
Integrating Constraint Satisfaction and Spatial Reasoning

Unmesh Kurup and Nicholas L. Cassimatis
Rensselaer Polytechnic Institute

110 8th Street
Troy, NY 12180, USA
{kurup|cassin}@rpi.edu

Abstract

Many problems in AI, including planning, logical reasoning
and probabilistic inference, have been shown to reduce to
(weighted) constraint satisfaction. While there are a num-
ber of approaches for solving such problems, the recent gains
in efficiency of the satisfiability approach have made SAT
solvers a popular choice. Modern propositional SAT solvers
are efficient for a wide variety of problems. However, partic-
ularly in the case of spatial reasoning, conversion to propo-
sitional SAT can sometimes result in a large number of vari-
ables and/or clauses. Moreover, spatial reasoning problems
can often be more efficiently solved if the agent is able to
exploit the geometric nature of space to make better choices
during search and backtracking. The result of these two draw-
backs - larger problem sizes and inefficient search - is that
even simple spatial constraint problems are often intractable
in the SAT approach. In this paper we propose a spatial
reasoning system that provides significant performance im-
provements in constraint satisfaction problems involving spa-
tial predicates. The key to our approach is to integrate a di-
agrammatic representation with a DPLL-based backtracking
algorithm that is specialized for spatial reasoning. The result-
ing integrated system can be applied to larger and more com-
plex problems than current approaches and can be adopted to
improve performance in a variety of problems ranging from
planning to probabilistic inference.

Introduction

The ability to represent and reason about space is a funda-
mental requirement for many intelligent agents. Not only
are spatial reasoning problems ubiquitous, it has also been
argued that reasoning in many domains can be reduced to
reasoning in the spatial domain (Cassimatis 2006). How-
ever, since few domains are purely spatial, the usual method
is to use a more general-purpose approach and to subsume
spatial reasoning as part of that approach. One such ap-
proach, (weighted) constraint satisfaction, has been shown
to be particularly effective. Many problems in AI, including
planning, logical reasoning and probabilistic inference can
be reduced to (weighted) constraint satisfaction problems.
With the advent of faster and more efficient SAT solvers,
constraint satisfaction via translation to SAT has yielded re-
sults that are often as good as or even better than other meth-

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ods. The drawbacks with such approaches has been reported
in (Kurup and Cassimatis 2010).

One way to handle drawbacks in SAT for specific kinds
of problems is to integrate the SAT approach with more
problem appropriate methods. This integration of domain-
specific methods into the satisfiability process is captured
under the umbrella of Satisfiability-Modulo Theories or
SMT (DeMoura and Rue 2002). In SMT, parts of the for-
mula that refer to the specific theory are handed over to the
theory-specific solver while the rest is handled by the SAT
solver. Quantifier Free Integer Difference Logic (QF-IDL)
is one of the theories commonly used for reasoning about
space in the SMT approach. In QF-IDL, spatial relationships
between objects are represented as a set of inequalities. For
example, the inequality ax ≤ bx − 1, where ax and bx are
the x-coordinates of objects a and b respectively, represents
the fact that object a is to the left of object b. The inequal-
ities can be represented as a graph structure and efficient
algorithms exist that can check for satisfiability by checking
for the presence of loops in the graph (Cotton 2005). How-
ever, while these inequalities are efficient in capturing the
relationship between point objects, expanding their use to
represent 2-d shapes has at least two drawbacks - One, the
number of inequalities needed to represent a shape increases
as the complexity of the shape increases since a shape is rep-
resented as a set of inequalities between its vertices. Two,
if an object (even a simple one such as a rectangle) is al-
lowed to rotate, the relationship between its vertices change
and inequalities have to be written for each possible rota-
tion of the object. The number of such sets of inequalities
depends on the fineness to which the rotation needs to be
captured. In this paper, we propose the use of diagrams as
the appropriate theory for representing and reasoning about
space. Further, reasoning about spatial constraints can be
handled much more efficiently using a specialized DPLL-
based backtracking algorithm that utilizes the geometric na-
ture of space.

Representing Space

Consider a 3x3 grid. To encode the information that ob-
ject a is Next to object b, we would need a proposi-
tional SAT formula like the following (in non-CNF form):
(AT (a, 1, 1)∧(AT (b, 1, 2)∨AT (b, 2, 1)∨AT (b, 2, 2)))∨
(AT (a, 1, 2) ∧ (AT (b, 1, 1) ∨ AT (b, 2, 1) ∨ AT (b, 2, 2) ∨

1536

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

Figure 1: A diagram satisfying the constraint Left(a, b) and
Above(c, a)

Figure 2: (a) rectangular object a at location (2,2). (b) Maxi-
mized possibility space for LeftOf(a) without rotation. (c)
Maximized possibility space with rotation

AT (b, 1, 3) ∨ AT (b, 2, 3))) ∨ . . . and so on until every lo-
cation in the grid has been accounted for. Even for simple
spatial relations such as Left or Above the number of vari-
ables and clauses needed will grow as the size of the grid
grows. Propositionalizing space for the purposes of SAT is,
thus, an expensive approach. A spatial representation, on
the other hand, can represent information more compactly
by abstracting individual locations that share constraints into
groups.

Diagram

Our spatial representation is based on the Diagrammatic
Representation System (DRS) first proposed by (Chan-
drasekaran et al. 2004). A diagram in DRS consists of three
types of objects - points, curves and regions. Point objects
have only location (i.e., no spatial extent), line objects have a
location and a spatial extent (denoting the axial specification
of the curve), and region objects have location and spatial
extent. The DRS specification is agnostic as to exactly how
the spatial extent of a diagrammatic object is represented in
the system. For our purposes, we represents curves as a set
of line segments and a region by a curve that represents its
perimeter.

The DRS also has a set of perceptual routines, such as
LeftOf , RightOf etc, that allow information to be ex-
tracted from a diagram; and a set of action routines that
allow for the creation and modification of diagrams. The
diagram forms the basic unit of spatial organization in our
reasoning system.

Possibility Space

As mentioned earlier, one of the disadvantages of proposi-
tionalizing space is the need to account for the possibility
of an object being in every location in the space. However,
in qualitative reasoning, it is the relationships that hold be-
tween objects that matter rather than their exact locations
in space. For example, in satisfying the constraint Left(b)

for an object a, we don’t care whether a is one spot to the
left of b or two spots to the left and so on. This means
that we can generalize away from exact locations to loca-
tion groups where the members of each group satisfy a com-
mon set of spatial constraints. Generalization in this manner
leads to lesser number of individuals resulting in better per-
formance when converted to propositional SAT. The concept
of the possibility space (Wintermute and Laird 2007) allows
us to do this generalization. A possibility space is a set of
points that satisfy some set of spatial constraints. Every ob-
ject in a diagram resides in a possibility space and spatial
relationships between objects can be computed by finding
intersections between these possibility spaces. For example,
given a 4x3 diagram, an object a at location {(2, 2)}, and
an object b with constraints C(b) = {Left(a), Above(a)},
the possibility space satisfying the constraint Left(a) is
Ps(Left(a)) = {(1, 1), (1, 2), (1, 3)}, the possibility space
satisfying the constraint Above(a) is Ps(Above(a)) =
{(1, 1), (2, 1), (3, 1), (4, 1)} and the possibility space of b is
Ps(b) = (Ps(Left(a)) ∩ Ps(Above(a))) = {(1, 1)}.

Maximizing a possibility space Given an object a with
its possibility space Ps(a) and a constraint c(a), the max-
imized possibility space that satisfies c(a) (Psmax

(c(a)))
is the maximal set of all points that satisfy the constraint
assuming a can be placed anywhere in Ps(a). For example,
consider the 4x3 diagram from earlier. Let a be a rectangu-
lar object of size 2x1. Further, let a occupy the locations
(2, 2) and (3, 2) as shown in Figure 2(a). Let a’s possibility
space be the entire diagram. The usual calculation of
possibility space for the constraint Left(a), Ps(Left(a)),
is the set of points {(1, 1), (1, 2), (1, 3)}. The maximized
possibility space for a constraint Left(a) is the set of points
{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}. The configura-
tion that allows this is shown in Figure 2(b). If the rotation
of objects is allowed, the maximized space increases to
{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}
which is shown in 2(c). The angle of rotation that maximizes
a possibility space depends on the object, its possibility
space (if, for example, the object will not fit rotated 90
degrees, then a partial rotation will maximize the space) and
the constraint on which the possibility space is constructed.
This maximizing operation is an important part of our
algorithm for satisfying spatial constraints.

Satisfying Spatial Constraints

One of the disadvantages of a diagrammatic representation
constructed from propositional information is that it is often
ambiguous. For example, let the constraints on three objects
a, b and c be {Left(a, b), Above(c, a)}. It is straightfor-
ward to construct a diagram such as the one shown in Figure
1 based on these constraints. Now consider that an addi-
tional constraint Below(c, b) is given. Based on the current
configuration in the figure, it would be impossible to sim-
ple move c and satisfy this new constraint, but that does not
mean that the constraints are not satisfiable. Given differ-
ent locations for a or b, Below(c, b) could be satisfied. To
further complicate matters, when dealing with curves or re-
gions, it is also possible to rotate these objects in order to

1537

Figure 3: (a) Diagram with object b at (3, 2). (b) The deci-
sion tree

satisfy various relationships. Thus, any system that uses di-
agrams must be capable of manipulating the diagrammatic
representation so as to satisfy the given set of constraints (or
to accommodate a new constraint).

One way of satisfying a set of constraints is via a depth-
first search algorithm such as DPLL. DPLL-based variants
have been shown to be some of the most powerful and ef-
fective reasoning algorithms in AI (Moskewicz et al. 2001).
DPLL-based solvers have also been used to solve constraint
satisfaction problems that have been shown to be equivalent
to many problems in planning and probabilistic inference
(Sang T. 1999). While these algorithms are effective for gen-
eral constraint satisfaction, even when combined with a di-
agrammatic or spatial representation, satisfying spatial con-
straints can lead to repeated backtracking and a much larger
search-space. To see how, consider how a DPLL-based al-
gorithm would fare in the following spatial constraint satis-
faction problem. There are three objects a, b and c, two con-
straints Left(a, b) (interpreted as a is to the left of b though
it can also be taken as b is to the right of a without any loss
in explanatory power) and Above(c, a), and a diagram of
size 3x3. Since there are no constraints on b, its possibility
space is the entire diagram. Since every point in the possi-
bility space is equivalent, the algorithm picks one of them at
random (let’s assume (3, 2)) and branches on this location
for b. Figure 3(a) shows the associated diagram and Figure
3(b) the current DFS tree. Next, the algorithm calculates
the possibility space for a for the constraint Left(a, b) [=
{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}]. Fig 4(a) shows
this space (an x in a location marks that location as part of
the possibility space). The algorithm picks a location from
the space for a (say (2, 2)) and branches on it. Figure 4(b)
and (c) shows the decision tree so far and the corresponding
diagram respectively. Similarly, the algorithm calculates the
possibility space for c based on Above(c, a) and branches
on a location from the possibility space (say (2, 1)). Figure
5 shows the calculated possibility space, decision tree and
resulting diagram.

Assume a new constraint Below(c, b) is given. The algo-
rithm calculates the possibility space for Below(c, b) then
finds the intersection of this space with c’s existing pos-
sibility space. Since the two spaces do not intersect, the
calculated possibility space is empty and the algorithm has
to backtrack. By the intersection of possibility spaces we
know that changing the location of c will not satisfy the con-
straint. The algorithm backtracks further up the decision
tree to a. Given a’s current location and possibility space
(Fig 4) there are 5 other choices for placing a. The algo-

Figure 4: (a) Diagram showing possibility space for a given
constraint Left(b). (b) The decision tree. (c) Diagram with
b and a.

Figure 5: (a) Diagram showing possibility space for c given
constraint Above(a). (b) The decision tree. (c) Diagram
showing b, a and c.

rithm will search through each location (assigning each lo-
cation to a and backtracking when the choice fails) till it has
covered every location. Once it has failed on all choices, it
backtracks up another step on the decision tree to b. Again,
the algorithm has to randomly search through all the pos-
sible locations for b in order to find one that satisfies all
the constraints (in this example that location is either (2, 1)
or (3, 1)). Thus, backtracking over locations in space can
quickly lead to exponentially larger search-spaces. Given
moderately large diagrams and non-trivial number of ob-
jects, the algorithm can quickly become too slow to be of
any use.

Reducing search for spatial constraint satisfaction

We present a way to reduce the search space for spatial
constraint satisfaction problems by minimizing the num-
ber of backtracking operations that have to be performed
by a DPLL-based algorithm. The key to this reduction is
based on the maximization operation for possibility spaces
described earlier. We now describe how this specialized al-
gorithm works.

Let the system be trying to accommodate a new constraint
c(om, on) that is not currently satisfied in the diagram. For
explanatory purposes, it is assumed that object om is the
last decision in the backtracking tree. The systems starts by
backtracking up the tree of location decisions. At each node
along the backtrack, the system performs the following op-
eration. Let’s call the current node of the tree at which the
backtrack algorithm is ok. From ok, the algorithm works
back down the tree maximizing the possibility space of each
object in that sub-tree. When it reaches the end of the tree
(object om), it has found the maximal possibility space for
om given ok. The system finds the intersection of this max-
imal possibility space and the possibility space due to any

1538

Figure 6: (a) The initial configuration satisfying Left(a, b)
and Above(c, a). (b)The decision tree after placing b, a and
c

Figure 7: (a)Maximal space for Above(a). (b)Maximal
Space for Below(b). (c)Intersection of (a) and (b).

other constraints on om (in this case c(om, on)). If this space
(psmax

(o1)) is non-empty and om fits in this space, a solu-
tion to the problem can be found by moving object ok. By
maximizing possibility spaces in reverse from psmax

(om) to
the object ok back up the tree, the system finds the new pos-
sibility space for ok such that c(om, on) can be satisfied. If
psmax

(om) is empty or om does not fit in this space, the al-
gorithm backtracks up the tree and repeats this process. It
continues backtracking till a possibility space where om fits
is found or it has reached the beginning of the tree. In the
latter case, it means that the set of constraints is not satisfi-
able.

To show how this works, consider the following example.
Let the size of the diagram be 3x4 and the objects be a, b
and c. a is a region object (we’ll consider only rectangular
regions in this paper) of size 1x2, b is a point object and c
is a rectangular object of size 2x2. Let the constraints on
the objects be {Left(a, b), Above(c, a)}. The current con-
figuration looks as shown in Figure 6(a) with each element
of the diagram array filled in with the details of the occupy-
ing object (overlaps are okay as long as the constraints are
satisfied). The system now encounters the new constraint
Below(c, b). The system checks to see if this new constraint
is satisfied by the diagram. Since it is not, the system starts
backtracking up the tree of location decisions (Figure 6(b)
shows the current tree) to the decision for object a. From
here, it tries to maximize the possibility space of the next el-
ement below a in the tree. That object is c and the only con-
straint between c and a is Above(c, a). Figure 7(a) shows
the result of the maximization (each x marks a location that
belongs to the possibility space). Note that this maximiza-
tion is possible only if a is rotated 90 degrees to the right. If
there were multiple constraints between c and a (or between
c and any object in the sub-tree from a to c in the tree) the

Figure 8: (a)Maximal Space for Left(a, b). (b)Maximal
Space for Above(a). (c) Maximal Space for Below(b). (d)
Intersection of spaces (b) and (c)

Figure 9: (a)Reverse maximization from c using con-
straint Below(c). (b) Reverse maximization from c using
Above(c). (c)Intersection of (a) and constraint Left(b). (d)
Intersection of (b) and constraint Right(a).

maximal space would be the intersection of the individual
maximal spaces. Once the maximal space is found, the in-
tersection of this space with the possibility space denoted by
any remaining constraints on c that are from objects above
a in the tree are calculated. In this example, that object is b
and the possibility space due to the constraint Below(c, b) is
shown in Figure 7(b). The result of the intersection of these
two possibility spaces is shown in Figure 7(c). Since c will
not fit in the resulting space, the system backtracks again up
the tree from a to b.

From b, it tries to maximize the space available for a (the
object below it in the tree). Figure 8(a) shows the maximal
space for a given the single constraint Left(a, b). Once this
space is calculated, the system moves down the tree to c and
calculates its maximal space. c’s maximal space is the inter-
section of the spaces resulting from maximizing a’s possibil-
ity space with respect to the constraint Above(c, a) (Figure
8(b)) and maximizing b’s possibility space with respect to
the constraint Below(c, b) (Figure 8(c)). Figure 8(d) shows

Figure 10: (a)New possibility space for c. (b) New possibil-
ity space for a. (c) New possibility space for b.

1539

c’s final maximal space. Since c fits in this space, the system
concludes that the constraint Below(c, b) can be satisfied.
The entire process is now reversed from c through a to b
to calculate the new possibility spaces for a and b such that
Below(c, b) can be satisfied. Figure 9(a), (b), (c), (d) show
the steps in this reverse maximization. The new possibility
spaces satisfying all constraints for c, a and b are shown in
Figure 10(a), (b) and (c) respectively.

Evaluations

The possibility space approach has a number of points in
contact with previous approaches such as Degrees of Free-
dom Analysis (Kramer 1992) and the accessible volume ap-
proach of (Brinkley et al. 1987). However, neither cover
quite the same ground. Degrees of Freedom analysis is con-
cerned with problems where objects have at least one fixed
point about which they are free to rotate (hence “degrees”).
The accessible volume approach specification is closer to the
possibility space approach however the non-backtracking
solution using this approach appears to derive from the use
of abstractions which makes the approach incomplete. Fur-
ther, while they have multiple heuristics to guide search, we
use only a single backtracking algorithm to achieve our goal.

We decided to compare the performance of our system
against that of SMT-based solvers due to two reasons - their
widespread success and use in constraint satisfaction and the
availability of implementations against which we were able
to run our tests. The two solvers selected where yices2 and
cvc3, two of the top SMT solvers in the QF-IDL section of
the 2009 SMT competition. We tested all three solvers in
the spatial constraint satisfaction problem described earlier -
given a diagram size, a set of rectangles and a set of spatial
constraints between these rectangles, find a configuration of
these rectangles inside the diagram such that all constraints
are satisfied. The objective of the spatial constraint satisfac-
tion problem is to locate a set of objects in a grid space such
that they satisfy a set of spatial relations.

Translation of the problem to QF-IDL In order to run
these problems on Yices2 and cvc3, the problems need to
be translated into QF-IDL problems. Recall that QF-IDL
represents constraints between locations in the form of in-
equalities. There are two sets of inequalities that are needed
to capture the spatial constraint satisfaction problem

1. A rectangle can be represented as a set of inequalities be-
tween its end-points. For example, consider a rectangle
r with sides a and b. Let’s denote the end-points of r
starting from the top-left and going counter-clockwise as
follows {(rx1, ry1), (rx2, ry2), (rx3, ry3), (rx4, ry4)}.
Then, the set of inequalities that capture this rectangle (as-
suming r is not rotated) will be as follows:

{rx1 − rx2 = 0, ry1 − ry2 = −b,

rx2 − rx3 = −a ry2 − ry3 = 0

rx3 − rx4 = 0 ry3 − ry4 = b

rx4 − rx1 = a ry4 − ry1 = 0}

However, these inequalities change if the rectangle is ro-
tated. So, we need to add the inequalities between these

Figure 11: The results of running each solver on a prob-
lem with increasing number of objects and constant diagram
size.

end-points for each rotated version of r. The number of
such inequalities depends on the degree of fineness in rep-
resenting rotated version. We used one degree of separa-
tion between each rotated version for a total of 180 vari-
ations (Since the objects are all rectangles only 180 de-
grees of rotation is needed. For more arbitrary objects,
inequalities that capture all 360 degrees of variation will
be needed).

2. The second set of inequalities capture the constraints
themselves. If rectangle a is to the left of rectangle b,
the rightmost point of a is to the left of the left-most point
of b. And similarly for other constraints such as Right,
Above, Below etc.

Step 1 adds 1440 inequalities for each rectangular object and
step 2 adds 128 inequalities for every constraint between two
objects.

Results

We ran all three solvers on two sets of evaluation problems.
For the first problem set we kept the size of the diagram con-
stant at 350x60 while increasing the number of objects from
1 to 15. Each object was a rectangle of size 50x20. The con-
straints were kept simple - each new object was to be placed
to the left of the previously introduced object. Any solver
taking more than 15 minutes for a particular problem was
considered to not have finished. Figure 11 shows the results
of running each solver on this set. Note that the y-axis (time)
is in the logarithmic scale. cvc3 took more than 15 minutes
once the number of objects was over 6. Yices2 did better till
the object count reached 14. In both cases, the time needed
to solve the problem increased exponentially in the number
of objects. SS, our spatial reasoning system, did much better
with non-exponential growth across the number of objects.
This is despite the fact that our implementation is not geared
towards efficiency. It was written using convenient but in-
efficient data structures.The speedup obtained is purely due
to the use of the spatial representation and the strategy for
spatial constraint satisfaction.

1540

For the second evaluation, we kept the number of objects
constant at 8 and increased the size of the diagram from
(350,60) to (1000,60) in increments of 50. As before, the
relations between objects were limited to Left or Right.
Figure 12 shows the results of the evaluations. cvc3 was un-
able to complete the first few problems in the required time
limit but once the diagram got bigger it stabilized to around
the 17 second mark. Yices2 did better, steadily reducing the
time required as the diagram size increased. SS took about
a second for every problem in the set thought it did show a
slight trend downwards as the diagram size increased.

Discussion and Future Work

From both evaluations, it is clear that the SMT solvers do
well with either small number of objects or much larger
spaces presumably because any initial assumptions for dif-
ferent values of an object’s end-points are equally valid.
However, as the number of objects increased without a cor-
responding increase in space, their performance declined
rapidly. In the case of both yices2 and cvc3, as the com-
plexity of a region increases, the number of inequalities re-
quired to represent it also increases. Rotating more complex
regions and checking if they fit in a possibility space affects
the SS as well. Expanding our algorithm to be able to handle
this increase in complexity is part of future work. Another
area of improvement is in the nature of possibility space.
Currently, possibility spaces are limited to being rectangles.
Given the kinds of spatial constraints described in this paper
(Left, Above etc), this assumption is not a limiting factor.
With more complicated spatial constraints, the restriction on
possibility spaces being rectangles will have to be relaxed.
More work needs to done to understand the effects of such
complexity for the backtracking algorithm.

Another area for future work is to tease out the individual
contributions of the two aspects of our work - the spatial rep-
resentation and the backtracking algorithm. Previous work
(Kurup and Cassimatis 2010) has shown that while spatial
representations alone can increase ability of the SAT engine
to handle the large numbers of constraints, it also places se-
vere limitations on the number of objects that the system can
handle (˜6). The inclusion of the backtracking algorithm is
what allows the system to handle large number of objects
as well. More evaluations need to be done to understand
exactly how much each aspect contributes to the overall suc-
cess of the approach.

Conclusion
Efficient spatial reasoning is an important component of
many intelligent agents. Reasoning as constraint satisfaction
has had great success especially with the advent of faster
SAT solvers. However, the effects of propositionalizing
space makes this approach to spatial reasoning expensive.
One possibility is to use the SMT approach where a theory-
specific reasoning system is integrated with a general SAT
solver. Current SMT theories perform poorly due to the lack
of a good representation for space and inefficient backtrack-
ing routines for search. In this paper, we have shown how
a diagrammatic representation can be beneficial when repre-
senting and reasoning about space. When this representation

Figure 12: The results of increasing diagram size when the
number of objects was kept constant

is integrated with a DPLL-based backtracking search that is
specialized for spatial problems, it can provide substantial
performance improvements in problems ranging from plan-
ning to probabilistic inference.

References
Brinkley, J. F.; Buchanan, B. G.; Altman, R. B.; Duncan,
B. S.; and Cornelius, C. 1987. A heuristic refinement
method for spatial constraint satisfaction problems. Techni-
cal Report KSL-87-05, Knowledge Systems, AI Laboratory.
STAN-CS-87-1142 15 pages.

Cassimatis, N. L. 2006. A cognitive substrate for human-
level intelligence. AI Magazine 27(2).

Chandrasekaran, B.; Kurup, U.; Banerjee, B.; Josephson,
J. R.; and Winkler, R. 2004. An architecture for problem
solving with diagrams. In Alan Blackwell, Kim Marriot,
A. S., ed., Diagrammatic Representation and Inference con-
ference, 151–165. Springer-Verlag.

Cotton, S. 2005. Satisfiability Checking With Difference
Constraints. Master’s thesis, IMPRS Computer Science.

DeMoura, L., and Rue, H. 2002. Lemmas on demand for
satisfiability solvers. In Proceedings of the Fifth Interna-
tional Symposium on the Theory and Applications of Satisfi-
ability Testing (SAT), 244–251.

Kramer, G. A. 1992. Solving Geometric Constraint Systems.
Cambridge, MA: MIT Press.

Kurup, U., and Cassimatis, N. L. 2010. Quantitative spatial
reasoning for general intelligence. In proceedings of Third
Conference on Artificial General Intelligence.

Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.;
and Malik, S. 2001. Chaff: Engineering an efficient sat
solver. In 39th Design Automation Conference, 530–535.

Sang T., Beame P., K. J. 1999. Solving bayes networks by
weighted model counting. In AAAI-05, 318–325.

Wintermute, S., and Laird, J. 2007. Predicate projection in
a bimodal spatial reasoning system. In Proceedings of the
Twenty-Second AAAI Conference on Artificial Intelligence.
Vancouver, Canada: Morgan Kaufmann.

1541

