

Using Imagery to Simplify Perceptual Abstraction

in Reinforcement Learning Agents

Samuel Wintermute

University of Michigan

2260 Hayward St.

Ann Arbor, MI 48109-2121

swinterm@umich.edu

Abstract

In this paper, we consider the problem of reinforcement
learning in spatial tasks. These tasks have many states that
can be aggregated together to improve learning efficiency.
In an agent, this aggregation can take the form of selecting
appropriate perceptual processes to arrive at a qualitative
abstraction of the underlying continuous state. However, for
arbitrary problems, an agent is unlikely to have the
perceptual processes necessary to discriminate all relevant
states in terms of such an abstraction.
 To help compensate for this, reinforcement learning can
be integrated with an imagery system, where simple models
of physical processes are applied within a low-level
perceptual representation to predict the state resulting from
an action. Rather than abstracting the current state,
abstraction can be applied to the predicted next state.
Formally, it is shown that this integration broadens the class
of perceptual abstraction methods that can be used while
preserving the underlying problem. Empirically, it is shown
that this approach can be used in complex domains, and can
be beneficial even when formal requirements are not met.

 Introduction

Many problems that an intelligent agent might address
have spatial characteristics. Here, we are interested in
solving spatial problems through reinforcement learning
(RL, Sutton & Barto, 1998). RL is a methodology for
solving problems modeled as Markov Decision Processes
(MDPs), where the agent learns a policy that maps states to
actions. The number of states in an MDP has a large
influence on the agent’s performance. Spatial data is
inherently continuous, but directly learning a policy in
terms of continuous states is intractable for many
problems, as the number of states the agent encounters can
be infinite. To decrease the size of the state space, states
that are functionally equivalent can be aggregated. Here,
aggregate states will be called abstract states, and the
original states concrete states.

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

 For an agent receiving low-level perceptual data, often a
library of perceptual abstraction procedures are available,
such as the ability to identify objects and simple qualitative
properties of how they relate, which can be used to
compose state abstractions (e.g., Stober & Kuipers, 2008).
For example, in the blocks world, predicates such as

can be composed from object identities and
primitive topology and direction information (Wintermute,
2009). An abstract state composed of these predicates
implicitly aggregates many concrete states where
properties such as the shape and position of the blocks
differ in unimportant ways.
 However, there is a fundamental problem with this
approach: it is unlikely that there exists a set of perceptual
abstraction methods that can work well in all spatial
problems (this is related to the poverty conjecture of
Forbus et al. (1991)). Even if a human is designing an
abstraction for a single problem, it is often difficult to do
so while perfectly preserving the underlying problem. Both
of these situations have the same implication: the best
available state-space abstraction may be imperfect.
 Although abstraction in spatial problems can be difficult,
movements through space are often simple and easy to
locally predict in terms of concrete states. Research in
bimodal spatial reasoning, also known as imagery, pursues
task-independent means for this sort of prediction (e.g.,
Wintermute & Laird, 2008). An imagery system maintains
representations of a problem state in terms of both concrete
information (such as a spatial representation) and abstract
information, where perceptual processes derive the abstract
representation from the concrete representation.
Predictions can be made in terms of the concrete
representation, and perceptual processes can then be
applied to the “imagined” concrete state to determine the
resulting abstract state. It has previously been identified
that imagery can be useful to compensate for difficulties in
perceptual abstraction (Wintermute, 2009a; Wintermute &
Laird, 2009). Here, we formally examine why that
approach is useful and how imagery can be tightly
integrated with RL.

1567

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

 The technique introduced here, Reinforcement Learning
using Abstraction and Imagery (ReLAI), works in
conjunction with an existing RL algorithm, Q-learning.
Where conventional Q-learning learns the value of each
action in each state, with ReLAI it learns the value of state-
action pairs sharing common predictions.
 Formally, ReLAI is a technique for aggregating state-
action pairs in the table of values learned by Q-
learning. The aggregate (or category) that an pair
belongs to is determined by the predicted next abstract
state resulting from action in concrete state . If abstract
states are related in the right way to the concrete state
space (as will be discussed), and predictions are accurate,
Q-learning will converge to the optimal policy, potentially
much faster than it would without aggregation.
 Conventionally, abstraction in RL has been used as a
means to model reduction, where a new MDP is generated
by aggregating states together (Li et al., 2006). However,
with ReLAI, abstract states are used to categorize
pairs in the original MDP, not to generate a new MDP.
 In this paper, -aggregation in general is first
examined, showing sufficient conditions for convergence
to the optimal policy. Then, this approach is compared to
MDP reduction, showing that -aggregation can result
in a more compact learning problem. ReLAI is then
considered as a special case of this aggregation, and the
convergence criteria are translated to requirements on how
abstract states must relate to concrete states. It is then
shown that the ability to use ReLAI instead of simple state
aggregation increases the class of perceptual abstraction
mechanisms that can be used by an agent. Finally, ReLAI
is shown to provide benefits even when formal
requirements are not met. An agent playing the game
Frogger II is demonstrated. Given a set of mechanisms for
perception (from the pixel-level on up), imagery, and
abstraction, ReLAI outperforms state aggregation in this
domain.
 In short, compared to the alternative of simply using
perceptual abstractions as problem states, integrating an
imagery component with RL via ReLAI formally increases
the class of abstraction mechanisms an agent can use, and
provides substantial empirical benefits within tasks.

State-Action Aggregation in RL

ReLAI is a technique for aggregating state-action pairs in a
Q-learning agent. In this section, we consider this concept
separately, as background for the rest of the paper. Basic
definitions and notation will follow Sutton & Barto (1998).
At every time step, the agent observes a state , and
selects an action . The environment then transitions and
provides the agent with a reward at the next time step.
 Previous work has shown that Q-learning with state-
action aggregation converges to the optimal function
when all pairs in the same category have the same
value (Goetschalckx, 2009). Prior systems have used
function approximation schemes that can be formulated as

-aggregation, however, there is little other theoretical
work considering this aggregation as an exact method.
 Properties of the function that assigns categories will be
examined here. This function, , returns a symbol
representing the category of . An appropriate function
only assigns two pairs to the same category if their
respective values are the same, and will hence allow Q-
learning to converge.
 Here, we will show sufficient conditions such that a
function is appropriate. These conditions are that, for all
states and actions, the reward received for a transition is
independent of , given , and that categories of
actions in a given state are independent of the pair
that led to that state, given the category of that pair. That
is, these equations must be true:

 (1)

 (2)

 is defined as .

Here, represents state transition probability for action
 in state going to state , and represents expected
reward for in . In the case where Equations 1 and 2 are
true, similar quantities can be defined with respect to
categories. The expected reward for executing an action in
a given category will be called . Due to Equation 1, this
is equal to for all in category .
 For the state transition component, an additional concept
is needed. A block (written) is a set of states that have
the same categories for all actions. All states are in some
block, and signifies the block of state . More
formally:

The function returns the category of action in
block .
 Equation 2 requires that the categories of actions in a
state be independent of the previous , given

. The block of is determined by the action
categories, so it must then also be independent of ,
given . This means that all pairs in a common
category must share a common probability of transitioning
to a given block. is defined as the probability of

transitioning to a state in block , and as the
probability of transitioning to block with an action in
category , which must be equal to for all in .

 1

 With these concepts, category values can be defined:

=

It will now be shown that when the conditions are met,

, .

1 In the general case, where equations (1) and (2) are not necessarily true,

similar quantities to and could be defined, but they would be

dependent on the policy, since pairs that are in the same category
but have different expected rewards or block transition probabilities could
be sampled at different rates depending on the policy.

1568

Since for all , and ,

=

The probability of transitioning to a block is the sum of the

individual probabilities of all states in that block, so

=

All states in a block have the same categories, so:

=

After combining sums, we have:

=

 This is the same set of equations defined by ,

simply renamed to , so the two formulations are

equivalent. Since for all and ,

all in the same category must have the same

value. Therefore, if is such that Equations 1 and 2 hold,

Q-learning aggregating pairs according to will

converge to , resulting in a learned policy as good as

what would have been learned without aggregation.

State-Action Aggregation vs. MDP Minimization

Figure 1 shows a simple problem that illustrates the
benefits of state-action aggregation. The agent starts in
some cell of a grid. There are two actions available, , and
, which move the agent to the adjacent cell to the North or

East. In each cell, there is an object of a particular type (A
or B) that affects the reward the agent receives when it
enters that cell. Each type causes a specific reward if the
agent transitions to a containing cell—A causes a reward
of -10 and B +1. In addition, B causes the episode to
terminate. The grid is of infinite size, and the objects are
randomly distributed within it in a fixed proportion (one-
third B, two-thirds A). However, the entire layout of the
world is inaccessible to the agent, as it has a small sensory
horizon and can only perceive the cell it is in, along with
the adjacent cells to the North and East.
 This is an episodic task, and the object layout changes
between episodes (sampled according to the given
distribution). Figure 1 shows one possible state, viewed as
a map and as an MDP. The letters in the MDP states
correspond to the visible objects to the North, in the
current cell, and to the East respectively. The figure shows
the transitions from the state AAB. For example, moving
East from AAB will always result in some state ?B?,
where the two ? values—the North and East objects in the
new state—are A or B with the appropriate probabilities.
Note that the map and accompanying description contain
useful information missing from the MDP. In particular, it
is apparent that the only relevant information for deciding
which action to take is the contents of the cell in that
direction. An agent viewing the problem as an MDP does
not know that the object in the cell it is moving to is more
important than the other objects in other cells in
determining the action value.
 Consider Q-learning in a generalized version of this
domain with object types. of these types cause

some negative reward (particular to each type) and do not
terminate, while one causes +1 and terminates. If the
perceptual information available is simply used as a state
(as on the right of Figure 1), there are states. Since
there are two actions, such an agent must learn Q-
values.
 However, this representation makes unnecessary
distinctions between states and actions. The MDP can be
minimized by grouping together equivalent states and/or
actions, generating a smaller MDP. Two possible
formalizations of “equivalent” here are equivalency under
stochastic bisimulation and under homomorphism (Givan
et al., 2003; Ravindran & Barto, 2002). If either of these
formalisms are used to map together states and/or actions
within a single MDP, a minimal MDP can be iteratively
generated by combining equivalent states.
 In this domain, MDP minimization using bisimulation

would result in states which only encode the contents of

the neighboring cells, ignoring the current cell, resulting in

 Q-values to learn. Homomorphism allows actions to

be mapped together: for example, the state with A North

and B East is equivalent to that with B North and A East,

with action in the first equivalent to in the second. This

reduces the values to learn to .

 As an alternative to MDP minimization, state-action

aggregation can be used. Here, the categorization function

can aggregate pairs based on the object in the

destination cell (e.g., all pairs arriving at an A are

aggregated). Since there are objects, there are then

(aggregate) Q-values to learn. This aggregation function

fulfills equations (1) and (2), so will be learned.

 Figure 2 shows data demonstrating the effects of these

techniques. Here, types were used. One type

caused a +1 reward and termination, and was present in

15/115 of the cells. The remaining 25 (non-terminal) types

Figure 1: Two-action grid world problem. On the left, a map

view; on the right, a partial MDP representation.

Figure 2: Performance of MDP minimization techniques

vs. (s,a)-aggregation in a simple problem.

-1400

-1300

-1200

-1100

-1000

-900

-800

-700

-600

-500

 0 5 10 15 20 25 30 35 40 45 50

a
v
g
 r

e
w

a
rd

episode bin

(s,a) aggregation

(N values)

homomorphism

(N
2
+N values)

bisimulation

(2N
2
 values)

unaggregated

(2N
3
 values)

1569

had rewards of either -10, -50, -100, -800, or -1000, and

were distributed with proportions of 2/115, 3/115, 4/115,

5/115, or 6/115. One type for each combination of these

parameters was present. Q-learning with epsilon-greedy

exploration
2
 was used (parameters were

). 2500 trials of 5000 episodes each were run,

and bins of 100 adjacent episodes were combined and

averaged across all trials.
 As is clear from these data, compared to MDP
minimization, -aggregation can lead to a more
compact problem, resulting in much faster learning.

State-Action Aggregation via Prediction

The goal of the previous sections was to introduce the

concept of state-action aggregation in reinforcement

learning. Here, the special case of ReLAI is considered:

where the category of an pair is determined by the

predicted next abstract state resulting from action in

concrete state .
3

 The example in the previous section can be viewed in

these terms. The MDP in Figure 1 shows concrete states of

the problem, which encode the identities of all three

perceived objects. Predictions are made in terms of abstract

states which encode the object in the current cell where the

agent is (ignoring the adjacent cells). Based on abstract

predictions, aggregates are formed: for example, the agent

considers all pairs equivalent where the predicted

next abstract state encodes an A in the agent’s cell.

 ReLAI predictions are made by an algorithm that maps

 pairs to successor abstract states. In the example

problem, this is simple to implement: given a concrete

state, such as AAB, the predicted next abstract state

encodes the first object (A) when the action is , and the

third object (B) when the action is . The prediction

algorithm instantiates a deterministic mapping, however,

the underlying problem may be probabilistic, as it is here.

 Although this scheme uses an abstract state space,

abstract states are never seen as “states” by the RL

algorithm. States that are useful when used with prediction

are not necessarily as useful without prediction. In the

example problem, an agent learning directly in terms of

abstract states encoding only the object in the current cell

would do no better than random.
 How, then, should these abstract states relate to the
underlying concrete states? Since Equations 1 and 2 are
sufficient for appropriate aggregation, and thereby
allow Q-learning to converge, we will re-examine them in

2 The convergence proof of Goetschalckx (2009) is for learning under a
fixed policy, but it could likely be extended to epsilon greedy.
3 An alternate way of aggregating pairs is to use afterstates (Sutton
and Barto, 1998). This is done in game playing: the effects of the agent’s

actions are simulated, and is the state of the game after the agent
has played, but before the opponent has. Equations (1) and (2) can be

applied in this context, and provide sufficient conditions that an afterstate
formulation will work.

the situation where the category of is a correct
prediction of the abstract state that will follow from it.
 The function represents the abstract state of
concrete state . Assume that predictions are correct: in all
cases is what would equal if action
were to be taken.

4

 Under this assumption, Equation 1 holds if and only if
the reward received for a transition is always independent
of , given the next abstract state:

 (3)

 Similarly, under this assumption Equation 2 holds if and

only if the abstract state that would result from taking some

action in (which is) is independent of the

previous state and action , given . This

implies that the next abstract state must be independent of

the previous pair, given the current abstract state and

action:

=

 (4)

 Equations 3 and 4, along with prediction correctness,
can then be regarded as sufficient conditions for
convergence with ReLAI

5
. This means that ReLAI can use

abstraction functions where is not independent of
 given , but is independent of . This stands in

contrast to MDP reduction using bisimulation or
homomorphism, where must always be
independent of given .

Relaxing Requirements on Perceptual Abstraction

In the example problem, ReLAI predictions were generated
by a simple algorithm that derived directly
from pairs. However, as will be examined in detail in
the next section, in an imagery system, an alternative is to
predict by first predicting , and then applying a
perceptual abstraction to that prediction. Since the final
output is an abstract state, the prediction of can be
arbitrarily wrong, as long as it lies within the same abstract
state as the true .
 A major goal of this work is to simplify the problem of
perceptual abstraction in RL agents by increasing the class
of abstraction functions that can be used. As an alternative
to ReLAI, abstract perceptions can be directly used as
states in Q-learning, instantiating state aggregation. Li et
al. (2006) recently presented a comprehensive theory of
state aggregation, describing five aggregation classes of
increasing generality, and grouping aggregation techniques
into those classes. Of those classes, the most general for

4 This means that the agent correctly predicts all actions it takes, and

 at all times, but also that the agent correctly predicts
actions it does not actually take.
5 Note, however, that Equation 4 does not strictly imply Equation 2.

Equation 4 only covers actions the agent actually takes, not all possible
actions as Equation 2 requires. There might be some abstraction function

that, when used with a particular policy, meets Equation 4 for the actions

taken, but would not have for other actions. However, that possibility will
not be considered here.

1570

which Q-learning convergence is guaranteed is called -
irrelevant. Here, the only requirement is that all concrete
states in the same abstract state have the same value for
all actions. This category covers many state aggregation
techniques, including bisimulation-based MDP reduction.

6

 However, ReLAI allows convergence with abstraction
functions that are not -irrelevant. For instance, in the
problem in Figure 1, the abstract states used with ReLAI
(which simply encode the object in the same cell as the
agent) group many concrete states together where
values differ. Any agent architecture supporting ReLAI can
also easily instantiate state aggregation (by simply not
making predictions), so ReLAI increases the class of
perceptual abstraction functions usable by an agent.

Conversely, given a limited library of abstraction
mechanisms available in an architecture, more problems
can be covered if ReLAI can be used than if it cannot.

7

Using ReLAI in Complex Problems

The previous section shows that ReLAI can be guaranteed
to work with a wider class of abstraction functions than
simple state aggregation. A broader goal of this work is
building a general-purpose cognitive architecture capable
of solving complex problems. In this section, ReLAI is
examined with respect to that goal.
 Inspired by other work using arcade games as a source
of AI problems (e.g. Agre & Chapman, 1987; Diuk et al.,
2008), the problem here uses the game Frogger II for the
Atari 2600 (Figure 3). The actual game is used (run in an
emulator) – it has not been reimplemented.
 The agent does not play the whole game, but has a
simpler goal of navigating the frog (bottom center of the
Figure) to the top of the screen, without colliding with any
of the moving obstacles or leaving the area shown. Without
considering the rest of the game, this problem is still very
difficult. The frog has five actions: move in four directions,
or do nothing. There is a slow current in the water pulling
the frog to the right, so inaction still results in motion.
 The position of the frog is discrete in the vertical
direction (there are 9 rows to move through), but many
horizontal positions are possible due to the current. Most of
the obstacles move continuously at uniform speed to the
right or the left, although some move vertically or
diagonally. Obstacles are constantly appearing and
disappearing at the edges of the screen. This is an episodic
task, and the initial state of the game differs across
episodes (the obstacles start in different positions).
 A reward function similar to that of the game score has
been implemented: there is a reward of 1000 for winning
(reaching the top row), and -1000 for losing (colliding with
an obstacle or leaving the area). There is a reward of 10 for

6 Homomorphism-based MDP reduction is not included in the analysis,

since it does more than aggregate states, but has the similar property that

values are preserved in the new MDP.
7 Of course, it is possible that state-aggregation formalizations broader

than -irrelevance could be discovered that also guarantee convergence,
in which case ReLAI would have to be compared against those as well.

moving up, and -10 for moving down. At every time step,
there is also a reward of -1 to encourage short solutions.
 Our solution to this problem is implemented using the
Soar cognitive architecture (Laird, 2008), which has
recently been augmented with specialized processing for
spatial information (Wintermute, 2009b). Figure 4 shows
the relevant parts of the architecture. A low-level
perception system segments, tracks, and labels the objects
perceived. Such a system has been built for emulated Atari
games (its labels are shown in Figure 3). This information
is passed to the Spatial Scene, which represents objects
geometrically in Euclidean space. High-level perceptual
processes can act on this representation, to extract
qualitative properties of the objects and their relations to
one another into Soar’s symbolic working memory, where
they are accessible to Soar’s decision process.
 In addition, imagery can be used. Here, commands are
formulated in working memory describing changes in the
scene, and the scene is then updated. This includes the
capability to simulate motion (Wintermute & Laird, 2008).
In this domain, all motion is assumed to be linear
translation at a constant velocity, which is a close
approximation of the actual dynamics. The agent can track
and project forward the motion of the obstacles, and has
knowledge about how its own actions move the frog.

 8

 In Figure 4, the frog and two fish have been identified
by low-level perception. High-level perception has
extracted qualitative information about relative object
positions. A command has also been formulated to imagine
the effect of moving the frog up. The imagery system has
responded by creating a new object at the location the frog
would move to. When high-level perception is then applied
to the modified (imagined) scene, the agent infers that the
imagined frog collides with a fish.

8 Note that this allows local predictions of the sort needed by ReLAI to be
made, but does not approach being a full model of the world, and is far

from sufficient for model-based RL techniques to be used. Object

appearances and disappearances are not modeled, randomness is
approximated deterministically, and rewards are not modeled.

Figure 3: Frogger II ((c) 1984, Parker Bros.), with labels.

 Figure 4: Imagery in the Soar/SVS architecture.

1571

In this architecture, the spatial scene is a concrete
representation of the problem, and imagery provides the
capability to simulate future problem states with a high
degree of short-term accuracy. The architecture provides a
library of atomic high-level perceptual operations that can
be composed together using task knowledge to instantiate
an abstraction function. Soar’s RL functionality, operating
over working memory, can then be used to learn a policy
using abstract perceptual information. The abstraction can
be used directly to learn in terms of abstract states (state
aggregation), or can be combined with imagery-based
predictions to instantiate ReLAI.

However, in complex domains like Frogger II, it is
unlikely that such a perceptual abstraction function can be
instantiated that exactly meets the convergence
requirements of state aggregation or ReLAI. Instead, the
agent designer must come up with a reasonably good
abstraction and hope for the best. The hypothesis here is
that, given a perceptual abstraction, the relaxed formal
requirements of ReLAI can translate to better empirical
performance compared to state aggregation when the
precise requirements of neither technique are met.
 To test this, an abstraction function for Frogger was
created. The abstract perceptions encode the following
information in working memory:
- the vertical position of the frog: one of the 9 rows
- a rough horizontal discretization of the frog’s position
into left, middle or right regions
- a determination as to whether or not the frog currently
collides with an obstacle

- a determination as to whether or not an obstacle (or
screen edge) is adjacent to the frog in each of the four
directions.

9

 As a state representation, this abstraction loses
potentially useful information, and is not Markovian (since
the agent could make better decisions by remembering
where it has seen obstacles). However, it is compact, and
just as important, it can be composed from the simple
perceptual operations available in the architecture.
 The same perceptual abstraction function is used in both
a state-aggregation agent and a ReLAI agent. Both agents
choose an action every 15 game frames (four per second).
The ReLAI algorithm as used in Soar is shown in Figure 5.
Here, action categories are determined by using imagery to
project forward the motion of the obstacles near the frog
along with the effect of the action on the frog, and applying
the abstraction to that imagined state. In addition to
abstract perceptions, in this domain the ReLAI agent also
encodes the proposed action as part of the abstract state.
This is because perceptions about the next state alone
cannot capture the immediate reward for the transition, as
moving up or down a row effects reward (not just being in
a particular row). However, the last action taken is not
useful as part of the other agent’s state, so it is not included
there.
 For ReLAI, the requirement that the abstraction captures
immediate reward (Equation 3) is met, and the requirement
that predictions are accurate comes close to being met,
only missing a few cases where moving objects do not
follow a constant velocity or disappear unexpectedly. The
requirement on state independence (Equation 4) is not met:

 is not strictly independent of , given , so
convergence to isn’t guaranteed. However, unlike state
aggregation, ReLAI is robust to abstractions where

 is dependent on given , which can be
beneficial.
 For example, the ReLAI agent can base its action choice
on a precise prediction of whether or not it will collide
with an obstacle in the new state), where the other
agent can only base its decisions on , which includes
information (obstacle adjacency) that can only roughly
predict future collisions between moving objects. The
concrete state contains enough information to predict
collisions in the next state almost exactly, but this
information is only useful to the ReLAI agent.

9 An “adjacent” obstacle is one that intersects a rectangular region starting

at the frog’s bounding box and projecting in the appropriate direction by
10 pixels (about the same as the inter-row distance).

 Figure 5: ReLAI algorithm as instantiated in the architecture.

Figure 6: Frogger II performance.

-900
-800
-700
-600
-500
-400
-300
-200

 0 2 4 6 8 10 12 14 16

a
v
g

 r
e

w
a

rd

episode bin

ReLAI
State Aggregation

1572

 Experiments were run using the actual (emulated) game.
Q-learning with epsilon-greedy exploration was used
(parameters were). 30 trials of
6,000 episodes each were run in each condition. Figure 6
shows the results. Here, groups of 400 adjacent episodes
were binned together; the results are averaged across all
episodes in the bin and across all trials (each point
represents 12,000 games). The graphed results do not show
the ability of the agents to play the game well: epsilon-
greedy exploration meant the agent acted randomly 10% of
the time (often with fatal results), and some of the
randomly-chosen start states were unwinnable. These
factors contributed to high variability in the data,
necessitating the averaging of many games per data point.
 To examine the final policy, 700 games were run in each
condition using the final policies, but without exploration
and with unwinnable games filtered out. Of these, the state
aggregation agent received an average reward of -66 and
won 45% of the games, while the ReLAI agent received an
average reward of 439 and won 70% of the games.
 The ReLAI agent clearly outperforms the state-
aggregation agent: it learns a better policy, and learns it
faster. The use of simple, local predictions based in
imagery led to much better performance than without,
using the same perception system.
 As Atari graphics are simple, the perception system can
be configured to work in many games. Agents for two
other games (Space Invaders and Fast Eddie) have been
implemented, with similar results to what was achieved in
Frogger. As task independence has been a priority of the
design of Soar’s imagery components, no architectural
modification was necessary to address these games.

Conclusion

A technique for integrating reinforcement learning and
imagery, ReLAI, has been introduced. It has been shown
that ReLAI learns faster and allows a broader class of
perceptual abstraction functions to be used compared to
standard RL state aggregation.
 ReLAI has been instantiated in the Soar cognitive
architecture, integrated with a low-level interface to an
Atari video game emulator, and was used successfully to
play the game Frogger II. Its performance was compared to
that of a similar agent using the same perceptual
operations, but without imagery, and it was shown to learn
a better policy, faster.
 At a broad level, this work serves to demonstrate the
benefits of multiple representations and imagery for AI
systems. It has previously been identified that imagery can
ease the problem of abstraction in particular problems,
such as in motion planning (Wintermute, 2009a) and in
versions of the blocks world (Wintermute & Laird, 2009).
However, the formal results above allow this work to apply
much more widely. In that way, it is step toward a better
understanding of the relationship between perception,
internal representation, decision making, and learning.

Acknowledgments

John Laird provided guidance and support on this project,
and helped edit the paper. I thank Erik Talvitie and
Satinder Singh for useful feedback on the theoretical
aspects of the project, and Yongjia Wang, Joseph Xu, and
the anonymous reviewers for helpful comments on the
paper. Development of the emulator interface was greatly
aided by code provided by members of the RL3 lab at
Rutgers. This research was funded by a grant from US
Army TARDEC.

References

Agre, P. & Chapman, D. (1987). Pengi: An

implementation of a theory of activity. Proceedings of

AAAI-87

Diuk, C., Cohen, A., & Littman, M.L. (2008). An object-

oriented representation for efficient reinforcement

learning. Proceedings of ICML-08

Forbus, K.D., Nielsen, P., & Faltings, B. (1991).

Qualitative spatial reasoning: the CLOCK project.

Artificial Intelligence 51(1-3)

Givan, R., Dean, T., & Greig M. (2003). Equivalence

notions and model minimization in Markov decision

processes. Artificial Intelligence 147(1)

Goetschalckx, R. (2009). On the Use of Domain

Knowledge in Reinforcement Learning. PhD Thesis,

Katholieke Universiteit Leuven

Laird, J.E. (2008). Extending the Soar Cognitive

Architecture. Proceedings of AGI-08

Li, L., Walsh, T.J., & Littman, M.L. (2006). Towards a

unified theory of state abstraction for MDPs.

Proceedings of ISAIM-06

Ravindran, B. & Barto, A.G. (2002). Model minimization

in hierarchical reinforcement learning. Proceedings of

SARA 2002

Stober, J., & Kuipers, B. (2008), From pixels to policies: A

bootstrapping agent. Proceedings of ICDL-08

Sutton, R.S. & Barto. A.G. (1998). Reinforcement

Learning: An Introduction. MIT Press: Cambridge

Wintermute, S. (2009a). Integrating Reasoning and Action

through Simulation. Proceedings of AGI-09

Wintermute, S. (2009b). An Overview of Spatial

Processing in Soar/SVS. Report CCA-TR-2009-01, U.

Michigan Center for Cognitive Architecture

Wintermute, S. & Laird, J.E. (2008). Bimodal Spatial

Reasoning with Continuous Motion. Proceedings of

AAAI-08

Wintermute, S. & Laird, J.E. (2009). Imagery as

Compensation for an Imperfect Abstract Problem

Representation. Proceedings of CogSci-09

1573

