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Abstract 

In this paper, we consider the problem of reinforcement 
learning in spatial tasks. These tasks have many states that 
can be aggregated together to improve learning efficiency. 
In an agent, this aggregation can take the form of selecting 
appropriate perceptual processes to arrive at a qualitative 
abstraction of the underlying continuous state. However, for 
arbitrary problems, an agent is unlikely to have the 
perceptual processes necessary to discriminate all relevant 
states in terms of such an abstraction.  
    To help compensate for this, reinforcement learning can 
be integrated with an imagery system, where simple models 
of physical processes are applied within a low-level 
perceptual representation to predict the state resulting from 
an action. Rather than abstracting the current state, 
abstraction can be applied to the predicted next state. 
Formally, it is shown that this integration broadens the class 
of perceptual abstraction methods that can be used while 
preserving the underlying problem. Empirically, it is shown 
that this approach can be used in complex domains, and can 
be beneficial even when formal requirements are not met. 

 Introduction 

Many problems that an intelligent agent might address 
have spatial characteristics. Here, we are interested in 
solving spatial problems through reinforcement learning 
(RL, Sutton & Barto, 1998). RL is a methodology for 
solving problems modeled as Markov Decision Processes 
(MDPs), where the agent learns a policy that maps states to 
actions. The number of states in an MDP has a large 
influence on the agent’s performance. Spatial data is 
inherently continuous, but directly learning a policy in 
terms of continuous states is intractable for many 
problems, as the number of states the agent encounters can 
be infinite. To decrease the size of the state space, states 
that are functionally equivalent can be aggregated. Here, 
aggregate states will be called abstract states, and the 
original states concrete states. 
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 For an agent receiving low-level perceptual data, often a 
library of perceptual abstraction procedures are available, 
such as the ability to identify objects and simple qualitative 
properties of how they relate, which can be used to 
compose state abstractions (e.g., Stober & Kuipers, 2008). 
For example, in the blocks world, predicates such as 

can be composed from object identities and 
primitive topology and direction information (Wintermute, 
2009). An abstract state composed of these predicates 
implicitly aggregates many concrete states where 
properties such as the shape and position of the blocks 
differ in unimportant ways.  
 However, there is a fundamental problem with this 
approach: it is unlikely that there exists a set of perceptual 
abstraction methods that can work well in all spatial 
problems (this is related to the poverty conjecture of 
Forbus et al. (1991)). Even if a human is designing an 
abstraction for a single problem, it is often difficult to do 
so while perfectly preserving the underlying problem. Both 
of these situations have the same implication: the best 
available state-space abstraction may be imperfect. 
 Although abstraction in spatial problems can be difficult, 
movements through space are often simple and easy to 
locally predict in terms of concrete states. Research in 
bimodal spatial reasoning, also known as imagery, pursues 
task-independent means for this sort of prediction (e.g., 
Wintermute & Laird, 2008). An imagery system maintains 
representations of a problem state in terms of both concrete 
information (such as a spatial representation) and abstract 
information, where perceptual processes derive the abstract 
representation from the concrete representation. 
Predictions can be made in terms of the concrete 
representation, and perceptual processes can then be 
applied to the “imagined” concrete state to determine the 
resulting abstract state. It has previously been identified 
that imagery can be useful to compensate for difficulties in 
perceptual abstraction (Wintermute, 2009a; Wintermute & 
Laird, 2009). Here, we formally examine why that 
approach is useful and how imagery can be tightly 
integrated with RL. 
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 The technique introduced here, Reinforcement Learning 
using Abstraction and Imagery (ReLAI), works in 
conjunction with an existing RL algorithm, Q-learning. 
Where conventional Q-learning learns the value of each 
action in each state, with ReLAI it learns the value of state-
action pairs sharing common predictions.  
 Formally, ReLAI is a technique for aggregating state-
action  pairs in the table of values learned by Q-
learning. The aggregate (or category) that an pair 
belongs to is determined by the predicted next abstract 
state resulting from action in concrete state . If abstract 
states are related in the right way to the concrete state 
space (as will be discussed), and predictions are accurate, 
Q-learning will converge to the optimal policy, potentially 
much faster than it would without aggregation.  
 Conventionally, abstraction in RL has been used as a 
means to model reduction, where a new MDP is generated 
by aggregating states together (Li et al., 2006). However, 
with ReLAI, abstract states are used to categorize  
pairs in the original MDP, not to generate a new MDP.  
 In this paper, -aggregation in general is first 
examined, showing sufficient conditions for convergence 
to the optimal policy. Then, this approach is compared to 
MDP reduction, showing that -aggregation can result 
in a more compact learning problem. ReLAI is then 
considered as a special case of this aggregation, and the 
convergence criteria are translated to requirements on how 
abstract states must relate to concrete states. It is then 
shown that the ability to use ReLAI instead of simple state 
aggregation increases the class of perceptual abstraction 
mechanisms that can be used by an agent. Finally, ReLAI 
is shown to provide benefits even when formal 
requirements are not met. An agent playing the game 
Frogger II is demonstrated. Given a set of mechanisms for 
perception (from the pixel-level on up), imagery, and 
abstraction, ReLAI outperforms state aggregation in this 
domain.  
 In short, compared to the alternative of simply using 
perceptual abstractions as problem states, integrating an 
imagery component with RL via ReLAI formally increases 
the class of abstraction mechanisms an agent can use, and 
provides substantial empirical benefits within tasks. 

State-Action Aggregation in RL 

ReLAI is a technique for aggregating state-action pairs in a 
Q-learning agent. In this section, we consider this concept 
separately, as background for the rest of the paper. Basic 
definitions and notation will follow Sutton & Barto (1998). 
At every time step, the agent observes a state , and 
selects an action . The environment then transitions and 
provides the agent with a reward  at the next time step.  
 Previous work has shown that Q-learning with state-
action aggregation converges to the optimal function 
when all pairs in the same category have the same  
value (Goetschalckx, 2009). Prior systems have used 
function approximation schemes that can be formulated as 

-aggregation, however, there is little other theoretical 
work considering this aggregation as an exact method. 
 Properties of the function that assigns categories will be 
examined here. This function, , returns a symbol 
representing the category of . An appropriate function 
only assigns two  pairs to the same category if their 
respective values are the same, and will hence allow Q-
learning to converge.  
 Here, we will show sufficient conditions such that a 
function is appropriate. These conditions are that, for all 
states and actions, the reward received for a transition is 
independent of , given , and that categories of 
actions in a given state are independent of the  pair 
that led to that state, given the category of that pair. That 
is, these equations must be true: 

 

                                  (1) 
 

 

                       (2)  
 

 is defined as .  

 

Here,  represents state transition probability for action 
 in state  going to state , and represents expected 
reward for  in . In the case where Equations 1 and 2 are 
true, similar quantities can be defined with respect to 
categories. The expected reward for executing an action in 
a given category will be called . Due to Equation 1, this 
is equal to  for all  in category . 
 For the state transition component, an additional concept 
is needed. A block (written ) is a set of states that have 
the same categories for all actions. All states are in some 
block, and  signifies the block of state . More 
formally: 

 

The function  returns the category of action in 
block . 
 Equation 2 requires that the categories of actions in a 
state  be independent of the previous , given 

. The block of  is determined by the action 
categories, so it must then also be independent of , 
given . This means that all pairs in a common 
category must share a common probability of transitioning 
to a given block. is defined as the probability of 

transitioning to a state in block , and  as the 
probability of transitioning to block  with an action in 
category , which must be equal to for all  in .

 1
 

 With these concepts, category values can be defined:  

=  
 

It will now be shown that when the conditions are met, 

, . 

1 In the general case, where equations (1) and (2) are not necessarily true, 

similar quantities to  and  could be defined, but they would be 

dependent on the policy, since  pairs that are in the same category 
but have different expected rewards or block transition probabilities could 
be sampled at different rates depending on the policy. 
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Since for all ,  and  , 

=  
 

The probability of transitioning to a block is the sum of the 

individual probabilities of all states in that block, so 

=  
 

All states in a block have the same categories, so:  

=  
 

After combining sums, we have: 

=  

 This is the same set of equations defined by , 

simply renamed to , so the two formulations are 

equivalent. Since for all  and  , 

all  in the same category must have the same  

value. Therefore, if  is such that Equations 1 and 2 hold, 

Q-learning aggregating  pairs according to  will 

converge to , resulting in a learned policy as good as 

what would have been learned without aggregation. 

State-Action Aggregation vs. MDP Minimization 

Figure 1 shows a simple problem that illustrates the 
benefits of state-action aggregation. The agent starts in 
some cell of a grid. There are two actions available, , and 
, which move the agent to the adjacent cell to the North or 

East. In each cell, there is an object of a particular type (A 
or B) that affects the reward the agent receives when it 
enters that cell. Each type causes a specific reward if the 
agent transitions to a containing cell—A causes a reward 
of -10 and B +1. In addition, B causes the episode to 
terminate. The grid is of infinite size, and the objects are 
randomly distributed within it in a fixed proportion (one-
third B, two-thirds A). However, the entire layout of the 
world is inaccessible to the agent, as it has a small sensory 
horizon and can only perceive the cell it is in, along with 
the adjacent cells to the North and East.  
 This is an episodic task, and the object layout changes 
between episodes (sampled according to the given 
distribution). Figure 1 shows one possible state, viewed as 
a map and as an MDP. The letters in the MDP states 
correspond to the visible objects to the North, in the 
current cell, and to the East respectively. The figure shows 
the transitions from the state AAB. For example, moving 
East from AAB will always result in some state ?B?, 
where the two ? values—the North and East objects in the 
new state—are A or B with the appropriate probabilities. 
Note that the map and accompanying description contain 
useful information missing from the MDP. In particular, it 
is apparent that the only relevant information for deciding 
which action to take is the contents of the cell in that 
direction. An agent viewing the problem as an MDP does 
not know that the object in the cell it is moving to is more 
important than the other objects in other cells in 
determining the action value. 
 Consider Q-learning in a generalized version of this 
domain with  object types.  of these types cause 

some negative reward (particular to each type) and do not 
terminate, while one causes +1 and terminates. If the 
perceptual information available is simply used as a state 
(as on the right of Figure 1), there are  states. Since 
there are two actions, such an agent must learn  Q-
values. 
 However, this representation makes unnecessary 
distinctions between states and actions. The MDP can be 
minimized by grouping together equivalent states and/or 
actions, generating a smaller MDP. Two possible 
formalizations of “equivalent” here are equivalency under 
stochastic bisimulation and under homomorphism (Givan 
et al., 2003; Ravindran & Barto, 2002). If either of these 
formalisms are used to map together states and/or actions 
within a single MDP, a minimal MDP can be iteratively 
generated by combining equivalent states. 
 In this domain, MDP minimization using bisimulation 

would result in states which only encode the contents of 

the neighboring cells, ignoring the current cell, resulting in 

 Q-values to learn. Homomorphism allows actions to 

be mapped together: for example, the state with A North 

and B East is equivalent to that with B North and A East, 

with action  in the first equivalent to  in the second. This 

reduces the values to learn to . 

 As an alternative to MDP minimization, state-action 

aggregation can be used. Here, the categorization function 

can aggregate  pairs based on the object in the 

destination cell (e.g., all pairs arriving at an A are 

aggregated). Since there are  objects, there are then  

(aggregate) Q-values to learn. This aggregation function 

fulfills equations (1) and (2), so  will be learned.  

 Figure 2 shows data demonstrating the effects of these 

techniques. Here,  types were used. One type 

caused a +1 reward and termination, and was present in 

15/115 of the cells. The remaining 25 (non-terminal) types 

 
 

 

 

 

 

 

 

Figure 1: Two-action grid world problem. On the left, a map 

view; on the right, a partial MDP representation. 

 
 

 

 

 

 

 

 

 

 
 

Figure 2: Performance of MDP minimization techniques 

vs. (s,a)-aggregation in a simple problem. 
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had rewards of either -10, -50, -100, -800, or -1000, and 

were distributed with proportions of 2/115, 3/115, 4/115, 

5/115, or 6/115. One type for each combination of these 

parameters was present. Q-learning with epsilon-greedy 

exploration
2
 was used (parameters were 

). 2500 trials of 5000 episodes each were run, 

and bins of 100 adjacent episodes were combined and 

averaged across all trials.  
 As is clear from these data, compared to MDP 
minimization, -aggregation can lead to a more 
compact problem, resulting in much faster learning.  

State-Action Aggregation via Prediction 

The goal of the previous sections was to introduce the 

concept of state-action aggregation in reinforcement 

learning. Here, the special case of ReLAI is considered: 

where the category of an  pair is determined by the 

predicted next abstract state resulting from action  in 

concrete state .
3 

 The example in the previous section can be viewed in 

these terms. The MDP in Figure 1 shows concrete states of 

the problem, which encode the identities of all three 

perceived objects. Predictions are made in terms of abstract 

states which encode the object in the current cell where the 

agent is (ignoring the adjacent cells). Based on abstract 

predictions, aggregates are formed: for example, the agent 

considers all pairs equivalent where the predicted 

next abstract state encodes an A in the agent’s cell.  

 ReLAI predictions are made by an algorithm that maps 

 pairs to successor abstract states. In the example 

problem, this is simple to implement: given a concrete 

state, such as AAB, the predicted next abstract state 

encodes the first object (A) when the action is , and the 

third object (B) when the action is . The prediction 

algorithm instantiates a deterministic mapping, however, 

the underlying problem may be probabilistic, as it is here. 

 Although this scheme uses an abstract state space, 

abstract states are never seen as “states” by the RL 

algorithm. States that are useful when used with prediction 

are not necessarily as useful without prediction. In the 

example problem, an agent learning directly in terms of 

abstract states encoding only the object in the current cell 

would do no better than random. 
 How, then, should these abstract states relate to the 
underlying concrete states? Since Equations 1 and 2 are 
sufficient for appropriate  aggregation, and thereby 
allow Q-learning to converge, we will re-examine them in 

2 The convergence proof of Goetschalckx (2009) is for learning under a 
fixed policy, but it could likely be extended to epsilon greedy. 
3 An alternate way of aggregating  pairs is to use afterstates (Sutton 
and Barto, 1998). This is done in game playing: the effects of the agent’s 

actions are simulated, and  is the state of the game after the agent 
has played, but before the opponent has. Equations (1) and (2) can be 

applied in this context, and provide sufficient conditions that an afterstate 
formulation will work. 

the situation where the category of  is a correct 
prediction of the abstract state that will follow from it. 
 The function  represents the abstract state of 
concrete state . Assume that predictions are correct: in all 
cases is what  would equal if action  
were to be taken.

4
 

 Under this assumption, Equation 1 holds if and only if 
the reward received for a transition is always independent 
of , given the next abstract state: 

   (3) 
  

 Similarly, under this assumption Equation 2 holds if and 

only if the abstract state that would result from taking some 

action  in  (which is ) is independent of the 

previous state and action , given . This 

implies that the next abstract state must be independent of 

the previous  pair, given the current abstract state and 

action: 

=

                                               (4) 
 

 Equations 3 and 4, along with prediction correctness, 
can then be regarded as sufficient conditions for 
convergence with ReLAI

5
. This means that ReLAI can use 

abstraction functions where  is not independent of 
 given , but is independent of . This stands in 

contrast to MDP reduction using bisimulation or 
homomorphism, where  must always be 
independent of  given . 

Relaxing Requirements on Perceptual Abstraction 

In the example problem, ReLAI predictions were generated 
by a simple algorithm that derived  directly 
from  pairs. However, as will be examined in detail in 
the next section, in an imagery system, an alternative is to 
predict  by first predicting , and then applying a 
perceptual abstraction to that prediction. Since the final 
output is an abstract state, the prediction of  can be 
arbitrarily wrong, as long as it lies within the same abstract 
state as the true . 
 A major goal of this work is to simplify the problem of 
perceptual abstraction in RL agents by increasing the class 
of abstraction functions that can be used. As an alternative 
to ReLAI, abstract perceptions can be directly used as 
states in Q-learning, instantiating state aggregation. Li et 
al. (2006) recently presented a comprehensive theory of 
state aggregation, describing five aggregation classes of 
increasing generality, and grouping aggregation techniques 
into those classes. Of those classes, the most general for 

4 This means that the agent correctly predicts all actions it takes, and 

 at all times, but also that the agent correctly predicts 
actions it does not actually take. 
5 Note, however, that Equation 4 does not strictly imply Equation 2. 

Equation 4 only covers actions the agent actually takes, not all possible 
actions as Equation 2 requires. There might be some abstraction function 

that, when used with a particular policy, meets Equation 4 for the actions 

taken, but would not have for other actions. However, that possibility will 
not be considered here. 
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which Q-learning convergence is guaranteed is called -
irrelevant. Here, the only requirement is that all concrete 
states in the same abstract state have the same  value for 
all actions. This category covers many state aggregation 
techniques, including bisimulation-based MDP reduction.

6
 

 However, ReLAI allows convergence with abstraction 
functions that are not -irrelevant. For instance, in the 
problem in Figure 1, the abstract states used with ReLAI 
(which simply encode the object in the same cell as the 
agent) group many concrete states together where  
values differ. Any agent architecture supporting ReLAI can 
also easily instantiate state aggregation (by simply not 
making predictions), so ReLAI increases the class of 
perceptual abstraction functions usable by an agent.

 

Conversely, given a limited library of abstraction 
mechanisms available in an architecture, more problems 
can be covered if ReLAI can be used than if it cannot.

7 

Using ReLAI in Complex Problems 

The previous section shows that ReLAI can be guaranteed 
to work with a wider class of abstraction functions than 
simple state aggregation. A broader goal of this work is 
building a general-purpose cognitive architecture capable 
of solving complex problems. In this section, ReLAI is 
examined with respect to that goal. 
 Inspired by other work using arcade games as a source 
of AI problems (e.g. Agre & Chapman, 1987; Diuk et al., 
2008), the problem here uses the game Frogger II for the 
Atari 2600 (Figure 3). The actual game is used (run in an 
emulator) – it has not been reimplemented.  
 The agent does not play the whole game, but has a 
simpler goal of navigating the frog (bottom center of the 
Figure) to the top of the screen, without colliding with any 
of the moving obstacles or leaving the area shown. Without 
considering the rest of the game, this problem is still very 
difficult. The frog has five actions: move in four directions, 
or do nothing. There is a slow current in the water pulling 
the frog to the right, so inaction still results in motion.  
 The position of the frog is discrete in the vertical 
direction (there are 9 rows to move through), but many 
horizontal positions are possible due to the current. Most of 
the obstacles move continuously at uniform speed to the 
right or the left, although some move vertically or 
diagonally. Obstacles are constantly appearing and 
disappearing at the edges of the screen. This is an episodic 
task, and the initial state of the game differs across 
episodes (the obstacles start in different positions).  
 A reward function similar to that of the game score has 
been implemented: there is a reward of 1000 for winning 
(reaching the top row), and -1000 for losing (colliding with 
an obstacle or leaving the area). There is a reward of 10 for 

6 Homomorphism-based MDP reduction is not included in the analysis, 

since it does more than aggregate states, but has the similar property that 

values are preserved in the new MDP. 
7 Of course, it is possible that state-aggregation formalizations broader 

than  -irrelevance could be discovered that also guarantee convergence, 
in which case ReLAI would have to be compared against those as well.  

moving up, and -10 for moving down. At every time step, 
there is also a reward of -1 to encourage short solutions.  
 Our solution to this problem is implemented using the 
Soar cognitive architecture (Laird, 2008), which has 
recently been augmented with specialized processing for 
spatial information (Wintermute, 2009b). Figure 4 shows 
the relevant parts of the architecture. A low-level 
perception system segments, tracks, and labels the objects 
perceived. Such a system has been built for emulated Atari 
games (its labels are shown in Figure 3). This information 
is passed to the Spatial Scene, which represents objects 
geometrically in Euclidean space. High-level perceptual 
processes can act on this representation, to extract 
qualitative properties of the objects and their relations to 
one another into Soar’s symbolic working memory, where 
they are accessible to Soar’s decision process.  
 In addition, imagery can be used. Here, commands are 
formulated in working memory describing changes in the 
scene, and the scene is then updated. This includes the 
capability to simulate motion (Wintermute & Laird, 2008). 
In this domain, all motion is assumed to be linear 
translation at a constant velocity, which is a close 
approximation of the actual dynamics. The agent can track 
and project forward the motion of the obstacles, and has 
knowledge about how its own actions move the frog.

 8
 

 In Figure 4, the frog and two fish have been identified 
by low-level perception. High-level perception has 
extracted qualitative information about relative object 
positions. A command has also been formulated to imagine 
the effect of moving the frog up. The imagery system has 
responded by creating a new object at the location the frog 
would move to. When high-level perception is then applied 
to the modified (imagined) scene, the agent infers that the 
imagined frog collides with a fish. 

8 Note that this allows local predictions of the sort needed by ReLAI to be 
made, but does not approach being a full model of the world, and is far 

from sufficient for model-based RL techniques to be used. Object 

appearances and disappearances are not modeled, randomness is 
approximated deterministically, and rewards are not modeled. 

 
 

 

 

 

 

 

 
Figure 3: Frogger II ((c) 1984, Parker Bros.), with labels. 

 

 

 
 

 

 

                                                          

 Figure 4: Imagery in the Soar/SVS architecture. 
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In this architecture, the spatial scene is a concrete 
representation of the problem, and imagery provides the 
capability to simulate future problem states with a high 
degree of short-term accuracy. The architecture provides a 
library of atomic high-level perceptual operations that can 
be composed together using task knowledge to instantiate 
an abstraction function. Soar’s RL functionality, operating 
over working memory, can then be used to learn a policy 
using abstract perceptual information. The abstraction can 
be used directly to learn in terms of abstract states (state 
aggregation), or can be combined with imagery-based 
predictions to instantiate ReLAI.  

However, in complex domains like Frogger II, it is 
unlikely that such a perceptual abstraction function can be 
instantiated that exactly meets the convergence 
requirements of state aggregation or ReLAI. Instead, the 
agent designer must come up with a reasonably good 
abstraction and hope for the best. The hypothesis here is 
that, given a perceptual abstraction, the relaxed formal 
requirements of ReLAI can translate to better empirical 
performance compared to state aggregation when the 
precise requirements of neither technique are met. 
 To test this, an abstraction function for Frogger was 
created. The abstract perceptions encode the following 
information in working memory: 
- the vertical position of the frog: one of the 9 rows 
- a rough horizontal discretization of the frog’s position 
into left, middle or right regions 
- a determination as to whether or not the frog currently 
collides with an obstacle 

- a determination as to whether or not an obstacle (or 
screen edge) is adjacent to the frog in each of the four 
directions.

9
 

 As a state representation, this abstraction loses 
potentially useful information, and is not Markovian (since 
the agent could make better decisions by remembering 
where it has seen obstacles). However, it is compact, and 
just as important, it can be composed from the simple 
perceptual operations available in the architecture. 
 The same perceptual abstraction function is used in both 
a state-aggregation agent and a ReLAI agent. Both agents 
choose an action every 15 game frames (four per second). 
The ReLAI algorithm as used in Soar is shown in Figure 5. 
Here, action categories are determined by using imagery to 
project forward the motion of the obstacles near the frog 
along with the effect of the action on the frog, and applying 
the abstraction to that imagined state. In addition to 
abstract perceptions, in this domain the ReLAI agent also 
encodes the proposed action as part of the abstract state. 
This is because perceptions about the next state alone 
cannot capture the immediate reward for the transition, as 
moving up or down a row effects reward (not just being in 
a particular row). However, the last action taken is not 
useful as part of the other agent’s state, so it is not included 
there. 
 For ReLAI, the requirement that the abstraction captures 
immediate reward (Equation 3) is met, and the requirement 
that predictions are accurate comes close to being met, 
only missing a few cases where moving objects do not 
follow a constant velocity or disappear unexpectedly. The 
requirement on state independence (Equation 4) is not met: 

 is not strictly independent of , given , so 
convergence to  isn’t guaranteed. However, unlike state 
aggregation, ReLAI is robust to abstractions where 

 is dependent on  given , which can be 
beneficial. 
 For example, the ReLAI agent can base its action choice 
on a precise prediction of whether or not it will collide 
with an obstacle in the new state ),  where the other 
agent can only base its decisions on , which includes 
information (obstacle adjacency) that can only roughly 
predict future collisions between moving objects. The 
concrete state  contains enough information to predict 
collisions in the next state almost exactly, but this 
information is only useful to the ReLAI agent.  

9 An “adjacent” obstacle is one that intersects a rectangular region starting 

at the frog’s bounding box and projecting in the appropriate direction by 
10 pixels (about the same as the inter-row distance). 

 

 Figure 5: ReLAI algorithm as instantiated in the architecture. 

 

 

 

 

 
 

 

 

 

 

Figure 6: Frogger II performance.  
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 Experiments were run using the actual (emulated) game. 
Q-learning with epsilon-greedy exploration was used 
(parameters were ). 30 trials of 
6,000 episodes each were run in each condition. Figure 6 
shows the results. Here, groups of 400 adjacent episodes 
were binned together; the results are averaged across all 
episodes in the bin and across all trials (each point 
represents 12,000 games). The graphed results do not show 
the ability of the agents to play the game well: epsilon-
greedy exploration meant the agent acted randomly 10% of 
the time (often with fatal results), and some of the 
randomly-chosen start states were unwinnable. These 
factors contributed to high variability in the data, 
necessitating the averaging of many games per data point. 
 To examine the final policy, 700 games were run in each 
condition using the final policies, but without exploration 
and with unwinnable games filtered out. Of these, the state 
aggregation agent received an average reward of -66 and 
won 45% of the games, while the ReLAI agent received an 
average reward of 439 and won 70% of the games. 
 The ReLAI agent clearly outperforms the state-
aggregation agent: it learns a better policy, and learns it 
faster. The use of simple, local predictions based in 
imagery led to much better performance than without, 
using the same perception system. 
 As Atari graphics are simple, the perception system can 
be configured to work in many games. Agents for two 
other games (Space Invaders and Fast Eddie) have been 
implemented, with similar results to what was achieved in 
Frogger. As task independence has been a priority of the 
design of Soar’s imagery components, no architectural 
modification was necessary to address these games. 

Conclusion 

A technique for integrating reinforcement learning and 
imagery, ReLAI, has been introduced. It has been shown 
that ReLAI learns faster and allows a broader class of 
perceptual abstraction functions to be used compared to 
standard RL state aggregation. 
 ReLAI has been instantiated in the Soar cognitive 
architecture, integrated with a low-level interface to an 
Atari video game emulator, and was used successfully to 
play the game Frogger II. Its performance was compared to 
that of a similar agent using the same perceptual 
operations, but without imagery, and it was shown to learn 
a better policy, faster. 
 At a broad level, this work serves to demonstrate the 
benefits of multiple representations and imagery for AI 
systems. It has previously been identified that imagery can 
ease the problem of abstraction in particular problems, 
such as in motion planning (Wintermute, 2009a) and in 
versions of the blocks world (Wintermute & Laird, 2009). 
However, the formal results above allow this work to apply 
much more widely. In that way, it is step toward a better 
understanding of the relationship between perception, 
internal representation, decision making, and learning. 
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