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Abstract

With the increasing popularity of location tracking ser-
vices such as GPS, more and more mobile data are being
accumulated. Based on such data, a potentially useful
service is to make timely and targeted recommendations
for users on places where they might be interested to go
and activities that they are likely to conduct. For ex-
ample, a user arriving in Beijing might wonder where
to visit and what she can do around the Forbidden City.
A key challenge for such recommendation problems is
that the data we have on each individual user might be
very limited, while to make useful and accurate recom-
mendations, we need extensive annotated location and
activity information from user trace data. In this pa-
per, we present a new approach, known as user-centered
collaborative location and activity filtering (UCLAF), to
pull many users’ data together and apply collaborative
filtering to find like-minded users and like-patterned
activities at different locations. We model the user-
location-activity relations with a tensor representation,
and propose a regularized tensor and matrix decompo-
sition solution which can better address the sparse data
problem in mobile information retrieval. We empiri-
cally evaluate UCLAF using a real-world GPS dataset
collected from 164 users over 2.5 years, and showed
that our system can outperform several state-of-the-art
solutions to the problem.

Introduction

Today, many mobile devices come with positioning func-
tions such as Geographical Positioning System (GPS) and
sensors. Through these devices, many new services can be
provided for users, including geospatial Web services (Si-
mon and Fröhlich 2007), location-based activity recognition
(Liao, Fox, and Kautz 2005), etc. Much of the location data
are accumulated in the form of location traces and user ac-
tivities. For example, Figure 1 shows a GPS location data
management system used by a visitor, who can annotate her
GPS trajectory at the Forbidden City area in Beijing with
some of her own comments (depicted as small pink boxes
attached on the trace). These annotations can indicate the
activities that she conducted at various interesting locations.
With more and more user trajectories and annotations, our
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question is: how can we make use of these data to make
useful and targeted recommendations for the users?

In this paper, we aim to mine useful knowledge from
many users’ GPS trajectories based on their partial location
and activity annotations to provide targeted collaborative lo-
cation and activity recommendations for each user. In partic-
ular, we try to answer the following questions: for a specific
user, if she wishes to do some sightseeing or food-hunting
in a large city such as Beijing, where should she go, given
her previous GPS traces and other similar users’ GPS histo-
ries? Also, if she has already visited some places such as the
Forbidden City palaces, what else can she do in that area?
The first question corresponds to location recommendations
given some activity queries, where an activity may refer to
various human behaviors such as food-hunting, shopping,
watching movies/shows, enjoying sports/exercises, tourism,
etc. The second query corresponds to activity recommenda-
tions from some given locations. In this paper, we answer
both questions with user-centered collaborative location and
activity filtering (UCLAF).

Figure 1: GPS data management services.

Our work is motivated by the observation that location
recommendation and activity recommendation are tightly
related in nature, since the activities are usually location-
dependent. However a major challenge is that, the ratings
provided by users in the form of annotated location-activity
data are often grossly insufficient and sparse. To solve this
problem, when making recommendations, we need to take
many users’ information into account. This requires us to
make our inferences collaboratively, instead of separately,
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based on many users’ data. Therefore, we propose a col-
laborative location and activity filtering framework, where
we take user as a first-class entity in the data modeling. In
particular, we model the user-location-activity relations in a
tensor, and formulate the reasoning problem as a collabora-
tive filtering (CF) problem. We can mine additional infor-
mation, such as the user-user similarities, location features
(e.g. points of interests in the area) and activity-activity cor-
relations to help with the CF problem. Then, we exploit
a regularized tensor and matrix decomposition method to
discover interesting locations and activities for our recom-
mendations. Our method is evaluated on a real-world GPS
dataset, which was collected from 164 users over a period of
2.5 year and with a total GPS trajectory length over 139,310
kilometers. We will show that our method can outperform
many state-of-art solutions to the recommendation problem.

Related Work
In the past, few work has been done on collaborative loca-
tion and activity recommendations. Most of the previous
work focused on either recommending some specific types
of locations, such as shops (Takeuchi and Sugimoto 2006)
restaurants (Horozov, Narasimhan, and Vasudevan 2006;
Park, Hong, and Cho 2007), and hot spots for tourism
(Zheng et al. 2009); or only recognizing the user activities
from sensor data rather than providing location and activity
recommendations together (Bui 2003; Patterson et al. 2005;
Zheng, Hu, and Yang 2009).

In location recommendation, for example, a CityVoy-
ager system (Takeuchi and Sugimoto 2006) uses an item-
based CF method to recommend to a user some shops that
are similar to her previously visited shops. In (Horozov,
Narasimhan, and Vasudevan 2006), a Geowhiz system uses a
user-based CF method to recommend to a user some restau-
rants that some other similar users usually visited. In (Zheng
et al. 2009), a HITS-based model is proposed to recommend
the tourism hot spots that are popular and highly recom-
mended by the experienced users. Compared with these sin-
gle type location recommenders, our system is able to handle
multiple location types w.r.t. different activity queries.

For activity recommendation, our work is related to the
study for activity recognition, which aims to infer what a
user is doing from various sensor observations. For exam-
ple, in (Liao, Fox, and Kautz 2005), a hierarchical condi-
tional random field model is built based on GPS data to
recognize whether a user is at work, or sleeping at home,
etc. In (Wyatt, Philipose, and Choudhury 2005), some ob-
ject use common sense knowledge is mined from the Web
to help recognize the activities of daily living such as brush-
ing teeth. But our activity recommendation is different from
pure activity recognition because: first, rather than recog-
nizing the activity for a user in real time, we aim to find all
the interesting activities that can be performed at some loca-
tions; second, we collaboratively model the users other than
treat them independently; third, our solution can meanwhile
help accomplish the location recommendation task.

Our previous work (Zheng et al. 2010) presented a possi-
ble solution to conduct location recommendation and activ-
ity recommendation together by merging all the users’ rat-

ings together. However, this solution only considered the
location-activity relations without modeling users specifi-
cally, and thus made the same recommendations to differ-
ent users. In this work, we extend our previous method
by taking users into account. We carefully model the user-
location-activity relations, so that we can provide more tar-
geted recommendations to each user.

User-Location-Activity Modeling with Tensor
From the GPS data, we can extract three entities, i.e. users,
locations and activities, denoting that some user visited
some place and did something there. We propose to model
such user-location-activity relations in a 3-d tensor, with
each dimension corresponding to an entity above. In par-
ticular, we denote such a tensor as A ∈ R

m×n×r, where m
is the number of users, n is the number of locations and r
is the number of activities. Then an entry aijk in A denotes
the frequency of a user i visiting location j and doing activ-
ity k there. As each user has limited number of annotations
on the locations and activities (so we have no idea what a
user was doing at some places), the tensor constructed from
the GPS data is expected to be sparse. This inspires us to use
collaborative filtering to fill the tensor for recommendations.

One possible solution to the CF problem is to follow the
memory-based methods, such as (Herlocker et al. 1999;
Wang, de Vries, and Reinders 2006), and design some sim-
ilarity metrics based on user and/or location and/or activity
for filling the tensor entries. A drawback of such methods
is that, in general, the similarity metrics are not adaptive to
different datasets or contain some parameters that should be
tuned other than learned. So we follow another direction to
solve the CF problem, by proposing a model-based method.
We will show in the experiments that our method can outper-
form the memory-based methods. The model-based meth-
ods benefit from the statistical and machine learning tech-
niques, and view CF as a missing-value prediction prob-
lem through matrix factorization (Srebro and Jaakkola 2003;
Singh and Gordon 2008). However, most of these methods
only modeled two-party relations in matrix forms. In con-
trast, we model the three-party relations in a tensor; and be-
yond standard tensor decomposition (Lathauwer, Moor, and
Vandewalle 2000), we will further exploit additional matrix
inputs for a regularized decomposition solution.

Our Solution

The main idea of our model is illustrated in Figure 2. We
first model the user-location-activity relations in a tensor A.
As the tensor can be sparse, our objective is to fill the ten-
sor for location and activity recommendations. To help the
collaborative filtering in the tensor, we exploit some addi-
tional information w.r.t. each tensor entity. In particular, we
have the user-user matrix B ∈ R

m×m which encodes the
user-user similarities in a social network. We aim to use this
similarity information to uncover the like-minded users in
CF. We also have a location-feature matrix C ∈ R

n×p, with
each feature referring to the (normalized) number of POIs
(point of interests, e.g. museums) in that location (Zheng et
al. 2009). For activities, we have a matrix D ∈ R

r×r repre-
senting the activity-activity correlations showing how likely
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Figure 2: Model illustration in a tensor/matrix form.

an activity may happen if another activity happens. This ma-
trix can be obtained by using the common sense on the Web,
with some search-engine based similarity methods proposed
in (Zheng, Hu, and Yang 2009) and (Wyatt, Philipose, and
Choudhury 2005). Beyond the tensor to model the user-
location-activity, we also extract another matrix E ∈ R

m×n

from the GPS data to model the user-location visiting rela-
tions. This matrix could be helpful to model the case when
we only know a user visited some place but have no idea
what she was doing there. Note that, all these four matrices
are given beforehand, and taken as inputs for our model. We
will study the impacts of these matrices in the experiments
by tuning their corresponding model parameters.

To fill in entries in the tensor A, we follow the model-
based methods (Srebro and Jaakkola 2003; Singh and Gor-
don 2008) to decompose the tensor A for some low-
dimensional representations w.r.t. each tensor entity (i.e.
users, locations and activities) based on the incomplete ten-
sor (as it is sparse). In decomposition, we force the low-
dimensional representations to be shared with the additional
matrices so as utilize their information. After such low-
dimensional representations are obtained, we can recon-
struct the tensor by filling all the missing entries in the ten-
sor. In our model, we propose a PARAFAC-style tensor de-
composition (Cichocki et al. 2009) framework to integrate
the tensor with the additional matrices for a regularized de-
composition. Specifically, our objective function is

L(X, Y, Z, U) = 1
2 ‖A − [[X, Y, Z]]‖

2
+ λ1

2 tr(XT LBX)

+λ2

2

∥

∥C − Y UT
∥

∥

2
+ λ3

2 tr(ZT LDZ) + λ4

2

∥

∥E − XY T
∥

∥

2

+λ5

2 (‖X‖2 + ‖Y ‖2 + ‖Z‖2 + ‖U‖2),
(1)

where the variables X = [x1,x2, . . . ,xk] ∈ R
m×k, Y =

[y1,y2, . . . ,yk] ∈ R
n×k and Z = [z1, z2, . . . , zk] ∈ R

r×k.

[[X, Y, Z]] =
∑k

i=1 xi ◦ yi ◦ zi, where “◦” denotes the outer

product. Another variable U ∈ R
p×k. LB is the Laplacian

matrix of B, defined as LB = Q − B with Q being a di-
agonal matrix whose diagonal entries Qii =

∑

j Bij . tr(·)
denotes the trace of a matrx. LD is the Laplacian matrix of
D. ‖ · ‖ denotes the Forbenius norm. λ1 ∼ λ5 are model
parameters, when λ1 = λ2 = λ3 = λ4 = 0, our model de-
generates to the standard PARAFAC tensor decomposition,
showing that our model is more flexible to utilize other in-
formation about the targeted entities.

In (1), the first term decomposes the user-location-activity
tensor A as an outer-product of three low-dimensional rep-
resentations w.r.t. each entity (i.e. X for the users, Y for
the locations and Z for the activities). The second term
poses a regularization term on the users, forcing the low-
dimensional representations of two users as close as possible
if they are similar as suggested by the additional informa-
tion. The third term borrows the similar idea with collective
matrix factorization (Singh and Gordon 2008), by sharing
the low-dimensional location representation Y with the ten-
sor decomposition. The fourth term is a regularization term
similar to the second term, forcing the low-dimensional rep-
resentations of two activities as close as possible w.r.t. their
correlations. The fifth term is similar to the third term, and
shares the low-dimensional user representations X and loca-
tion representations Y with the tensor decomposition. The
last term is a regularization term so as to avoid overfitting.

In general, there is no closed form solution for Eq.(1),
so we turn to numerical methods, such as gradient descent
(Singh and Gordon 2008), to solve the problem. By taking
the derivatives over the objective function, we have

∇XL = −A(1)(Z ∗ Y ) + X
[

(ZT Z) ⊙ (Y T Y )
]

+ λ1LBX + λ4(XY T − E)Y + λ5X,
∇Y L = −A(2)(Z ∗ X) + Y

[

(ZT Z) ⊙ (XT X)
]

+ λ2(Y UT − C)U + λ4(XY T − E)T X + λ5Y,
∇ZL = −A(3)(Y ∗ X) + Z

[

(Y T Y ) ⊙ (XT X)
]

+ λ3LDZ + λ5Z,
∇UL = λ2(Y UT − C)T Y + λ5U,

(2)
where A(i) denotes the mode-i tensor unfolding with A(1) ∈
R

m×nr, A(2) ∈ R
n×mr, A(3) ∈ R

r×mn. In particular, a
tensor entry ai1i2i3 has a corresponding position (in, j) in
each mode’s unfolding: for mode-1, j = i2 + (i3 − 1)n;
for mode-2, j = i1 + (i3 − 1)m; for mode-3, j =
i1 + (i2 − 1)m. Besides, “∗” denotes the Khatri-Rao prod-
uct: for two matrices V = [v1,v2, . . . ,vJ ] ∈ R

I×J and
W = [w1,w2, . . . ,wJ ] ∈ R

T×J , their Khatri-Rao product
is defined as V ∗W = [v1 ⊗w1,v2 ⊗w2, · · · ,vJ ⊗wJ ] ∈
R

IT×J , where “⊗” denotes the Kronecker product. “⊙” de-
notes the Hadamard product (or, entry-wise product).

Algorithm and Its Complexity

Given the incomplete tensor and additional information
matrices, our goal is to complete the tensor for output. As
shown in Algorithm 1, we use an iterative algorithm to solve
the problem. In each iteration, we calculate the gradients for
the objective function L according to (2), and then get the
updated objective function until it reaches the minimum. In
the algorithm, T is the maximal number of iterations and
γ is the step size. We set T = 1000 and γ = 0.0001
in our experiments. Finally, after the iteration stops, we

will reconstruct the user-location-activity tensor Â by us-
ing the low-dimensional representations X, Y, Z. To do
recommendations, for an existing user u (1 ≤ u ≤ m),
we have her location-activity matrix as G ∈ R

n×r with

G(l, a) = Â(u, l, a) for 1 ≤ l ≤ n, 1 ≤ a ≤ r. Then we are
ready for recommendations: given a location input l, we will
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Algorithm 1 The UCLAF Algorithm

Input: An incomplete location-activity-user tensor A and
four additional information matrices B, C, D, E.

Output: The complete tensor for A, denoted by Â.
begin

1: t = 1;
2: while t < T and Lt > Lt+1 do
3: Get the gradients ∇X , ∇Y , ∇Z and ∇U by Eq.(2);
4: Xt+1 = Xt − γ∇X , Yt+1 = Yt − γ∇Y , Zt+1 =

Zt − γ∇Z , Ut+1 = Ut − γ∇U ;
5: if Lt < Lt+1 then break; end if
6: t = t + 1;
7: end while
8: return Â = [[Xt, Yt, Zt]].

end

rank the l-th row of S in a decreasing order, and recommend
to user u some top activities to do there. Similarly, given an
activity input a, we will rank the a-th column of G in a de-
creasing order, and recommend to user u some top locations
to go. We can also recommend to a new user in a similar
way, except that we will construct such a location-activity
matrix by summing up the tensor along its user dimension:

G′ ∈ R
n×r with G′(l, a) =

∑m

u=1 Â(u, l, a).
Let us consider the algorithm’s complexity. At each it-

eration, to get the gradient ∇X , we spend O(mnr + m2)
w.r.t. the input data dimensions m, n, r. Similarly, for ∇Y ,
we have O(mnr); for ∇Z , we have O(mnr); for ∇U , we
have O(n). Thus in total, for getting the gradients, we spend
O(mnr+m2 +mnr+mnr+n) = O(mnr+m2). To cal-
culate the objective function, we spend O(mnr +m2 + r2).
As the maximal number of iterations is constant, the total
complexity of this algorithm is O(T × (mnr+m2 + r2)) =
O(mnr +m2 + r2), showing that our algorithm is efficient.

Experiments

We have 164 users who carried GPS devices to record their
trajectories from April 2007 to Oct. 2009 in the city of Bei-
jing, China, as shown in Figure 3. The dataset consists of
12,765 GPS trajectories with a total length over 139,310
kilometers. To make sure that we recommend meaningful

Figure 3: GPS devices and data (Zheng et al. 2010).

locations and activities, we remove the GPS points for work
places and homes, and consider 5 different types of activ-
ities in this study, including “Food & Drink”, “Shopping”,

“Movies & Shows”, “Sports & Exercise” and “Tourism &
Amusement”. In addition, we also follow (Zheng et al.
2009) to cluster the raw GPS points into 168 meaningful
locations for recommendation. So in the experiments, the
number of users m = 164, the number of locations n = 168,
the number of activities r = 5. Besides, the number of lo-
cation features p = 14. The user comments attached to the
GPS data were manually parsed into activity annotations for
the 168 locations. These annotations were used to construct
the user-location-activity tensor: if a user performed an ac-
tivity at some location, the corresponding entry in the tensor
will be added by 1; otherwise, the entry is 0. After this ten-
sor construction, 1.04% of the entries are larger than 0.

Our system works as follows: a user can log in the sys-
tem and enter some query, such as “Bird’s Nest” for activ-
ity recommendation; then the system, according to her GPS
history and other users’ experiences, will recommend to the
user a ranking list of activities with “Tourism & Amusement
> Sports & Exercise > . . . ”. Similarly, when the user en-
ters “Tourism” for location recommendation, the system will
output a ranking list of famous Beijing tourism spots “Sum-
mer Palace > Forbidden City > . . . ”.

Comparison with Baselines

We employ 5 baselines for comparison: user-based CF
(UCF), location-based CF (LCF), activity-based CF (ACF),
unifying user-location-activity CF (ULA), high-order singu-
lar value decomposition (HOSVD). The first 3 baselines (i.e.
UCF, LCF and ACF) are memory-based methods, adapted
from (Herlocker et al. 1999) for tensor CF and taking only
tensr as input. The fourth baseline, ULA, is also a memory-
based method, adapted from (Wang, de Vries, and Reinders
2006) to take both the tensor and the additional matrices into
consideration. The fifth baseline, HOSVD, is a model-based
method used in (Symeonidis, Nanopoulos, and Manolopou-
los 2008) to model the user-item-tag relations for tag recom-
mendation. It only takes the tensor information as input.

In particular, for UCF, we consider CF on each user-
location matrix w.r.t. each activity independently. On each
matrix, we follow (Herlocker et al. 1999) and use Pearson
correlation as the user similarity weights. We find the top N
similar users for some target user (with missing entries) and
then compute their weighted average to predict the missing
entry. Similarly, we have LCF and ACF by considering CF
on each location-activity matrix w.r.t. each user individu-
ally. In the experiments, we set N = 4, since we find that
the prediction results do not depend on N significantly.

In ULA, for each missing entry in the tensor, we will ex-
tract a set of top Nu similar users, top Nl similar locations
and top Na similar activities, and then use the ratings from
all these users on the corresponding locations and activities,
in a weighted manner to calculate the entry value. Specif-
ically, we adopt the idea of (Wang, de Vries, and Reinders
2006) and design the prediction function as

Âi,j,k = u∈Ri
Su,iAu,j,k

4
u

Su,i
+

l∈Rj
Sl,jAi,l,k

4
l
Sl,j

+ a∈Rk
Sa,kAi,j,a

4 a Sa,k
+

u∈Ri,l∈Rj,a∈Rk
Su,l,aAu,l,a

4 u,l,a Su,l,a
,
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where Su,i is the similarity for users i and u learned from the
user-user matrix B; Sl,j is the similarity for locations j and
l learned from the location-feature matrix C and the user-
location matrix E by equally combining the cosine similari-
ties calculated from each; Sa,k is the similarity for activities
k and a learned from activity-activity matrix D; Su,l,a is the
similarity between Ai,j,k and Au,l,a for some u, l, a belong
to the neighboring sets Ri, Rj , Rk of user i, location j and
activity k, respectively. It’s designed as

Su,l,a = 1/
√

(1/Su,i)2 + (1/Sl,j)2 + (1/Sa,k)2.

In the experiments, we also set Nu = Nl = Na = 4, as
similar to the previous cases.

We report the comparison results in Table 1. To have these
results, we randomly split 50% of the tensor data for training
and hold out the other 50% for testing. For all the compar-
isons here, we run for 5 times to generate the mean values
and standard deviations of the results. In our model, we set
the model parameters λ1 = λ2 = λ3 = λ4 = λ5 = 0.1 and
the low dimension k = 4. We will study the impact of the
parameters in the next section. For HOSVD, we preserved
30% of the information in the original tensor for dimension-
ality reduction, as suggested in the experiments of (Syme-
onidis, Nanopoulos, and Manolopoulos 2008). For evalu-
ation, we employ two metrics; one is RMSE (root mean
square error) to measure the tensor reconstruction loss on
the hold-out test data. For RMSE, the smaller, the better.
The other metric is nDCG (normalized discounted cumula-
tive gain) (Zheng et al. 2009) to measure the ranking results
of our retrieved location/activity list. For location recom-
mendation to some user given some activity query, we first
rank the locations that were held out in the test data for cur-
rent user and activity. Then, we compare this ranking with
the optimal ranking as suggested by the test data to generate
the nDCG value. Finally, we take the average the nDCG val-
ues over all the users and activities to output the results in the
“nDCGloc” column at Table 1. Similarly, we have the results
for activity recommendation in the “nDCGact” column. For
nDCG, the larger, the better.

RMSE nDCGloc nDCGact

UCF 0.027 ± 0.006 0.297 ± 0.024 0.807 ± 0.007

LCF 0.009 ± 0.000 0.532 ± 0.021 0.614 ± 0.019

ACF 0.022 ± 0.005 0.408 ± 0.012 0.785 ± 0.006

ULA 0.015 ± 0.003 0.291 ± 0.022 0.799 ± 0.012

HOSVD 0.006 ± 0.001 0.390 ± 0.021 0.913 ± 0.004

UCLAF 0.006± 0.001 0.599± 0.036 0.959 ± 0.009

Table 1: Comparison with baselines, by “mean ± std”.

As we can see from the table, our model consistently out-
performs the other baselines, showing the effectiveness of
our modeling with tensor and incorporating additional infor-
mation for collaborative location and activity recommenda-
tions. We also note that the nDCG for activity recommenda-
tion is usually higher than that for location recommendation.
This is because the number of activities is much smaller than
that of locations for ranking, especially when we measure
the rankings over some part of the activities/locations on

the test data. Besides, we found that ULA does not nec-
essarily deliver better results. This implies that our designed
prediction function does not model the data characteristics
perfectly, thus encouraging us to study more sophisticated
memory-based methods for comparison. Also note that, the
nDCG values shown in the table are not necessarily close to
our previous results in (Zheng et al. 2010), as they are tested
with different datasets and experimental conditions.

Impact of the Model Parameters

We first study the impact of λ1 ∼ λ5. Recall the objective
function in Eq.(1), where each λi (i = 1, ..., 4) controls the
contribution for each additional information. We vary each
λi from 0 to 10, and report the nDCG values for location rec-
ommendation in Figure 4(a) and activity recommendation in
Figure 4(b). As can be seen from both plots, in general, us-
ing the additional information (when λi’s are larger than 0)
could be better than not using it (when λi’s equal to 0). Be-
sides, our model is not sensitive to most of these parameters.
This implies that, the information in the additional matrices
of this dataset could be limited, and meanwhile, our model
is robust. We also notice that, as λ2 increases, the nDCG for
location recommendation decreases quickly. This could be
because the location-feature matrix is noisy in data extrac-
tion from the POI database, as the λ2 increases, the impact
of the noise becomes bigger. As this location-feature matrix
is not directly related to activities, we don’t observe similar
performance decrease in activity recommendation.

In Figure 4(c), we vary the low dimension k from 1 to 5
(as the minimal dimension in the tensor is 5, i.e. the num-
ber of activities), and report the nDCG results. As can be
seen, our model’s performances, for both location recom-
mendation and activity recommendation, are insensitive to
the change of k. Due to space limit, we didn’t report the
results under RMSE for all the parameters (i.e. λi’s and k),
but we observed the similar patterns from experiments.

Conclusion and Future Work

In this paper, we developed a novel user-centered approach
to mine knowledge from GPS trajectory data to make mobile
recommendations on locations and activities. With the rec-
ommendation system, we can answer two typical questions
in our daily life. The first question is about location rec-
ommendation: if we want to do something, where shall we
go? The second question is about activity recommendation:
if we plan to visit some place, what can we do there? We
show that these two questions are inherently related, as they
can be seen as a collaborative filtering problem in a user-
location-activity rating tensor. We designed a user-centered
collaborative location and activity filtering algorithm, based
on regularized tensor and matrix decomposition, to solve the
problem. Our model is flexible to exploit additional infor-
mation about the targeted entities to enhance the system per-
formance. We evaluated our system on a real-world GPS
dataset, and showed on average 19% improvement on loca-
tion recommendation and 22% improvement on activity rec-
ommendation over the simple memory-based collaborative
filtering baselines (i.e. UCF, LCF and ACF). In the future,
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(a) Impact of λi’s to location recommend. (b) Impact of λi’s to activity recommend. (c) Impact of the low dimension k

Figure 4: Impact of model parameters.

we will consider how to update our model online as more
users accumulate data continuously. We would also like to
consider other potentially useful information in our recom-
mendation algorithms.
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