integrate features of both author-
centric and character-centric approaches. It would be of
great interest to evaluate their use in Interactive Storytelling
frameworks that strive for a similar integration, e. g., (Si,
Marsella, and Riedl 2008; Porteous and Cavazza 2009).

Discussion

The main contribution of this article is an integration of
models and methods from a number of AI subfields into
a representational (MAPL) and algorithmic (CMP) frame-
work that is well-suited for an “AI-complete” task like sto-
rytelling. Providing both a rich representation language
for reasoning about multi-character environments and a dis-
tributed algorithm for planning by multiple agents, it com-
bines aspects of both character-centric and author-centric
approaches to storytelling. A specific emphasis has been
put on enabling the generation of dynamic plots, in which
beliefs, motivations and character traits may change. We
believe that, due to a decade-long focus on planning as an
isolated one-shot problem, these dynamics have been insuf-
ficiently studied in both planning and storytelling research—
despite the fact that plot twists and character development
are often said to be what makes a story interesting.

Interestingness or, more technically, plot quality is not an
explicit concept anywhere in our approach. Thus it is not
surprising that we cannot reliably claim that our approach
will generate interesting stories. To this end, we will have
to extend the approach by an author or, even better, a reader
model. In future work, we will investigate how a CMP au-
thor agent can try to achieve plot goals by means of initial
state revision (Riedl and Young 2006) and late commitment
(Swartjes and Vromen 2007), concepts inspired by game-
mastering in pen-and-paper roleplaying games. CMP sup-
ports these ideas almost directly, because it can reason about
possible MVSV values that have not yet been sensed by any
of the characters. In further work, we will consider reader
agents who follow the unfolding of the plot and assess it
using subjective, externally defined quality metrics. Given
such a metric, we can iteratively use the author agent to gen-
erate series of slightly modified stories, i. e. we can mimic
the process of story revision in a form of local search in the
space of plot graphs.

At first glance, creating believable interactions between
characters in a story world may seem remote from more
“serious” AI topics like robotics. However, this work was

inspired by our research on human-robot collaboration and
will, in turn, most certainly find itself being integrated into
robots again now.
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