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Abstract

Belief revision performs belief change on an agent’s beliefs
when new evidence (either of the form of a propositional
formula or of the form of a total pre-order on a set of in-
terpretations) is received. Jeffrey’s rule is commonly used
for revising probabilistic epistemic states when new informa-
tion is probabilistically uncertain. In this paper, we propose
a general epistemic revision framework where new evidence
is of the form of a partial epistemic state. Our framework
extends Jeffrey’s rule with uncertain inputs and covers well-
known existing frameworks such as ordinal conditional func-
tion (OCF) or possibility theory. We then define a set of pos-
tulates that such revision operators shall satisfy and establish
representation theorems to characterize those postulates. We
show that these postulates reveal common characteristics of
various existing revision strategies and are satisfied by OCF
conditionalization, Jeffrey’s rule of conditioning and possi-
bility conditionalization. Furthermore, when reducing to the
belief revision situation, our postulates can induce most of
Darwiche and Pearl’s postulates.

Introduction

Belief revision (Alchourrón, Gärdenfors, and Makinson
1985; Katsuno and Mendelzon 1991) performs belief change
on an agent’s beliefs when new evidence is received. It
has been observed that a pure logic-based revision frame-
work, e.g., AGM postulates based framework, may lead to
some counterintuitive results in iterated revision. As a re-
sult, revision on epistemic states should be introduced ac-
cordingly (Darwiche and Pearl 1997; Benferhat et al. 2000;
Nayak, Pagnucco, and Peppas 2003; Booth and Meyer 2006;
Jin and Thielscher 2007), etc.

However, in most of these research efforts, new evidence
is still represented as a propositional formula, not an epis-
temic state. Therefore, these methods do not fully imple-
ment a revision that reflects the effect of epistemic states,
e.g., new information could be uncertain (Darwiche and
Pearl 1997; Delgrande, Dubois, and Lang 2006). Although
effort has been made to address this problem in a couple of
papers (e.g., (Benferhat et al. 2000)), in which new evidence
is represented as a full epistemic state. The revision meth-
ods proposed still cannot manage the strengths over parti-
tions on a set of interpretations, which, in probability or

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

possibility settings, is already accomplished by Jeffrey’s rule
(Benferhat et al. 2010). That is, we need to develop a revi-
sion framework which can deal with new information with
strengths that could be modeled by partial epistemic states
similar to the probability counterparts of Jeffrey’s rule.

Jeffrey’s rule is widely applied when an agent’s current
belief and new evidence are both modeled in probability
measures. More precisely, in Jeffrey’s rule, the prior state
is a probability distribution representing an agent’s current
beliefs or generic knowledge whilst new evidence is a par-
tial probability measure solely on a partitioned subsets of
the world. Similar strategies were also proposed for or-
dinal conditional functions (OCFs) (Spohn 1988; Williams
1994), for possibility measures (Dubois and Prade 1988;
Benferhat et al. 2010), etc. However, despite of the need
to handle new, input information with strengths that may
be present in different forms, to the best of our knowledge,
there does not exist a common revision strategy (and its
corresponding postulates) to address this issue. In another
words, can we develop a general revision framework that
subsumes these individual revision strategies (in different
frameworks) with a set of common postulates? A signifi-
cant advantage of this, if achievable, is to facilitate further
understanding of the nature of revision, regardless of which
formalism may be deployed to represent an agent’s beliefs
and new uncertain evidence.

To answer this question, we first propose a framework
to represent an agent’s epistemic beliefs, which generalizes
various definitions of epistemic states in the literature (e.g.,
a weighted formula (Jin and Thielscher 2007), a total pre-
order (Benferhat et al. 2000), an OCF-based epistemic state
(Meyer 2000; Spohn 1988; Williams 1994), a probability
measure (Halpern 2003), etc). This framework takes in-
spirations from Jeffrey’s rule of conditioning under uncer-
tain inputs. We then investigate how a set of rational pos-
tulates should be derived to regulate revision operators de-
fined from this framework and provide representation theo-
rems for these postulates. We prove that these postulates are
satisfied by OCF conditionalization, possibility conditional-
ization, and most significantly Jeffrey’rule of conditioning.

Our main objective of defining a general iterated revision
framework is to implement the revision of an agent’s cur-
rent beliefs (represented as a full epistemic state) with new,
uncertain evidence (represented as a partial epistemic state).
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The key difference, compared with logic-based iterated be-
lief/epistemic revision, is to allow the strengths of prior be-
liefs and evidence to determine the result of revision.

Furthermore, we investigate the relationships between
this general framework with logic base belief/epistemic re-
vision, especially with Darwiche and Pearl’s (DP’s) belief
revision framework (Darwiche and Pearl 1997). We prove
that when reducing to the belief revision situation, our pos-
tulates can induce most of DP’s postulates.

The rest of the paper is organized as follows. We pro-
vide the preliminaries and Jeffrey’s rule in Sec. 2 and 3 re-
spectively. In Sec. 4, formal definitions of epistemic space
and epistemic state are introduced. In Sec. 5, we propose a
set of postulates for epistemic revision and their correspond-
ing representation theorems. In Sec. 6, we discuss how our
framework subsumes existing revision strategies. Finally,
we conclude the paper in Sec. 7.

Preliminaries

We consider a propositional language L defined on a finite
set A of propositional atoms, denoted by p, q, r etc. An in-
terpretation ω (or possible world) is a function A to {0, 1}.
The set of all possible worlds defined on A is denoted as
W . ω is a model of (or satisfies) φ iff ω(φ) = 1, de-
noted as ω |= φ. The set of models for φ is denoted as
Mod(φ). φ ⊢ ψ iff Mod(φ) ⊆ Mod(ψ) and φ ≡ ψ iff
Mod(φ) = Mod(ψ).
{A1, . . . , An} is a partition of set W iff

⋃n

i=1Ai = W
and for i 6= j, Ai ∩ Aj = ∅. For convenience, we also
call {µ1, . . . , µn} a partition of set W when {A1, . . . , An}
is a partition and for any Ai, Mod(µi) = Ai. A partition
{B1, . . . , Bk} (resp., {φ1, . . . , φk}) is called a refinement
of partition {A1, . . . , An} (resp., {µ1, . . . , µn}) if ∀i, 1 ≤
i ≤ k, ∃j, 1 ≤ j ≤ n, s.t. Bi ⊆ Aj (resp., φi |= µj).

Jeffrey’s Rule

In probability theory framework, revision is achieved by Jef-
frey’s rule (Jeffrey 1965).

Definition 1 (Jeffrey’s rule) Let P be the prior probability
distribution on W and = {µ1, . . . , µn} be a partition of
W with P (µi) 6= 0 for all µi. Assume that a new piece of

evidence gives a probability measure (W, , P ) such that
P (µi) = αi, 1 ≤ i ≤ n. Then Jeffrey’s Rule revises P
with P with operator ◦p and obtains

(P ◦p P )(w) = αiP (w)/P (µi) for w |= µi (1)

Jeffrey’s rule revises the prior probability distribution P
to P ′ given an uncertain input with probabilities bearing on
a partition ofW . It produces a unique distribution that satis-
fies the following two equations (Chan and Darwiche 2005):

P ′(µi) = P (µi) = αi (2)

which shows that the new information is preserved and

∀µi, ∀φ ⊢ µi, P (φ|µi) = P ′(φ|µi) (3)

which states that the revised (new) probability distribution
P ′ must retain the degree of conditional probability of any
event φ that implies µi.

Epistemic Space and Epistemic State

In order to define a general revision framework with uncer-
tain input, we first provide formal definitions of epistemic
space and epistemic state. Let D denote an infinite set of
values with two special elements ⊥,⊤ in D, and there is a
total pre-order≤D onD such that ∀x ∈ D, ⊥ ≤D x ≤D ⊤.

Extension functions

To assist the definition of epistemic state, we first define the
notion of extension function. A function f associating a
value in D to every finite tuple of values in D is called an
extension function if it satisfies

Identity f(x) = x
Minimality f(x1, . . . , xk) = ⊥ iff x1 = . . . = xk = ⊥
Monotonicity f(x, y) ≥D f(x)

An extension function is similar to an aggregation func-
tion in (Konieczny, Lang, and Marquis 2004) (where an ag-
gregation function aggregates a set of non-negative integers
to a single non-negative integer) in the sense that both of
them attempt to associate a set of values to a single value
within a given domain. The differences between them are
(i) an extension function is defined on D instead of a set of
integers; and (ii) it satisfies the Monotonicity property above
instead of the Non-decreasingness property below.

Non-decreasingness If x ≤D y, then
f(x1, . . . , x, . . . , xk) ≤D f(x1, . . . , y, . . . , xk)

Note that Monotonicity property and Non-decreasingness
property define two different classes of extension functions
for which we will investigate their relationships future in a
longer version of the paper.

Example 1 Let D = {2a3b|a ∈ N, b ∈ N ∪ {∞}}
such that ≤D is defined as arithmetic ≥, ⊤ = 1, and
⊥ = ∞. Let f be defined as f(2a13b1 , . . . , 2an3bn) =
2min(a1,...,an)3min(b1,...,bn). Obviously, f satisfies Identity,
Minimality and Monotonicity, but f does not satisfy the
non-decreasingness property. For example, 4 ≤D 3, but
f(4, 9) = 1 >D 3 = f(3, 9).

Partial and full epistemic states

Now we define epistemic spaces and epistemic states which
are similar to the definition of probability spaces and proba-
bility measures.

Definition 2 A partial epistemic space is a tuple
(W, ,Φ, D, f), where is a partition of W , Φ is
a mapping from to D, called a partial epistemic
state, and f is an extension function. Φ can be extended
from to 2 by f such that for A1, . . . , Ak ∈ ,

Φ(
⋃k

i=1Ai) = f(Φ(A1), . . . ,Φ(Ak))1.

An epistemic space (W, {{w1}, ...{wn}},Φ, D, f) is a
special case of partial epistemic space (W, ,Φ, D, f)
where the partition of W is the set of all singleton
sets. To differentiate the former from the latter, we call
(W, {{w1}, ...{wn}},Φ, D, f) a full epistemic space and

1It would be more accurate to use {A1, . . . , Ak} instead of⋃k

i=1
Ai, but as Ai∩Aj = ∅ when i 6= j, we simply use

⋃k

i=1
Ai.
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its corresponding Φ a full epistemic state. Note that a par-
tial epistemic state Φ such that Φ(A) = α, Φ(A) = β is
not equivalent to a full epistemic state Ψ such that ∀w ∈
A,Ψ(w) = a, ∀w 6∈ A,Ψ(w) = b and Ψ(A) = α,

Ψ(A) = β by fΨ. For example, in probability theory, a
probability measureP with P ({man,woman}) = 0.8 does
not mean P ({man}) = P ({woman}) = 0.4. So partial
epistemic states can not be encoded by full epistemic states.

Obviously, if Φ is a probability measure (D = [0, 1], f is
+), then the above definition degenerates to the definition of
probability space.

In the rest of the paper we will use Φ,Ψ,Θ etc (possibly
with a subscript) to denote an epistemic state.

Literally, although there have been many papers focus-
ing on epistemic revision and merging, there does not ex-
ist a commonly accepted definition of epistemic state. In
some papers (e.g. (Darwiche and Pearl 1997)), no formal
definitions of epistemic state are given, though the con-
cept is used. In some other papers, definitions for epis-
temic states are mainly based on plausibility orderings on
possible worlds (Meyer 2000; Spohn 1988; Williams 1994;
Benferhat et al. 2000; Jin and Thielscher 2007), etc. It is
easy to see that an epistemic state as a plausibility ordering
can be induced from a full epistemic state. That is, for any
full epistemic state Φ, it encodes the ≤Φ ordering between
interpretations as ∀w,w′, w ≤Φ w′ iff Φ(w) ≥D Φ(w′).

Furthermore, Def. 2 not only generalizes the notion of
probability space, it also takes definitions of OCFs (when
D is set a set of ordinals and f = min) and possibility
measures (when D is [0, 1] and f = max) as special cases.
Therefore, Def. 2 indeed provides a general framework to
model epistemic states defined in different formalisms.

Value Φ(A) can be interpreted as an agent’s epistemic
firmness on A. Note that Φ(A) encodes all the information
an agent provides onA, in particular, if the agent changes the
value Φ(A) while maintaining Φ(A) unchanged, we should
consider that the agent maintains its belief onA, despite that
the agent has changed its belief on A2.

Intuitively, the Minimality property of f , when considered
in Def. 2, ensures that if an agent thinks the true world is def-
initely not in a particular set, then the true world should not

be in any of its subsets, and vice versa, i.e., Φ(
⋃k

i=1Ai) =
⊥ iff Φ(A1) = . . . = Φ(Ak) = ⊥. The Monotonicity
property indicates that if A ⊆ B, then Φ(A) ≤D Φ(B),
especially when Φ(A) is interpreted as a kind of plausibil-
ity value (epistemic firmness) of A. This property is very
similar to Axiom A1: if A ⊆ B then Pl(A) ≤ Pl(B) for a
plausibility measure Pl (Friedman and Halpern 1995) which
was also mentioned in (Halpern 2003).

Parallel to probability theory, probability distributions are
applied (and discussed) more frequently than their corre-
sponding probability spaces. In the following, most of the
time we will only mention epistemic states without explic-
itly discussing their corresponding epistemic spaces too.

2Usually, constraints are placed on Φ(A) and Φ(A), e.g., if Φ

is a probability measure, then Φ(A) + Φ(A) = 1, or if Φ is an

OCF , then min(Φ(A), Φ(A)) = 0. Here for generality, we do

not assume any constraints on Φ(A) and Φ(A).

Example 2 Let W = {w1, w2, w3} and a partition
on W be {{w1, w2}, {w3}}. Also, let D =

{Good,Neutral, Bad} be the set of values with ⊥ =
Bad <D Neutral <D Good = ⊤ and f = max (f
satisfies Identity, Minimality and Monotonicity). Let Φ de-
fine the following mapping: Φ({w1, w2}) = Good and
Φ({w3}) = Bad, then (W, ,Φ, D, f) is a partial epis-
temic space.

Entailment of epistemic states

As W , D and f are assumed to be clear and unchanged
throughout, an epistemic state Φ defined on is denoted
as Φ .

By abuse of notations, we also write Φ (µ) = α when

Φ (A) = α and Mod(µ) = A, i.e., a proposition is as-
signed a plausibility value which is the value assigned to
the set of its models. In the following, we will always use
propositions rather than their corresponding sets of models.

We define the entailment of epistemic states as follows.

Definition 3 Let Φ 1 and Ψ 2 be two epistemic states,
then Φ 1 entails Ψ 2 , denoted as Φ 1 |= Ψ 2 , iff 1 is a

refinement of 2 and ∀µ ∈ 2, Φ 1(µ) = Ψ 2(µ).

Note that each element µ of 2 is necessarily the union of
several elements of 1. Hence Ψ1 (µ) can always be eval-
uated and defined using Definition 2.

Example 3 Let W = {w1, w2} and f = +, Φ 1 be such

that 1 = {{w1}, {w2}}, Φ 1({w1}) = 1, Φ 1({w2}) =
2, Ψ 2 be such that 2 = {{w1, w2}}, Ψ 2({w1, w2}) =
3, then we have Φ 1 |= Ψ 2 .

In the rest of the paper, to differentiate, a full epistemic
state will be represented without a superscript describing a
partition (e.g., Φ) and a partial epistemic state always with a
superscript describing a partition (e.g., Ψ ).

Postulates for Iterated Epistemic Revision

Intuitions on Revision & Postulates

Motivated by the principle of Jeffrey’s rule on conditioning
on probability spaces and the ideal requirement that only the
strengths of prior beliefs and evidence should determine the
outcome of belief revision (Darwiche and Pearl 1997), we
propose the following constraints on revision in our epis-
temic space framework.

• Revision should be focused on a full epistemic state (rep-
resenting prior beliefs or generic knowledge) revised by a
partial epistemic state (representing a new, uncertain in-
put). This is the spirit of Jeffrey’s rule (revising a proba-
bility distribution with an uncertain input) and existing re-
vision frameworks (e.g., prior beliefs are total pre-orders
whilst an input is a propositional formula). Hence we use
full epistemic states to encode current beliefs and partial
epistemic states to encode new, uncertain inputs.

• Only the strengths of beliefs and new evidence determine
the outcome of revision. This is the main argument in
(Darwiche and Pearl 1997). This postulate is intuitively
in agreement with the Neutrality with respect to the in-
tensity scale condition proposed in (Dubois and Koning
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1991) which says in a social choice scenario, an aggrega-
tion function should not depend on the semantic meanings
of a set of social choice functions, but only focus on their
intensities (numerical values in [0, 1]) of choices.

• New, most recent evidence has the priority. This is ex-
plained as that new evidence is preserved. This is also
explained under the context that when two pieces of new
information happen to have the same partition (which
implies that both pieces of evidence refer to the same sets
of hypotheses) but with different strengths of belief on
them, then the most recent evidence overrules the previ-
ous one (as the latter (evidence) is assumed to represent
the most recently received (and acceptable) information
about a static situation).

Based on these constraints, we propose the following four
postulates. Let ◦ be a revision operator.

ER1 If Φ is a full epistemic state and Ψ is a partial epis-
temic state, then Φ ◦ Ψ is a full epistemic state.
Explanation: This postulate suggests that the revision
operator ◦ is a mapping Ω × Υ → Ω.

ER2 Φ ◦ Ψ |= Ψ .
Explanation: New evidence is preserved.

ER3 For any µ ∈ , and µ′ ∈ ′, if Φ(µ) = Φ′(µ′)

and Ψ (µ) = Ψ′ ′

(µ′), then for ψ |= µ and ψ′ |= µ′,

(Φ ◦ Ψ )(ψ) = (Φ′ ◦ Ψ′ ′

)(ψ′) iff Φ(ψ) = Φ′(ψ′).
Explanation: This postulate implements the constraint
that the strengths of beliefs and evidence determine the
outcome of revision. More specifically, as evidence Ψ

(resp. Ψ′ ′

) provides no information on ψ (resp. ψ′) di-
rectly, the only information related to ψ (resp. ψ′) is µ
(resp. µ′) as ψ |= µ (resp. ψ′ |= µ′), so the strength
of ψ (resp. ψ′) after revision should only rely on its own
strength before revision and the strengths of µ (resp. µ′)
before and after revision. ER3 can be viewed as the coun-
terpart of Equation (3).

ER4 Φ ◦ Ψ ◦ Θ = Φ ◦ Θ .
Explanation: W.r.t. the same hypotheses with different
strengths, the latest evidence overrules previous ones.

Probabilistic revision by Jeffrey’s rule is an example that
follows the above four postulates.

Relationship with Darwiche and Pearl’s postulates
For comparison, here we review the six modified AGM pos-
tulates and four additional postulates on iterated revision in
(Darwiche and Pearl 1997).

The six modified AGM postulates are

R1 Φ ◦ µ implies µ.
R2 If Φ ∧ µ is satisfiable, then Φ ◦ µ ≡ Φ ∧ µ.
R3 If µ is satisfiable, then Φ ◦ µ is also satisfiable.
R4 If Φ1 = Φ2 and µ1 ≡ µ2, then Φ1 ◦ µ1 ≡ Φ2 ◦ µ2.
R5 (Φ ◦ µ) ∧ φ ⊢ Φ ◦ (µ ∧ φ).
R6 If (Φ ◦ µ) ∧ φ is satisfiable, then Φ ◦ (µ ∧ φ) ⊢ (Φ ◦ µ) ∧ φ.

Here, Φ (possibly with a subscript) stands for an epis-
temic state3 and µ, φ are propositional formulae. ◦ is a re-
vision operator. For simplicity, when Φ is embedded in a

3(Darwiche and Pearl 1997) did not provide an explicitly def-

propositional formula, it stands for its belief set Bel(Φ), for
example, Φ ∧ φ means Bel(Φ) ∧ φ.

The four additional postulates for iterated revision are

C1 If α |= µ, then (Φ ◦ µ) ◦ α ≡ Φ ◦ α.
C2 If α |= ¬µ, then (Φ ◦ µ) ◦ α ≡ Φ ◦ α.
C3 If Φ ◦ α |= µ, then (Φ ◦ µ) ◦ α |= µ.
C4 If Φ ◦ α 6|= ¬µ, then (Φ ◦ µ) ◦ α 6|= ¬µ.

Obviously, ER2 is a straightforward generalization of R1,
whilst ER1 extends R3 in the epistemic revision situation
where new evidence is also an epistemic state. ER3, how-
ever, not only generalizes R4, but also is a key characteristic
postulate of revision considering with strengths of beliefs
and evidence. ER4 is closely related to C1 and C2, but in
general it does not imply C1 and C2. To obtain a generaliza-
tion of C1 and C2, postulate ER4 should be strengthened as
follows.

ER4* Φ ◦ Ψ ◦ Θ
′

= Φ ◦ Θ
′

where partition ′ is a
refinement of partition .

There are no obvious generalizations for R5 and R6 in our
postulates, because the conjunction of two formulae (for two
belief sets) used in DP postulates is hardly generalizable on
epistemic revision in our framework. In another words, the
conjunction of two epistemic states are undefinable.

As for postulate R2, the following proposition shows why
we do not need to provide a separate postulate as its gener-
alization.

Proposition 1 Let Φ be a full epistemic state, Ψ be a par-
tial epistemic state and ◦ be an epistemic revision opera-
tor satisfying ER2 and ER3. For any µ ∈ , if Φ(µ) =
Ψ (µ), then ∀φ |= µ, Φ(φ) = (Φ ◦ Ψ )(φ).

This proposition shows that when both ER2 and ER3
hold, then if new evidence is partially consistent with the
prior state, then the consistent part is not changed, which
can be seen as an extension of R2.

Representation Theorems

In order to establish the representation theorems, we need to
define the retentive and conductive operators on D.

Definition 4 An operator ⊖ defined on D is called reten-
tive if for any a1, a2, b1, b2 ∈ D s.t. a1 ≤D a2, b1 ≤D b2,
then the following statement holds: If a1⊖a2 = b1⊖ b2 and
a2 = b2, then a1 = b1.

The word retentive here intuitively means that when elim-
inating the equivalent second operands, the equivalence is
still retained for the first operands.

Definition 5 An operator ⊖ defined on D is called con-
ductive if for any a1, a2, a3, b1, b2, b3 ∈ D s.t. a1 ≤D

a2 ≤D a3, b1 ≤D b2 ≤D b3, then the following statement
holds: If a1 ⊖ a3 = b1 ⊖ b3, and a2 ⊖ a3 = b2 ⊖ b3, then
a1 ⊖ a2 = b1 ⊖ b2.

inition on epistemic states, except that an epistemic state can be
understood as an agent’s current beliefs together with the relative
plausibility orderings of possible worlds.
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The word conductive here intuitively means that when
eliminating same items from two equations (the second
operands in both the first and second equations), the remain-
ing operands can be combined naturally to form a new equa-
tion.

The retentive requirement specifies how to remove equiv-
alent item in one equation and the conductive requirement
tells how to remove same items from multiple equations to
form a new equation.

There are many concrete retentive and conductive opera-
tors, for example, if ⊖ is the subtraction (‘-’) or division (‘/’)
operator in mathematics, then it is retentive and conductive.

Theorem 1 A revision operator ◦ satisfies postulates ER1-
ER4 iff there exists a retentive operator ⊖ defined on D
such that for any full epistemic state Φ and any epistemic
state Ψ , ∀µ ∈ and ∀φ |= µ, (Φ ◦ Ψ )(µ) = Ψ (µ)
and (Φ ◦ Ψ )(φ) ⊖ (Φ ◦ Ψ )(µ) = Φ(φ) ⊖ Φ(µ).

To some extent, this theorem shows how minimal change
happens during epistemic revision in the sense that it pre-
serves a kind of distance based on ⊖ (although⊖ is not con-
structively given). Furthermore, evidently (Φ ◦ Ψ )(µ) =
Ψ (µ) and (Φ ◦ Ψ )(φ) ⊖ (Φ ◦ Ψ )(µ) = Φ(φ) ⊖ Φ(µ)
are counterparts of Equation (2) and (3), respectively. As
mentioned before, Jeffrey’s rule yields a unique distribution
that satisfies Eq. (2) and Eq. (3). Here this theorem shows
that our postulates yield a unique full epistemic state that
satisfies the two counterparts too. Therefore, this theorem
presents a generalization of Jeffrey’s rule.

With postulates ER1-ER3 and ER4*, we get the follow-
ing representation theorem.

Theorem 2 A revision operator ◦ satisfies postulates ER1-
ER3 and ER4* iff there exists a retentive and conductive
operator ⊖ defined on D such that for any full epistemic
state Φ and any epistemic state Ψ , ∀µ ∈ and ∀φ |= µ,

(Φ◦Ψ )(µ) = Ψ (µ) and (Φ◦Ψ )(φ)⊖(Φ◦Ψ )(µ) =
Φ(φ) ⊖ Φ(µ).

An instance of revision operator

Let W = {(a, b)|a ∈ N, b ∈ N ∪ {∞}}, D = {2a3b|a ∈
N, b ∈ N ∪ {∞}} such that ≤D is defined as the arith-
metic ≥, ⊤ = 1, and ⊥ = ∞. Let f be defined as
f(2a13b1 , . . . , 2an3bn) = 2min(a1,...,an)3min(b1,...,bn) and
Φ be such that Φ((a, b)) = 2a3b. Let a new piece of ev-
idence taken on partition = {µ1, . . . , µn} be such that

Ψ (µi) = αi, 1 ≤ i ≤ n, then we can define a revision
operator ◦n as

(Φ ◦n Ψ )(w) = αiΦ(w)/Φ(µi) for w |= µi (4)

◦n also satisfies postulates ER1-ER4 and ER4*, and
f satisfies the Monotonicity Property but not the Non-
decreasingness property.

Comparison with related revision strategies

Jeffrey’s rule: In probability theory, if we view ◦p (Equa-
tion (1)) as a revision operator, then we have

Proposition 2 The revision operator ◦p defined in Equation
(1) satisfies postulates ER1-ER4 and ER4*.

OCF conditionalization: An OCF (Spohn 1988) κ is a
function from a set of possible worlds to the set of ordinals
with κ−1(0) 6= ∅. It can be extended to a set of proposi-
tions as κ(µ) = minw|=µκ(w). Given κ as the prior OCF,

= {µ1, . . . , µn} as a partition and a new piece of evi-

dence as λ (µi) = αi, 1 ≤ i ≤ n s.t. min1≤i≤n(αi) = 0,

then the conditionalization of κ w.r.t λ is

(κ ◦c λ )(w) = αi + κ(w) − κ(µi) for w |= µi (5)

If we consider the conditionalization operator ◦c as a re-
vision operator, then Equation (5) can be seen as a revision
strategy, and we have

Proposition 3 The revision operator ◦c defined in Equation
(5) satisfies postulates ER1-ER4 and ER4*.

Possibility conditionalization: Similar result holds for a
so-called qualitative possibility conditionalization defined
in (Dubois and Prade 1993) which is similar to OCF con-
ditionalization.
Logic-based iterated belief/epistemic revision: To com-
pare with other logic-based (iterated) belief revision frame-
works, we need to ensure that each epistemic state has a
non-empty belief set, hence to exclude epistemic states with
empty belief sets.

Definition 6 Let Φ be a partial epistemic state and µ
be any propositional formula. Φ is said to satisfy the
Maximality property iff Φ satisfies Φ (W ) = ⊤, and

Φ (µ) = ⊤ iff ∃φ ∈ , φ |= µ, Φ (φ) = ⊤.

Particularly, if Ψ is a full epistemic state and µ is any
propositional formula, Ψ satisfies the Maximality property
iff it satisfies Ψ(W ) = ⊤, and Ψ(µ) = ⊤ iff ∃w |= µ,
Ψ(w) = ⊤. Now we can define the belief set of an epis-
temic state as follows.

Definition 7 Let Φ be a partial epistemic state which sat-
isfies property Maximality, then its belief set Bel(Φ ) is
defined as

Bel(Φ ) = {µ : Φ (µ) = ⊤, µ ∈ } (6)

In other words, the belief set of an epistemic state (with
property Maximality) is the set of propositions with a plausi-
bility value⊤. An alternative but not equivalent, weaker def-
inition of belief set is Bel(Φ ) = {Φ (µ) > Φ (¬µ)}.
In the following, we only concentrate on epistemic states
with non-empty belief sets. We can prove that the definition
of entailment on epistemic states generalizes the classical
definition of entailment on beliefs of epistemic states.

Proposition 4 Let Φ 1 and Ψ 2 be two epistemic states, if
Φ 1 |= Ψ 2 , then

∨
Bel(Φ 1) ⊢

∨
Bel(Ψ 2).

For convenience, we use ∆ µ to denote a partial epistemic
state such that its corresponding partition µ is µ =
{µ,¬µ}, and the values are ∆ µ (µ) = ⊤, ∆ µ (¬µ) <D ⊤
(∆ µ(¬µ) can be any value in D other than ⊤). Hence we

have Bel(∆ µ) = {µ}. In the following, we use ∆ µ to
encode new evidence where in logic-based revision frame-
works, e.g., (Darwiche and Pearl 1997), etc, new evidence is
simply represented as a single formula µ.
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Theorem 3 Let Φ be a full epistemic state, µ be a proposi-
tional formula and ◦ be an epistemic revision operator, if ◦
satisfies postulates ER1-ER3 and ER4*, then we have

Mod(Bel(Φ ◦ ∆ µ )) = min(Mod(µ),≤Φ), and

C1* If α |= µ, thenBel(Φ◦∆ µ ◦∆ α) = Bel(Φ◦∆ α).

C2* If α |= ¬µ, then Bel(Φ ◦ ∆ µ ◦ ∆ α) = Bel(Φ ◦
∆ α).

This theorem shows that the belief set from epistemic revi-
sion on an epistemic state Φ with ∆ µ is equivalent to the
belief set from belief revision on Φ with formula µ. It also
reveals that our revision postulates imply DP’s iterated belief
revision postulates C1 and C2. Furthermore, this theorem4

also conclude that our postulates (ER1-ER3, ER4*) indeed
imply R1-R6 when epistemic states have belief sets.

However, it can be shown that postulates C3, C4, Recal-
citrance (Nayak, Pagnucco, and Peppas 2003) and Indepen-
dence (Jin and Thielscher 2007) do not hold in our frame-
work as our framework also enables revision on the same
beliefs with different strengths which is also suggested in
(Brent 1997) that one might revise one’s epistemic commit-
ments without thereby revising one’s beliefs.

REE Axioms: A set of axioms (i.e., REE*1-REE*4,
REE*It) for characterizing iterated revision of full epistemic
states (total pre-orders) by full epistemic states was pre-
sented in (Benferhat et al. 2000) as follows.

REE*1 Φ ◦ Ψ |= Ψ
REE*2 If Φ ∧ Ψ is consistent, then Φ ◦ Ψ ≡ Φ ∧ Ψ
REE*3 If Ψ is consistent, then Φ ◦ Ψ is consistent
REE*4 If Ψ1 ≡ Ψ2, then Φ ◦ Ψ1 ≡ Φ ◦ Ψ2

REE*It (Φ ◦ Θ) ◦ Γ ≡ Φ ◦ (Θ ◦ Γ)

Similarly, here an epistemic state Φ embedded in a formula
stands for Bel(Φ).

The following result presents the relationship between the
REE Axioms and our postulates.

Proposition 5 A revision operator ◦ satisfying REE*1-4
and REE*It also satisfies ER1-3 and ER4*.

However, the converse is false. This is not surprising since
the framework of (Benferhat et al. 2000) leads to a unique
solution.

Conclusion

In this paper, we have proposed a general definition of epis-
temic states and studied its revision strategy where new, un-
certain evidence is represented as a partial epistemic state. A
set of epistemic revision postulates and their corresponding
representation theorems were then provided from which we
can recover several well-known revision strategies includ-
ing Jeffrey’s probabilistic kinematics and the revision of full
epistemic states by full epistemic states.

For our future work, we will investigate belief expansion
and contraction in our epistemic framework. We also plan to

4Compared to Darwiche and Pearl’s results, we also need to
give a total preorder ≤Φ and a faithful assignment from Φ to ≤Φ,
here we omit their descriptions due to the limitation of space.

apply our approach to computer security such as alert corre-
lation.
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