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Abstract
Current practice in Wilderness Search and Rescue
(WiSAR) is analogous to an intelligent system designed
to gather and analyze information to find missing per-
sons in remote areas. The system consists of multi-
ple parts — various tools for information management
(maps, GPS, etc) distributed across personnel with dif-
ferent skills and responsibilities. Introducing a camera-
equipped mini-UAV into this task requires autonomy
and information technology that itself is an integrated
intelligent system to be used by a sub-team that must
be integrated into the overall intelligent system. In this
paper, we identify key elements of the integration chal-
lenges along two dimensions: (a) attributes of intelli-
gent system and (b) scale, meaning individual or group.
We then present component technology that offload or
supplement many responsibilities to autonomous sys-
tems, and finally describe how autonomy and informa-
tion are integrated into user interfaces to better support
distributed search across time and space. The integrated
system was demoed for Utah County Search and Rescue
personnel. A real searcher flew the UAV after minimal
training and successfully located the simulated missing
person in a wilderness area.

Introduction
Wilderness Search and Rescue (WiSAR) can be thought of
as an intelligent system designed to gather and analyze in-
formation to find and assist humans who are lost or injured
in remote areas such as deserts and mountains. The system
consists of multiple parts — various tools for information
management (maps, GPS, etc) distributed across personnel
who have different skills. Using a camera-equipped mini-
Unmanned Aerial Vehicle (UAV) to aid search can provide
aerial imagery of a search area with the benefits of quick
coverage of large areas, access of hard-to-reach areas, and
lower cost than manned aircraft.

Introducing a UAV into the WiSAR system requires au-
tonomy and information technology that itself is an inte-
grated intelligent system to be used by a WiSAR sub-team,
and this sub-team and associated technology must be in-
tegrated into the overall intelligent system. This integra-
tion inevitably creates the need for new roles and respon-
sibilities in order to manage the UAV and the aerial im-
agery (Adams et al. 2009; Goodrich et al. 2007). The task
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Capability Information
Management

Performance
Evaluation

Intelligence
of individual
tools

Autonomy Flexibility Progress toward
individual goal

Intelligence
of distributed
system

Modularity Fusion (Com-
munication)

Collective
progress/quality

Table 1: Integration challenges defined along two dimen-
sions. Horizontal dimension: attributes of intelligence. Ver-
tical dimension: scale.

of creating a useful technology for supporting these roles
is to make sure that these responsibilities are performed by
appropriate people at an appropriate time with a satisfac-
tory level of performance. Doing this requires the creation
of algorithms that efficiently offload portions of responsi-
bility to autonomous algorithms, creating an intelligent dis-
tributed system that facilitates the coordination and infor-
mation management among roles. The need for efficiency
creates the need to monitor and evaluate the performance of
the system as a whole.

In this paper we describe our efforts in developing au-
tonomous algorithms and user interfaces that integrate com-
ponents of machine and human intelligence with the goal
of making UAV technology useful to real searchers in
WiSAR. Thus, this paper is consistent with Drucker’s def-
inition of automation as a “concept of the organization of
work (Drucker 2006).” Intelligently organizing work re-
quires that we identify key elements of the integration chal-
lenges organized along two dimensions: attributes of an in-
telligent system (capability, information, performance eval-
uation) and scale (individual versus group); see Table 1. We
then present component algorithms that augment or supple-
ment search responsibilities. Next we describe how auton-
omy and information are integrated into user interfaces to
better support distributed coordination of multiple searcher
roles across time and space with respect to the integration
challenges we identified.

Validating an integrated system is always difficult. The
goal of our research is to develop technology that provides
help to real searchers; therefore, we believe a good way to
validate our integrated system is to put it through a test in a
real-world environment in front of real users. We summarize
the experience of a recent field demo for Utah County Search
and Rescue team representatives, where a real searcher acted
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Figure 1: A screenshot of the UAV operator interface show-
ing the position/orientation of the UAV, the orientation of the
camera, and the projected video. (Top right: The UAV used
in our research.)

as the UAV operator in a simulated search and rescue mis-
sion after minimal training.

Related Work
The goal of our research is to support fielded missions in the
spirit of Murphy’s work (Casper and Murphy 2003). UAV
technology has emerged as a promising tool in supporting
WiSAR (Bourgault, Furukawa, and Durrant-Whyte 2003;
Murphy et al. 2008). The UAV technology is an intelligent
system with the integration of many component autonomous
algorithms and user interfaces (related work for these com-
ponents are referenced in their relative sections). Integra-
tion at this level requires tremendous effort. For example,
building robots (GRACE and Spartacus) that are capable
of attending a conference (Simmons et al. 2003; Michaud
et al. 2007) required the integration of many technolo-
gies (e.g., localization/navigation, gesture/face recognition,
and speech recognition/generation) and multiple modalities
(e.g., mobility, vision, audition, and reasoning).

To integrate the UAV intelligent system into existing
WiSAR practices — which we argue is an intelligent system
by itself (Setnicka 1980) — creates additional challenges.
Salas and Fiore (2004) provide great insights on challenges
across people and machines, and across time and space in
distributed teams. Sycara and Lewis (2002) also asked the
questions: 1) can a software agent perform the task? and
2) can the agent’s assistance contribute toward team perfor-
mance? Tso et al. (1999) identified that integrating a UAV
into the search task creates at least two roles: a pilot that
controls the UAV and a sensor operator that analyzes the
sensor outputs, and lessons from other search-related do-
mains (Drury, Scholtz, and Yanco 2003) show that multiple
roles are required and these roles can be supported by au-
tonomy algorithms and user interface technologies. These
findings motivate and guide our research in developing UAV
technology to support WiSAR operations.

UAV Overview
UAVs used in our research have wingspans of 42-50 inches,
weigh approximately 2 lbs, and use lithium battery-powered
propellers (see Figure 1a). The airframes are designed so
each UAV can stay aloft for up to two hours and travel at ap-
proximately 12-15 meters per second. The onboard sensors

include three-axis rate gyroscopes, three-axis accelerome-
ters, static and differential barometric pressure sensors, a
GPS module, and a video camera on a gimbaled mount.
An autopilot, designed by the BYU MAGICC lab (Beard et
al. 2005), enables roll and pitch angle stabilization, attitude
stabilization, altitude control, and waypoint following. The
UAV uses a 900 MHz radio transceiver for data communica-
tion and an analog 2.4 GHz transmitter for video downlink.
The typical operating height above ground is 60–100 me-
ters so the UAV can avoid trees and slight terrain variations
while still provide enough resolution so a human form can
be discerned in the video (Goodrich et al. 2008).

Integration Challenges
We organize integration challenges along two dimensions:
attributes (capability, information management, and perfor-
mance evaluation) and scale (individual tool vs distributed
system), as shown in Table 1. We assert that an intelligent
system should display several attributes associated with in-
telligence across multiple scales. Capability pertains to the
identification and development of specialized behaviors. In-
formation management focuses on how information is pre-
sented, handled, and shared. Performance evaluation deals
with monitoring the health of the system or progress toward
the intended task goal. In this section we use this taxon-
omy to describe components of the UAV technology in the
context of WiSAR.

The individual tools were designed partly in response to a
cognitive task analysis conducted on the WiSAR domain to
inform the design of UAV technology (Adams et al. 2009).

The analysis identified four primary search tactics used
in WiSAR: hasty search, constrained search, high prior-
ity search, and exhaustive search. Also, observations from
several user studies (Cooper and Goodrich 2008) show that
the best perspective (e.g., chase, north-up) for detecting and
localizing a target depends on the type of search and the
type of distribution (likely places to find the missing per-
son). These findings suggest that multiple control modes,
path planning methods, and perspectives are needed to sup-
port various search tactics and scenarios. These are exam-
ples of the capability for individual tools. Since autonomous
algorithms can replace or supplement searcher responsibili-
ties, a wide range of capability is desired.

For the WiSAR system, the cognitive task analysis also
identified two key WiSAR subsystems; information acqui-
sition and information analysis. Combining this result with
observations from past field trials, we see four roles emerge
when a UAV is integrated into the search (Goodrich et al.
2008). UAV operator: responsible for guiding the UAV and
the gimbaled camera to various locations and monitoring the
UAV; video analyst: responsible for scanning and analyzing
imagery to detect potential clues; mission manager: respon-
sible for managing the search and prioritizing efforts based
on information obtained; ground searcher: (when support-
ing the UAV) responsible for investigating potential clues
found in aerial imagery. Each role consists of a grouping
of responsibilities. The task of creating useful technology
for supporting these distributed roles is to make sure that
these responsibilities are performed by appropriate people
at an appropriate time with a satisfactory level of perfor-
mance. Since people may take on (partial) responsibilities
of other roles, the video analyst and the UAV operator might
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share responsibilities, these behaviors suggest that capabil-
ities of individual systems should be modular to mix and
match across roles. Modularity is a requirement for an in-
telligent distributed system – it is the adaptable chunking of
responsibility and capability.

Flexibility, in information management, is the ability to
appropriately match capability to task according to the infor-
mation available to the operator. The cognitive task analysis
indicated that WiSAR search is an iterative process of gath-
ering, analyzing evidence and planning for gathering more
evidence, where probability refinement plays an important
part during search. The analysis also identified that searches
require considerable human judgment, especially as new ev-
idence is collected. These findings suggest that tools and
autonomy need to be flexible so they can be interrupted, tem-
porarily aborted, and possibly resumed later. For example, if
an object is spotted in the video, the UAV operator stops the
current flight pattern and loiters around the Point Of Interest
(POI) to gather more information. Once the UAV operator
aborts the loiter mode, the UAV automatically resumes the
previous flight pattern to continue to gather information.

For a distributed system, Information Fusion is an impor-
tant element that efficiently combines and presents informa-
tion from various sources to a user and also shares informa-
tion among multiple users. For example, the user interface
for the UAV operator includes the terrain map, an icon in-
dicating the position and attitude of the UAV, an integrated
video feed projected onto the terrain map showing the di-
rection of the gimbaled camera, and various meters showing
UAV status (e.g., speed, altitude, battery life); see Figure 1.
Another example is a video analyst helping to annotate clues
in video imagery, and communicating the data to the mission
manager who can update the search plan accordingly.

For each individual tool, the ability to evaluate the qual-
ity and the progress toward the individual goal can be useful
and represents the importance of performance evaluation. A
coverage map, for example, improves the UAV operator’s
situation awareness of how well an area has been covered.
Morse et al. (Morse, Engh, and Goodrich 2010) defined two
see-ability metrics (described in the See-ability section). An
instantaneous see-ability evaluation helps the video analyst
get a sense of the quality of a single frame of video. As for
the distributed system, an overall, or group quality evalua-
tion is more appropriate. A mission manager might want to
know the collective see-ability to understand how well the
terrain is seen by all frames of video or combined coverage
of the UAV and ground searchers.

In the following three sections we match components of
our UAV system to the three attributes (columns) of our in-
telligent system taxonomy and show how they support vari-
ous searcher roles at the right time and the right place.

Autonomy Components
This section presents a wide breadth of autonomy compo-
nents currently in place to support searcher roles and re-
sponsibilities. They map to the Capability column in our
taxonomy (Table 1). The modular design allows mix and
match of autonomy components to support the distributed
system. Here we use the term “low-level autonomy” to de-
scribe components that only involve simple math calcula-
tions in contrast to the term “advanced autonomy,” where
complex algorithms and interrelationships are required.

Figure 2: Left: a posterior predictive distribution at 200th
time step generated using the Bayesian model. Middle: a
multimodal distribution used to test path planning (arrow
marks starting point). Right: path generated using Intelli-
gent Path Planning.

Low-Level Autonomy
Autopilot: Pitch/roll/yaw and altitude stabilization, atti-
tude controls, and waypoint following.

Deploy and retrieve: Two auto launch modes (take off to
waypoint, spiral take off) and two auto land modes (rally
land, deep stall).

Gimbaled camera control: A point can be set on the ter-
rain map so the gimbaled camera constantly aims at the point
independent of the UAV’s flight path.

Path planning: Simple flight patterns include spiral,
lawnmowing, and Zamboni.

Safety: If no waypoint is set or after reaching the end of
set path, the UAV loiters around last waypoint. If the UAV
loses communication with the base, it automatically returns
to base and loiters.

Advanced Autonomy
Distribution Generation: A Bayesian model that incor-
porates past human behavior data and publicly available
terrain data (topography, vegetation, and elevation) is used
to automatically generate a posterior predictive distribu-
tion of the likely places of finding the missing person (Lin
and Goodrich 2009a). The Markov chain Monte Carlo
Metropolis-Hastings algorithm generates a temporal distri-
bution showing how the distribution changes over time (Fig-
ure 2). Given enough time, the distribution converges to a
static state. The resulting distribution can be used by the
search manager to prioritize search resources and develop
search plans. It can also be used by the UAV operator for
automatic path planning to maximize accumulated probabil-
ity for a fixed flight duration.

Path planning: Two advanced path planning algorithms
are described here: Generalized Contour Search (Goodrich
et al. 2008) and Intelligent Path Planning (Lin and Goodrich
2009b). The ability to control the gimbaled camera to aim at
a target point while orbiting enables a Generalized Contour
Search path planning algorithm. A queue of target points
that follow the contours of the distribution of the missing
person’s likely locations can be created from which the al-
gorithm interpolates (bicubic interpolation) and resamples
at uniform distances. Lawnmower and spiral paths naturally
emerge from the algorithm for uniform and Gaussian dis-
tributions respectively, and they are the optimal paths. It is
also possible to use the algorithm to follow the contours of
steep terrain by aiming the camera out the side of the UAV.
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Figure 3: Example of a video mosaic with an annotation
(indicated by a red circle).

The second path planning algorithm aims to maximize the
accumulated probability for the path generated given a dis-
tribution, a starting point (optionally an ending point), and
desired flight time. The camera footprint traverses a grid of
probability nodes (enabled by the gimbaled camera) while
the UAV approximates the path generated. Near optimal
flight paths are generated using an evolutionary approach,
where seed paths are generated using various hill-climbing
and potential fields algorithms. Simulation results show the
algorithm works well with a variety of probability distribu-
tions, including complicated multi-modal distributions (Fig-
ure 2). These advanced algorithms enrich the autonomy tool
set for the UAV operator and can potentially be useful for the
high priority search and exhaustive search techniques when
systematic coverage is desired.

Video mosaicing: The term mosaic means to “stitch” to-
gether multiple frames of video of a static scene from a
moving camera (Szeliski 2006). A real-time temporally lo-
cal mosaic technique (Morse et al. 2008) was developed
using Harris corner detector to identify feature points and
then using RANSAC (Fischler and Bolles 1981) to estimate
the Euclidean transformation between each pair of frames.
User studies using simulations and experience from field tri-
als show that small mosaics of only the last few seconds
of video is sufficient to provide both increased opportunity
for detection and increased sense of relative spatial relation-
ships. Figure 3 shows an example of the local mosaic view
where the same object is only visible in a few frames in orig-
inal video but is visible for nearly one hundred frames using
the technique.

Anomaly detection (under development): A color
anomaly detection algorithm is currently under development
that adapts hyperspectral anomaly detection methods to find
man-made objects in wilderness scenes. This algorithm adds
another autonomy capability to the tool set and can recom-
mend points of interest in the video imagery to the video
analyst, potentially reducing mental workload. We mention
this component in this paper for completeness.

User Interfaces
In this section we describe the user interfaces developed to
support various searcher roles with a focus on explaining
how we integrate autonomy components (including control
modes) and human intelligence. Interface techniques pro-
vides control flexibility with current information state, and
information sharing and fusion improves the efficiency of

the overall distributed system. They map to the Informa-
tion Management column in our taxonomy (Table 1).

The UAV software consists of several components.
Phairwell is the augmented virtuality interface used to “fly”
the UAV (see Figure 1). The Wonder Server consists of
central management software for capturing, storing, and re-
trieving video, UAV telemetry, annotations, and other re-
lated information. Finally, the Wonder Client is the GUI
used by the video analyst and mission manager and provides
video mosaic and annotation capabilities. Video and teleme-
try data are streamed from the Wonder Server.

Phairwell for UAV Operator: The UAV operator’s main
responsibilities include assigning the UAV a specific task,
ensuring that it is properly performing that task while mon-
itoring the UAV’s “health and safety,” monitoring the live
video, and interacting with the UAV when needed (e.g., once
the video analyst spots a suspicious object, a change in the
plan is made, or when the UAV needs attention).

Phairwell supports four flight modes while searching:
manual, carrot and camera, flight plan, and loiter now.
These modes represent autonomous behaviors that help the
UAV operator efficiently assist the video analyst. Manual
mode commands the UAV to match a course and altitude set
using the arrow keys. Carrot and camera allows the operator
to direct the UAV and camera with the mouse. Flight plan
mode commands the UAV to fly waypoints that the opera-
tor selects manually or that are generated automatically by
one or more search patterns. The loiter now mode interrupts
the UAV’s current behavior so the operator or UAV team can
briefly ignore the UAV.

While directing the UAV is important, the primary goal is
to manipulate the camera efficiently to provide the video an-
alyst with the needed video. The speed of the UAV coupled
with slow user response makes it impossible for the opera-
tor to manually track specific ground objects, a commonly
required task. Instead, the UAV operator can select a terrain
location in Phairwell and have the UAV fix the camera on the
location. The UAV autonomy can maintain this lock, even
when the UAV is turning rapidly or knocked about by gusts
of wind. This allows the UAV operator to easily adjust the
camera according to the needs of the video analyst.

Although the UAV’s autonomy allows it to fly a prede-
fined flight plan, the UAV operator must often interrupt the
autonomy and then resume it later. Phairwell allows the
UAV operator to effortlessly change control modes, perform
some task, and resume the previous control mode. This ca-
pability has been used routinely when the UAV is flying
a search pattern and the video analyst sees something and
wants the UAV to go back and take a closer look. This spe-
cific autonomy is described more fully in the next section.

Wonder Client for Video Analyst: The Wonder Client in-
terface serves as the video analyst’s primary tool. They have
the flexibility to select between either the live video or mo-
saiced views. The interface also provides tools to modify the
brightness, contrast, and other image properties of the live
video or mosaic, which often need to be adjusted to make
objects more recognizable.

The video analyst also uses the Wonder Client to anno-
tate the video. Annotations mark objects in the video with a
timestamp and user notes so that they can be found quickly
in the future. An example can be seen in Figure 3. When an
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annotation is placed on the video mosaic, it is tied to the geo-
referenced coordinates of the underlying terrain. Therefore,
annotations marked on previous video frames are automati-
cally displayed on future frames, ensuring that the video an-
alyst does not repeatedly identify the same object while also
providing an efficient means of visually tracking the object.

The video analyst can also indicate any geo-referenced
location in the video as a POI that they want to immedi-
ately return to and investigate. The system then automati-
cally communicates this information to Phairwell, giving the
UAV operator the option of letting the autonomy redirect the
UAV to investigate.
Wonder Client for Mission Manager: The mission man-
ager is responsible for assessing what has been searched
and how well. This information is then used to plan fur-
ther search efforts. While assessing ground searcher cover-
age is a common practice, UAV-assisted search adds a new
and challenging aspect to this task. A coverage map show-
ing the quality of the search is generated from the collective
see-ability estimates to provide the mission manager with a
complete view of the terrain the UAV video covered.

The Wonder Client gives the mission manager access to
all the video analyst’s POIs and annotations. The mission
manager can then review the POIs and classify them as
worth investigating or not. Those that are worth investigat-
ing are prioritized and placed in a pending search queue.
The mission manager then assigns the UAV-team or ground
searchers to investigate these points. Once the POI is lo-
cated, the findings are reported back to the mission man-
ager for assessment. However, investigations executed by
the UAV-team will lead to this whole process being repeated.
For Ground Searchers (under development): Successful
search requires that ground searches quickly and thoroughly
search their assigned area. We have begun development of
a system that utilizes the concept of see-ability to support
ground searchers in these efforts. A portable GPS device
will be used to display a see-ability map, providing a vi-
sual representation of the thoroughness and quality of their
search based on what they should have seen.

Communication between ground searchers and the UAV-
team has proven limited and difficult. This same portable
device will be used to bridge this communication gap. For
example, when a ground searcher is assigned to investigate
a POI, instead of radioing the GPS coordinates, the device
will automatically receive the coordinates, overlay the UAV
aerial imagery with the annotations, and provide the searcher
with directions to the location.

See-ability Metrics
The “see-ability” metric (Morse, Engh, and Goodrich 2010)
was developed to address the challenge of understanding the
search-related quality given by UAV video. This involves
two different measures: instantaneous see-ability measures
the quality of a single video frame while collective see-
ability measures the overall quality provided by all video
frames. They map directly to the Performance Evaluation
column in our taxonomy (Table 1).

The instantaneous see-ability computation uses the semi-
accurate camera’s location and pose information, terrain
models, satellite imagery and computer vision techniques to
geo-register each frame of video. The geo-registered frame

is used to estimate the resolution with which each point in
the video is seen. This metric could provide information
about the quality of the video coverage for the video ana-
lyst. A user study showed that there was a moderately strong
correlation between the instantaneous see-ability estimates
and measured detection rates (Morse, Engh, and Goodrich
2010). Collective see-ability is determined by the number
of times each point has been seen, from what distance, and
from which and how many different angles. This is done
by combining all of the instantaneous see-ability estimates
available for a single point on the terrain. This metric pro-
vides the mission manager with information about the over-
all quality of the entire search.

Demonstration
We believe a good way to validate our system is to demon-
strate its usability in front of real searchers in a real-world
environment. In the past several years, many field trials were
operated by students pretending to be searchers. A demo to
real searchers focuses more on the intended intelligence of
the system. That led to a field demo on November 21, 2009
for representatives of the Utah County Search and Rescue
team in a remote wilderness area in Elberta, Utah.

Three searchers participated in the demo. One searcher,
R, acted as the UAV operator and flew the UAV in a
simulated search and rescue mission while the other two
searchers observed the mission and inquired about the ca-
pabilities of the system, the system structure, and the opera-
tion protocols. Professors and students of BYU volunteered
as video analysts and ground searchers. R had received 30
minutes UAV operator training and also practiced in a sim-
ulated environment for a few hours. The mission objective
was to locate a simulated missing person (a dummy placed
in the wilderness) as quickly as possible in a team effort
(UAV operator, video analyst, and ground searchers) utiliz-
ing the UAV technology. The responsibilities of the mission
manager were split between the UAV operator and the video
analyst. The missing person was successfully identified in
the mosaic view, and the GPS location was radioed to the
ground searchers, who successfully located the missing per-
son. The entire mission completed in under 35 minutes.

The anomaly detection autonomy component and the GUI
for ground searchers were not fully implemented and, there-
fore, were not included in the demo. Other than the distri-
bution generation, intelligent path planning, and see-ability
metric components (implemented and validated but not fully
integrated), all other technologies described in this paper
were available and functional.

We conducted an in-depth interview with R several weeks
after the demo. Here we share only a portion of his feed-
back due to space limitations. R thinks the UAV operator
interface is “very easy to pick up” and 30 minutes of train-
ing was plenty. His reason for practicing in the simulated
environment was to explore and avoid silly mistakes. A few
new features were available at the demo, but he was able to
learn them quickly. He liked the video feed inside the UAV
operator GUI because it helped him align the map with the
video. One interesting incident was that he was able to iden-
tify the simulated missing person before the video analyst,
probably the result of his trained eye. He also suggested that
including ruler type tools in Phairwell could help him get
a better perspective of the map. Feedback from his fellow
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searchers included comments such as “That was cool!” and
“This could work!”

Another key benefit of the demo is that it raises interest
from the WiSAR community on technologies that can po-
tentially assist WiSAR operations and opens the door for
more direct collaboration between the WiSAR community
and academic researchers in the near future.

Conclusions and Future Work
To make UAV technology useful for WiSAR requires the
integration of an intelligent UAV system into the existing
intelligent WiSAR system. The autonomy components of
the UAV technology also need to be integrated to support
both individual searcher roles and the distributed system as
a whole. We analyze and identify key elements of the inte-
gration challenges along two dimensions: attributes of intel-
ligent system and scale. Component technologies are pre-
sented and matched to responsibilities of different searcher
roles. Then we describe how components of autonomy are
integrated into the user interfaces to support the integration
of human intelligence for each search role in order to address
the integration challenges we identified. Finally we validate
the usefulness of the integrated system via a demonstration
to Utah County Search and Rescue team representatives. A
real searcher acted as the UAV operator and successfully
located the simulated missing person using the intelligent
UAV system through a team effort. Positive feedback from
real searchers about the demonstration give us high hopes
that research efforts in designing the UAV intelligent system
can really help real WiSAR operations in the near future.

Immediate future work includes implementing and inte-
grating system components identified in this paper but not
included in the demo. Research is also planned for providing
more flexibility for the existing tool set (e.g., interactive dis-
tribution modification and sliding autonomy for intelligent
path planning). Long term goals focus on better integration
of ground search situation awareness to improve system sit-
uation awareness and overall planning.
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