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Abstract

Recently, Brafman and Engel (2009) proposed new concepts
of marginal and conditional utility that obey additive ana-
logues of the chain rule and Bayes rule, which they employed
to obtain a directed graphical model of utility functions that
resembles Bayes nets. In this paper we carry this analogy
a step farther by showing that the notion of utility indepen-
dence, built on conditional utility, satisfies identical proper-
ties to those of probabilistic independence. This allows us
to formalize the construction of graphical models for utility
functions, directed and undirected, and place them on the firm
foundations of Pearl and Paz’s axioms of semi-graphoids.
With this strong equivalence in place, we show how algo-
rithms used for probabilistic reasoning such as Belief Propa-
gation (Pearl 1988) can be replicated to reasoning about utili-
ties with the same formal guarantees, and open the way to the
adaptation of additional algorithms.

Introduction

The similarity between the decompositions of probability
distributions and utility functions is well established. Prob-
ability distributions are usually decomposed as a product of
factors using the chain rule, while utility functions are often
assumed to have an additive structure, consisting of a sum
of utility factors (Fishburn 1967; Bacchus and Grove 1995;
Boutilier, Bacchus, and Brafman 2001). The obvious rela-
tion between the two via the log/exp transformation, allows
adaption of algorithms that maximize the probability of a
certain assignment (MPE), for solving the problem of find-
ing the optimal (maximizing) assignment to a utility func-
tion. However, the similarity ends about there. Probability
distributions have a much richer structure thanks to the no-
tion of marginal and conditional probabilities, which reveal
a finer notion of independence. For this reason, existing
graphical utility models, such as GAI-nets (Gonzales and
Perny 2004), UCP-nets (Boutilier, Bacchus, and Brafman
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2001), and CUI-nets (Engel and Wellman 2008) which were
motivated by their probabilistic analogues, cannot offer the
same strength, intuitive appeal, and process for elicitation of
structure.

Brafman and Engel (2009) introduce a simple mathemat-
ical definition of marginal utility using a fixed reference as-
signment. From this idea, a notion of conditional utility
was derived, and from it a notion of conditional indepen-
dence. This concept of conditional utility satisfies additive
analogues of Bayes rule and the chain rule and can be used to
define a directed model of utility that resembles a Bayes net.
In this work we take this analogy a step forward: we show
that this concept of utility independence is almost identical
to the classical notion of probabilistic independence. In par-
ticular, it satisfies the semi-graphoid axioms (Pearl and Paz
1989), and that implies the existence of an additive utility
decomposition that is perfectly analogous to Bayesian net-
works, supporting the same types of reasoning and algo-
rithms, and where the notion of d-separation applies. We
call the resulting utility model a marginal utility network.
Using Pearl’s well known belief propagation algorithm, we
show how methods used in probabilistic inference can now
be carried out in the area of preference reasoning, opening
up a vast body of results which were not applicable to any
existing graphical utility model.

Background

We assume familiarity with basic probability theory and re-
view necessary background on multiattribute utility. Let Θ
denote the space of possible outcomes, with � a preference
relation (weak total order) over Θ. Let Γ = {a1, . . . , an}
denote a set of attributes describing Θ. Each attribute a ∈ Γ
has a domain D(a), so that Θ =

∏n

i=1 D(ai). We use
prime signs and superscripts to denote specific assignments
to an attribute. A concatenation of assignment symbols (as
in a′

ia
′′
j ) means that each of the attributes gets a respec-

tive value. We use γ and γi to denote subsets of Γ, with
D(γ) =

∏
ai∈γ D(ai), and the same notation as before to

denote assignments to all the attributes in the set. For exam-
ple, if γ1 = {ai, aj}, then γ1

1 = a1
i a

1
j .

The preference relation � over outcomes is usually repre-
sented numerically by a value function v(·).

Definition 1. v : Θ → ℜ is a value function representing �
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if for any θ, θ′ ∈ Θ, v(θ) ≤ v(θ′) iff θ � θ′.

In many cases it is useful to represent, beyond a simple
preference order over outcomes, a notion of strength of pref-
erences. A value function that expresses strength of prefer-
ences is called a cardinal utility function, which we denote
by u(Γ). A cardinal utility function which represents pref-
erence for uncertain outcomes, or lotteries, is called an ex-
pected utility function or von Neumann-Morgenstern (vNM).
A measurable value function (MVF) is a cardinal utility
function that represents order over preference differences,
that is u(θ) − u(θ′) represents the strength of preference of
θ ∈ Θ over θ′ ∈ Θ.

Previous Work on Graphical Models for Utilities

Graphical models have been employed for the representa-
tion of decomposed utility, as early as by Gorman (1968)
However, the first representation that relies on conditional
independence, and thus follows the footsteps of probabilis-
tic models, is due to Bacchus and Grove (1995). In order to
avoid expected utility theory, we provide a somewhat non-
standard definition. We use attribute names (or sets) within
functions for statements that hold for any value of that func-
tion, as in u(Γ) below.

Definition 2. Let γ1, γ2 ⊂ Γ. γ1 and γ2 are conditionally
additive independent (CAI) given their complement γ3 = Γ\
(γ1, γ2), if there exist functions u1 and u2 such that u(Γ) =
u1(γ1, γ3) + u2(γ2, γ3).

Bacchus and Grove (1995) show that conditional addi-
tive independence has a perfect map, meaning that given a
set of attributes and a preference order, there exists a graph
whose node separation expresses the exact set of indepen-
dence conditions.1 Further, they show that the utility func-
tion decomposes to a sum over lower dimensional functions,
each defined over a maximal clique of the graph. This de-
composition is a special type of generalized additive in-
dependence (GAI), a global independence condition intro-
duced originally by Fishburn (1967). A directional graphical
model for GAI, named UCP nets, is introduced by Boutilier
et al. (2001). The directionality is obtained by means exoge-
nous to the GAI decomposition; by identifying preferential
independence conditions over sets of attributes. Gonzales
and Perny (2004) introduce GAI nets, a graphical represen-
tation for GAI, where nodes represent subsets of attributes.

Graphical model were also introduced for non-additive
types of utility independence. CUI networks (Engel and
Wellman 2008) rely on the concept of conditional utility in-
dependence (Keeney and Raiffa 1976), which requires the
(cardinal) preference order over a subset of the attributes
to be independent of another subset of attributes. Several
other authors also sought utility representation that is sim-
ilar to a probability distribution. Shoham (1997) proposes
a redefinition of utility function as a set function, over ad-
ditive factors in the domain that together contribute to the
decision maker’s well being. La Mura and Shoham (1999)
propose a utility independence concept which is based on
invariance of utility ratios. Abbas (2005) defines a subclass

1We define perfect maps formally below, see Definitions 7,8.

of utility functions in which a multiplicative notion of utility
independence obeys an analog of Bayes’s rule.

Difference Independence

CAI and GAI require comparisons of probability distribu-
tions and preferences over lotteries. When uncertainty is not
a crucial element (e.g., electronic commerce applications),
it is not required and usually not desirable to involve prob-
abilities in user interaction. Dyer and Sarin (1979) propose
difference independence, an additive independence concept
on which they build additive MVF theory. Engel and Well-
man (2007) extend their work and introduce conditional dif-
ference independence (CDI). Intuitively, attributes a and a′

are CDI of each other if any difference in value among as-
signments to a does not depend on the current assignment of
a′, for any possible assignment to the rest of the variables.

Definition 3. Let γ1, γ2 ⊂ Γ. γ1 and γ2 are conditionally
difference independent given γ3 = Γ\ (γ1 ∪γ2), denoted as
CDI(X, Y ), if ∀ assignments γ̂3, γ

′
1, γ

′′
1 , γ′

2, γ
′′
2 ,

u(γ′
1γ

′
2γ̂3) − u(γ′′

1 γ′
2γ̂3) = u(γ′

1γ
′′
2 γ̂3) − u(γ′′

1 γ′′
2 γ̂3)

CDI leads to a functional decomposition as in Defini-
tion 2, and has a perfect map as well. CDI can be applied to
any value function, but it is mostly intuitive for MVF, and in
particular when the preference difference carries particular
meaning. In most purchase decisions, for example, utility
can be measured in monetary terms, and the preference dif-
ference between θ and θ′ represents the amount a buyer is
willing to pay to get θ over θ′ (Engel and Wellman 2007).

Reference and Conditional Utility

There are inherent differences between probability distribu-
tions and utility functions, which make any analogy between
the two problematic. Most notably, there is no meaning for
the utility of a set of atomic outcomes, and, thus, no obvious
analogue to the idea of maginalization. A simple solution to
this problem is presented by Brafman and Engel (2009), and
we detail it in this section.

For probabilities, we ask the question what is the prob-
ability of outcomes in γ when we don’t know the value of
Γ \ γ. While we do not have an exact analogy for utilities,
a similar effect can be achieved by fixing those parameters
on some reference assignment. We can now ask: what is the
utility of outcomes in γ when the value of γ = Γ \ γ is fixed
on the reference assignment. The reference assignment is a
predetermined complete assignment ar

1 . . . ar
n ∈ Θ.

Definition 4. The reference utility function is

ur(γ) = u(γγr)

The notion of conditioning, within a subspace of the do-
main, relies on preference differences.

Definition 5. The conditional utility function is

ur(γ1|γ2) = ur(γ1γ2) − ur(γ2)

This definition of conditional utility bears some simi-
larity to the notion of conditional utility of La Mura and
Shoham (1999), with two significant differences: (i) CDIr
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is additive rather than multiplicative, and (ii) γ1 ∪ γ2 can
be a proper subset of Γ. This definition is rooted in condi-
tional probabilities; by exponentiating both sides we regain
the standard, multiplicative definition of conditional proba-
bility. Moreover, this conditional utility function reveals an
additive decomposition which is similar to the multiplicative
decomposition of a probability function, via the chain rule.2

Theorem 1 (The chain rule).

u(Γ) = ur(a1) +

n∑

i=2

ur(ai|a1, . . . , ai−1)

It is also easy to see that this definition obeys an additive
(logarithmic) adaptation of Bayes’ rule.

Theorem 2 (Bayes’ rule analog).

ur(γ1|γ2) = ur(γ2|γ1) + ur(γ1) − ur(γ2)

Note that in the chain rule, the last term (i = n) includes
the left-hand side of the equation u(Γ). However, the con-
ditional utility function ur(ai|a1, . . . , ai−1) may not depend
on all of the attributes a1, . . . , ai−1, but only on some subset
of them, in which case the terms considered by the chain rule
have lower dimensionality. This is formalized as follows.

Definition 6. γ1 is said to be conditionally independent of
γ2 given γ3 (CDIr(γ1, γ2|γ3)) if

ur(γ1|γ2γ3) = ur(γ1|γ3)

CDIr is a generalization of CDI; when γ3 = Γ \ γ1 ∪ γ2,
then CDIr(γ1, γ2|γ3) is equivalent to CDI(γ1, γ2). Notably,
in previous independence concepts (such as CDI) the condi-
tional set must always be “the rest of the attributes”. Here,
in contrast, we specifically select a conditional set, and can
ignore the rest of the attributes.

This “small” difference – the ability to define conditional
independence on a strict subset of Γ – has considerable im-
plications, paving the way to reduced conditioning sets in
the subexpressions, ur(ai|a1, . . . , ai−1), that comprise the
additive decomposition provided by the chain rule, and to
an elicitation process that mimics that of Bayes nets.

Graphical Models for CDI
r

In their seminal work on Graphoids, Pearl and Paz (1989)
introduce an axiomatic characterization of probabilistic in-
dependence. In this section we show that CDIr satisfies all
of these properties, replacing the multiplication with sum-
mation where needed. This highlights the tight similarity
between the two concepts, and allows us to introduce a cor-
responding undirected graphical model. To facilitate what
follows, we divide the set of properties to two parts. 3

2In contrast to Brafman and Engel (2009), the chain rule as
adapted here does not require normalization of u(Γr) to zero.

3decomposition is used by Pearl and Paz as definition of inde-
pendence, whereas their first property is used here as definition.

Theorem 3. The following properties hold for CDIr:

(decomposition) CDIr(γ1, γ2|γ3)

⇔ ur(γ1, γ2|γ3) = ur(γ1|γ3) + ur(γ2|γ3) (1a)

CDIr(γ1, γ2|γ3)

⇔ ur(γ1, γ3|γ2) = ur(γ1|γ3) + ur(γ3|γ2) (1b)

CDIr(γ1, γ2|γ3)

⇔ ur(γ1, γ2, γ3) = ur(γ1|γ3) + ur(γ2, γ3) (1c)

(chaining) CDIr(γ1, γ2|γ3) & CDIr(γ1γ3, γ4|γ2)

⇒ CDIr(γ1, γ4|γ3) (1d)

Proof. We derive the first property as an example, and omit
the rest for space considerations.

ur(γ1|γ3) + ur(γ2|γ3) = ur(γ1, γ
r
2 , γ3) − ur(γ

r
1 , γr

2γ3)

+ ur(γ
r
1 , γ2, γ3) − ur(γ

r
1 , γr

2 , γ3) = ur(γ1, γ2, γ3)

− ur(γ
r
1 , γ2γ3) + ur(γ

r
1 , γ2, γ3) − ur(γ

r
1 , γr

2 , γ3)

= ur(γ1, γ2, γ3) − ur(γ
r
1 , γr

2γ3) = ur(γ1, γ2|γ3)

The first and third equalities are by definition of condi-
tional utility. The second equality is obtained by applying
CDIr(γ1, γ2|γ3) on the term ur(γ1, γ

r
2 , γ3) − ur(γ

r
1 , γr

2γ3).
For the other direction, if CDIr(γ1, γ2|γ3) does not hold
there must exist values for γ1, γ2 violating this equality.

The second set of properties is of more interest to us, fore-
most because it is the basis of a semi-graphoid.

Theorem 4. The following properties hold for CDIr:

(symmetry) CDIr(γ1, γ2|γ3) ⇒ CDIr(γ2, γ1|γ3) (2a)

(subsets) CDIr(γ1, γ2γ3|γ4)

⇒ CDIr(γ1, γ2|γ4) & CDIr(γ1, γ3|γ4) (2b)

(union) CDIr(γ1, γ2γ3|γ4)

⇒ CDIr(γ1, γ2|γ3γ4) (2c)

(contraction) CDIr(γ1, γ2|γ3γ4) & CDIr(γ1, γ4|γ3)

⇒ CDIr(γ1, γ2γ4|γ3) (2d)

(intersection) CDIr(γ1, γ2|γ3γ4) & CDIr(γ1, γ3|γ2γ4)

⇒ CDIr(γ1, γ2γ3|γ4) (2e)

Proof. The properties are derived from the definition. As an
example, we show the proof for (2b) and (2e). By definition
of CDIr(γ1, γ2γ3|γ4),

ur(γ1, γ2, γ
r
3 , γ4) − ur(γ

r
1 , γ2, γ

r
3 , γ4) =

ur(γ1, γ
r
2 , γr

3 , γ4) − ur(γ
r
1 , γr

2 , γr
3 , γ4)

hence CDIr(γ1, γ2|γ4) holds. Similarly CDIr(γ1, γ3|γ4) is
proved. To prove (2e), we apply CDIr(γ1, γ2|γ3γ4) and then
CDIr(γ1, γ3|γ2γ4):

ur(γ1, γ2, γ3, γ4) − ur(γ
r
1 , γ2, γ3, γ4) =

ur(γ1, γ
r
2 , γ3, γ4) − ur(γ

r
1 , γr

2 , γ3, γ4) =

ur(γ1, γ
r
2 , γr

3 , γ4) − ur(γ
r
1 , γr

2 , γr
3 , γ4),

and hence CDIr(γ1, γ2γ3|γ4).
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Any relation for which (2a) - (2d) hold is called a semi-
graphoid. Hence by Theorem 4, CDIr is a semi-graphoid.
The importance of this observation becomes evident below.

The graphoid concept is a mapping of an independence
relation to an undirected graph by means of node separa-
tion. Let R be a conditional independence relation over a
set Γ. With some abuse of notation, we refer to elements
of Γ directly as nodes in a graph G = (Γ, E). We use
〈γ1, γ2 | γ3〉G to denote graph separation, that is, the case
where any path in G from a node in γ1 ⊆ Γ to a node in
γ2 ⊆ Γ must include a node in γ3 ⊆ Γ.

Pearl and Paz define the following types of mappings:

Definition 7. A graph G = (Γ, E) is a D-Map (dependency
map) of R if for any non-intersecting subsets γ1, γ2, γ3 ⊂ Γ,
if R(γ1, γ2|γ3) then 〈γ1, γ2 | γ3〉G.

Definition 8. A graph G = (V, E) is a I-Map (inde-
pendency map) of R if for any non-intersecting subsets
γ1, γ2, γ3 ⊂ Γ, if 〈γ1, γ2 | γ3〉G then R(γ1, γ2|γ3).

Pearl and Paz go on to show that probability independence
does not have a perfect map, that is a graph which is both D-
Map and I-Map. Given the technical similarity expressed by
Theorem 3, it is not surprising that the same holds for CDIr.

Theorem 5. There exist utility functions for which there ex-
ists no graph which is both a D-Map and I-Map for CDIr.

A graph G = (V, E) is a minimal I-Map if for any e ∈ E,
the graph G′ = (V, E \ {e}) is not an I-Map.

Theorem 6. For any ur(·) and CDIr, there exists a mini-
mal I-Map G = (V, E), where V = Γ, and E defined by:
(a, a′) ∈ E iff CDIr(a, a′|Γ \ {a, a′}) does not hold.

That is, in this graph there is an edge between any two
nodes that are not independent given all other nodes. This
is exactly the method used by Pearl and Paz to define a
Markov-Net of a probability distribution. Hence, an undi-
rected model for CDIr can be constructed in an analogous
way to Markov networks. Results related to Markov Nets
transform to CDIr, and in particular the concept of Markov
Boundaries: For a given attribute a, the minimal set of at-
tributes that is required to render a independent of the rest
coincides with the set of neighbors of a in its minimal I-
Map. As argued by Pearl and Paz, this helps considerably
with “intuitive reasoning”, that is, testing independence re-
lationship at the level of human knowledge.

Directed Model

As evident from Theorem 5, there exists no graphical model
that reflects CDIr perfectly. In fact, we observe that the
minimal I-Map G of CDIr is exactly the perfect map of
CDI. To see that, consider any two sets of attributes γ1

and γ2. The pair is separated in G iff for any a1 ∈ γ1

and a2 ∈ γ2 holds CDIr(a1, a2|Γ \ {a1, a2}), which is
equivalent to CDI(a1, a2), hence γ1 and γ2 are separated
iff CDI(γ1, γ2).

Therefore, while any independence relation implied by
the undirected model corresponds to a valid CDIr condition,
it turns out that many independencies are “lost”, in the sense
that they are not reflected by this model; whenever two (sets

of) attributes are independent only given a strict subset of
the complement, the undirected model does not reflect the
separation between them. We seek to recapture those sub-
tle independencies, and hence we keep following the proba-
bilistic example by moving to directed graphical models. A
directed acyclic graph (DAG) models a dependence relation
via the concept of d-separation. Definitions 9 and 10 are
adapted from Pearl (1988).

Definition 9. Let γ1, γ2, γ3 denote disjoint subsets of Γ, the
nodes of a DAG. γ1 is d-separated from γ2 given γ3 (denoted
〈γ1, γ2 | γ3〉D) if the exists no path between a node in γ1

and a node in γ2 which is not blocked by γ3. Such path is
not blocked only if (i) every node with converging arcs, or a
descendant of one, is in γ3, and (ii) any other node is outside
γ3.

I-Maps and D-Maps are defined with respect to DAGs us-
ing d-separation in an analogous way to the directed model.
In particular, a DAG D is a minimal I-Map of R, if it is
a minimal DAG such that for any three disjoint sets of at-
tributes γ1, γ2, γ3 for which 〈γ1, γ2 | γ3〉D, it holds that
R(γ1, γ2|γ3). A Bayesian Network is a probabilistic di-
rected graphical model which is defined as a minimal I-Map
to probabilistic independence. The following definition es-
tablishes a simple procedure to create a Bayesian network.

Definition 10. Let d = (a1, . . . , an) denote a variable or-
dering. For i = 1 . . . , n, let Γi = a1, . . . , ai−1. A boundary
DAG for independence relation R is defined by designating
the set of parents Pa(ai) to be the minimal within Γi such
that CDIr(ai, Γ

i \ Pa(ai)|Pa(ai)) holds.

We are now ready to import the richness of probabilistic
graphical models to the world of utility functions, exploit-
ing the tight similarity we established between the axiomatic
properties of CDIr and that of probabilistic independence.

Definition 11. A marginal utility network is a minimal I-
Map of CDIr.

The following key result is used by Pearl (1988) to con-
struct Bayesian Networks as Boundary DAGs.

Theorem 7 (Verma 86). Let R be a semi-graphoid. D is
a boundary DAG of R relative to any ordering d, iff D is a
minimal I-Map of R.

Now due to Theorem 4,

Corollary 1. A boundary DAG of CDIr is a marginal utility
network.

A marginal utility network can therefore be constructed
similarly to a Bayesian network. We iterate over the at-
tributes according to some ordering a1, . . . , an, and for each
ai find the minimal set of attributes within Γi to be desig-
nated as the parents. It is sufficient to check independence
separately for each aj ∈ Γi: if CDIr(ai, aj |Γi \ {aj}), then

aj /∈ Pa(ai). The boundary DAG property CDIr(ai, Γ
i \

Pa(ai)|Pa(ai)) then holds due to the intersection prop-
erty (2e). Otherwise, we must set aj ∈ Pa(ai), and this
is due to the union property (2c).

Furthermore, because of d-separation, we can provide an
equivalent, alternative definition for a marginal utility net.
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Let Dn(a) denote the descendants of a. Let Co(a) = Γ \
(Dn(a) ∪ Pa(a) ∪ {a}).

Corollary 2. A marginal utility network is a DAG D =
(Γ, E), such that for any a ∈ Γ, CDIr(a, Co(a)|Pa(a)),
for an arbitrary, fixed ar

1 . . . ar
n ∈ Θ.

That is, any attribute is independent of its non-
descendants, given its parents. This result unites our directed
graphical model with the one suggested by Brafman and En-
gel (2009), but here the model is based on the firm founda-
tions of graphoid theory, and opens the way to reasoning
algorithms as detailed in the next section.

The graphical structure is populated by numeric data, in
the form of local functions, that is in any node we have a
utility function, which represents conditional marginal util-
ity over the node, and depends on the node and its parents.

Definition 12. A conditional utility table (CUT) for an at-
tribute ai is the function ur(ai|Pa(ai)).

Retrieving the utility of a given instantiation of Γ from the
marginal utility network is linear in the number of attributes;
a direct result of the chain rule and Corollary 2 is,

Theorem 8. The utility function can be computed from the
marginal utility network as follows

u(Γ) = ur(a1) +

n∑

i=2

ur(ai|Pa(ai))

The CUTs can be obtained by querying a user for pref-
erence differences. For example, the node a with parents γ
requires the function ur(a|γ), which is obtained by queries
for differences of the form ur(a

′γ′) − ur(γ
′), the marginal

utility of a′, compared to its reference value, given γ′.
It is important to note that the process above, and our re-

sults in general, apply to any value or utility function. That
is, the fact that we define conditional utility using utility dif-
ferences does not imply that we restrict our attention to mea-
surable value functions; the only assumption is that these
are real-valued functions. However, the process of structure
elicitation requires the user to assess utility independence
properties, which require the user to assess utility/value dif-
ferences. This task is more natural when the differences
carry intuitive meaning.

Reasoning

With analogous graphical models, vast literature on reason-
ing with Bayesian networks can now be adapted to choice
and preference problems, in a straightforward way. In this
section we demonstrate that with several examples.

Utility Maximization

It is well-known that the problem of finding an optimal as-
signment for a utility function is similar, in its combinato-
rial nature, to the problem of finding Most Probable Expla-
nation (MPE) for a probability distribution. For this rea-
son, systematic MPE algorithms, which perform combinato-
rial optimization (usually using dynamic programming tech-
niques such as variable elimination (Dechter 1996)), can
usually be adapted to utility maximization. This is not the

case with some non-systematic techniques, most celebrated
of which is Belief Propagation (BP) (Pearl 1988). BP is
mostly known as an algorithm for the task of belief assess-
ment, but can be applied to MPE by replacing summation
operators with maximization (Marinescu, Kask, and Dechter
2003). BP is not guaranteed to achieve optimum for gen-
eral graphs, but in practice it has been often shown to be
more useful than systematic methods. In particular, BP per-
forms better than systematic optimization for graphs of large
tree-width (Marinescu, Kask, and Dechter 2003), and is also
much more amenable to distributed computing (Pearl 1988).

The basic operations of belief updating (or belief revision
for MPE) in BP rely on the graphical independence struc-
ture, and on Bayes’ rule. With the mathematical analogy
of independence and Bayes’ rule for marginal utility net-
works, BP can be applied to marginal utilities, rather than
probabilities. We do not provide full exposition of BP mes-
sages, but exemplify the analogy for the simple case of a
tree. In what follows, we use prime signs to indicate spe-
cific attribute values (as a′ for a), use a− as shorthand for
Dn(a), and use short form for maximization over domain,
as in maxa u(a) = maxa′∈D(a) u(a′). Let c1, . . . , ck de-
note the children of a, and assume that the descendants of
each child ci are already “maxed out”, that is ci “knows”
maxc

−

i

ur(c
−

i |c
′
i), for any c′i ∈ D(ci). Each ci computes the

message λci
(a′) it sends to a, for each a′:

λci
(a′) = max

c
−

i
,ci

(ur(c
′
i|a

′) + ur(c
−

i |c
′
i)) =

max
ci

(ur(c
′
i|a

′) + max
c
−

i

ur(c
−

i |c
′
i))

This message is essentially the message used in Pearl’s be-
lief revision, simplified for trees, and replacing product with
summation. Note that the first part of the term is available
from the CUT of ci, and the second part is the information
we assumed ci to have. We now show that a can compute its
own information based on the messages from its children.

Lemma 9.

max
a−

ur(a
−|a′) =

k∑

i=1

λci
(a′)

Proof. By Bayes’ rule: ur(a
−|a′) = ur(a

′|a−)+ur(a
−)−

ur(a
′). Since ci separates a from c−i , and then using Bayes’

rule again ur(a
′|a−) = ur(a

′|{c1, . . . , ck}) =
ur({c1, . . . , ck}|a′) + ur(a

′) − ur({c1, . . . , ck}).
By independence of the children given their parent, and

property (1a), ur({c1, . . . , ck}|a
′) =

∑k

i=1 ur(ci|a
′). By

definition of conditional utility,

ur(a
−) = ur(

k⋃

i=1

c−i |{c1, . . . , ck})+ur({c1, . . . , ck}) =

k∑

i=1

ur(c
−

i |ci) + ur({c1, . . . , ck}).

The second equality is by property (1a), and using the fact
that ci separates c−i from cj and c−j . Putting these pieces
together, we get

271



ur(a
−|a′) =

k∑

i=1

(ur(ci|a
′) + ur(c

−

i |ci))

Taking max on both sides, and switching the order of max
and sum on the right one (note that each element of the sum
is maxed independently), we get the desired result.

Hence a can compute maxa− ur(a
−|a′). If a is a leaf,

then maxa− ur(a
−|a′) = 0. By induction, at the root we

obtain maxΓ u(Γ), solving the utility maximization prob-
lem. We note that the maximizing assignment (the argmax)
must also be propagated with λ.

Slightly more generally, consider a singly-connected
graph (polytree). Here a− denotes the set of nodes ac-
cessible to a through its children, and a+ those accessi-
ble through its parents. In a polytree, a+ ∩ a− = ∅. In
addition to λ messages from children to parents, the algo-
rithm requires messages from parents to children, denoted
π. ur(a

−|a′) is computed as before from λ messages,
and ur(a

′|a+) is computed from π messages. Whenever
a node a is propagated new information from its parents
and children, this information can be combined to represent
marginals on a, due to the following key property, which is
again log-analogous to the case of probabilities.

Lemma 10.

ur(a
′|a+, a−) = ur(a

−|a′) + ur(a
′|a+) + α,

where α is a normalizing constant.

The messages used for the polytree MPE algorithm are
also translated to utility maximization by replacing products
with summations. For general graphs, BP is applied with it-
erative and loopy protocols, essentially using the same kind
of messages, but no longer with guaranteed convergence to
the optimal solution. However, those protocols are shown
to perform well in practice as approximation (Yedidia, Free-
man, and Weiss 2001) and anytime (Dechter, Kask, and Ma-
teescu 2002) algorithms. Because, as shown above, the basic
operations of BP can be performed on marginal utility net-
works, this vast literature on belief propagation methods can
be imported to the world of utilities, where this richness has
not been available before.

Constrained Utility Maximization

Pearl (1988) describes how Bayes nets can be leveraged for
reasoning over a constrained environment. For example, a
constraint might rule out a particular combination of two
variables, a1 and a2. To accommodate that, one can create
a dummy node â, whose parents are a1 and a2, and define
p(â = true | a1, a2) = 0 for the forbidden joint assignment
of a1 and a2. Inference can then be done with the additional
evidence that â = true.

Constrained utility maximization is an important reason-
ing task for preferences; the decision maker can rarely
choose freely among all the outcomes in the cartesian prod-
uct of the attribute domains. With marginal utility networks,
we can employ the same method; we create a similar dummy
node â, with ur(â = true|a1, a2)) = −∞ in the CUT for
any forbidden combination of values to a1, a2. Now, we can
apply efficient methods such as BP to solve this problem.

Conclusion
We show that the recently introduced concept of a reference-
dependent utility function satisfies the semi-graphoid ax-
ioms and leads to a directed model that tightly resembles
Bayes nets. This enables us to use the methodology devel-
oped for eliciting structure and values in Bayes nets – an
appealing possibility for utility elicitation. We briefly dis-
cussed two possible applications of this idea, both demon-
strate adaptation of Bayesian reasoning algorithms, but we
believe that more exist, in the areas of inference and learn-
ing. It is not clear that all concepts that exist in the proba-
bilistic realm apply in the case of utilities, but understanding
the implications of such concepts can lead to significant re-
sults in the area of reasoning about preferences and utilities.
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