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Abstract

When merging belief sets from different agents, the result is
normally a consistent belief set in which the inconsistency be-
tween the original sources is not represented. As probability
theory is widely used to represent uncertainty, an interesting
question therefore is whether it is possible to induce a prob-
ability distribution when merging belief sets. To this end, we
first propose two approaches to inducing a probability distri-
bution on a set of possible worlds, by extending the princi-
ple of indifference on possible worlds. We then study how
the (in)dependence relations between atoms can influence the
probability distribution. We also propose a set of properties
to regulate the merging of belief sets when a probability dis-
tribution is output. Furthermore, our merging operators sat-
isfy the well known Konieczny and Pino-Pérez postulates if
we use the set of possible worlds which have the maximal
induced probability values. Our study shows that taking an
induced probability distribution as a merging result can bet-
ter reflect uncertainty and inconsistency among the original
knowledge bases.

Introduction

In general, operators for merging multiple belief/knowledge
bases (flat or stratified) in the literature can be divided
into two families: syntax-based (e.g., (Baral et al. 1992;
Konieczny 2000; Delgrande, Dubois, and Lang 2006), etc)
and model-based (e.g., (Konieczny and Pino-Pérez 1998;
Benferhat, Lagrue, and Rossit 2007; Qi, Liu, and Bell 2006),
etc). For either family, the result of merging is effectively a
set of formulae that is normally required to be consistent,
and hence it is difficult to reflect inconsistency between the
sources in the result of merging. To illustrate, let us con-
sider the following example. Assume that we have two
knowledge bases (KBs) representing two agents’ beliefs,
K1 = {p}, and K2 = {¬p}. What should the merging re-
sult ∆(K1, K2) be (assume that ∆ is a merging operator)?
Intuitively, we cannot expect ∆(K1, K2) to be either {p} or
{¬p}, since it is biased towards one agent or the other, whilst
letting ∆(K1, K2) be either {⊤} or {⊥} does not give a
meaningful result (⊤ or ⊥ could come from the merging of
p∧q versus¬p∧¬q or any two conflicting pieces of beliefs in
this way). In this scenario, it is better to represent the merged
belief as a probability distribution P (p) = P (¬p) = 0.5,
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which accurately reflects that the two hypotheses consid-
ered are mutually conflicting and equal w.r.t support from
the original knowledge bases.

Probability theory is one of the most used approaches to
modeling and reasoning with uncertain knowledge. How-
ever, probability theory has not been directly associated
with representing a result of merging of classical knowl-
edge bases. Research efforts that have some connections
with this line of research were seen in (Bacchus et al. 1996)
and (Knight 2002). In (Bacchus et al. 1996), a random-
worlds method based on the principle of indifference was
proposed to induce a probability distribution on a set of pos-
sible worlds from a given knowledge base K , such that for
w |= K , P (w) = 1

|Mod(K)| (where Mod(K) is the set of

models of K). In (Knight 2002), probability theory was used
to measure the degree of (in)consistency (of subsets) of a
knowledge base. Assume that P is the set of all probability
distributions definable on the set of possible worlds from a
language (Paris 1994), then given an inconsistent KB K (or
a subset of K), the η-consistency measure obtains the prob-
ability distribution P in P such that P (α) ≥ η, ∀α ∈ K
and for any P ′ ∈ P , ∃β ∈ K, s.t., P (β) > P ′(β). Nev-
ertheless, there are still no concrete probability distributions
derived from a given knowledge base.

In this paper, we investigate how a probability distribu-
tion can be induced as a result of merging multiple KBs,
especially for situations where multiple agents’ beliefs are
inconsistent. To achieve this, we propose two extensions to
the principle of indifference on possible worlds in (Bacchus
et al. 1996) for inducing a probability distribution from a
single knowledge base scenario to multiple KBs scenario,
namely, the principle of indifference on knowledge bases
in a knowledge profile and the principle of indifference on
knowledge profile. This is our first contribution of the paper.

In classical knowledge base merging, (in)dependence re-
lationships between atoms (of a propositional language) are
not considered and cannot be considered. For example, if
p and q are two atoms, then whether the fact p is true will
influence that q is true is not in anyway reflected in either an
original knowledge base or a merged result. However, when
we consider using a probability distribution as a result of
merging, independence relationships among atoms do play
a role as to how a final probability distribution can be ob-
tained. To elaborate this further, let us look at two sets of
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knowledge bases in the following example.

Example 1 Assume that three people are discussing a per-
son holding a flag spotted at a distance. The three knowl-
edge bases obtained from them are K1 = {¬m}, K2 =
{r∧m} and K3 = {r}, where m for the person is a male and
r for the flag is red. An intuitive conclusion is that the flag
is red but we do not know whether the person is a male. An
underlying assumption for drawing this conclusion in com-
monsense reasoning is that the color of a flag and the gender
of a person are largely independent. Hence the contradict-
ing opinions on the gender of the person do not affect the
consistent opinions about the color of the flag.

Now, let us reword this example as follows. Assume that
three people are discussing a person’s salary and his pro-
fession. The three knowledge bases obtained from them are
K1 = {¬m}, K2 = {r ∧ m} and K3 = {r}, where m for
the person is a professor and r for the salary is over $80k.
What would be the result of merging?

In this example, conclusion {r} seems largely acceptable
for the first scenario because we usually disassociate the at-
tribute color of a flag from the attribute gender of a per-
son. On the other hand, conclusion {r} seems much less
acceptable in the 2nd scenario because we know a person’s
profession and his salary are closely related. A merging op-
erator for classical KBs, such as, ∆dD,sum,sum (Konieczny,

Lang, and Marquis 2004), ∆dH , (Revesz 1997), produces
the same solution {r} for both sets of KBs (scenarios) re-
gardless of if there are any dependencies among atoms (at-
tributes).

Therefore, independence relationships between atoms
must be considered, since such independence relationships
influence how a probability distribution is defined. To
achieve this, we develop two approaches to revising in-
duced probability distributions from the two extensions,
with (in)dependence relationships between atoms consid-
ered. This is our second main contribution of the paper.

An induced probability distribution from a set of knowl-
edge bases should truly reflect the beliefs encoded by these
bases. We propose the following three constraints on an in-
duced probability distribution. This is our third contribution.

• A possible world considered possible by some agents
should receive a positive probability value, otherwise its
probability value is 0. This is the Positiveness principle.

• A possible world considered at least as possible as another
possible world by all agents shall be assigned with a prob-
ability value at least as large as the value assigned to the
latter one. This is the Monotonicity principle.

• Probability values on possible worlds should be insensi-
tive to syntax. This is the Syntax-irrelevance principle.

The rest of the paper is organized as follows. Section 2 in-
troduces preliminaries. In Section 3, we propose two meth-
ods for inducing probability distributions. In Section 4, we
propose approaches to revising an induced probability dis-
tribution considering where some atoms are (in)dependent.
In Section 5, we compare our merging framework with logic
based merging. Finally, we conclude the paper in Section 6.

Preliminaries

We consider a propositional language LP defined from a
finite set P of propositional atoms, denoted by p, q, r etc
(possibly with superscripts). An interpretation w (or possi-
ble world) is a function that maps P onto the set {0, 1}. The
set of all interpretations is denoted as W . w is a model of
(or satisfies) φ iff w(φ) = 1, denoted as w |= φ. We de-
note Mod(φ) as the set of models for φ. A term on a set of
atoms {p1, · · · , pk} is a formula with the form p′1 ∧ · · · ∧ p′k
in which literal p′i is either pi or ¬pi, 1 ≤ i ≤ k.

A (flat) knowledge base K is a finite set of propositions.
K is consistent iff there is at least one interpretation that
satisfies all propositions in K .

A knowledge profile E is a multi-set of knowledge bases
such that E = {K1, K2, · · · , Kn}.

⊔
E = K1

⊔
...

⊔
Kn

denotes the multi-set union of Kis and
∧

E = K1∧ ...∧Kn

denotes the conjunction of knowledge bases Kis of E. E is
called consistent iff

∧
E is consistent. Let E denote all the

atoms appeared in E. E1 ↔ E2 denotes that there is a bijec-
tion g from E1 = {K1

1 , · · · , K1
n} to E2 = {K2

1 , · · · , K2
n}

such that ⊢ g(K) ↔ K .

Inducing Probability Distributions

In (Bacchus et al. 1996), a random-worlds method was pro-
posed to induce a probability distribution on a set of possible
worlds from a single knowledge base. This method is based
on the principle of indifference to possible worlds which
states that given a knowledge base K , all the models of the
knowledge base are equally likely. That is, ∀w ∈ Mod(K),
P (w) = 1

|Mod(K)| (otherwise P (w) = 0) where P is a prob-

ability distribution on W . This method cannot be directly
applied to induce a probability distribution from a knowl-
edge profile, since the existence of multiple KBs may need
to be taken into account. In this section, we propose two
extensions to this principle in order to induce a probability
distribution from a knowledge profile.

Before proceeding with these extensions, let us first for-
malize the following three constraints that shall be satisfied
by an induced probability distribution, as we discussed in
the Introduction. Let E be a knowledge profile and PE be
an induced probability distribution from E.

w-Positiveness: If ∀Ki ∈ E, w 6|= Ki, then PE(w) = 0;
else PE(w) > 0.
w-Positiveness states that if a possible world w is consid-
ered impossible by all agents, then its induced probability
value should be 0; otherwise this value is positive.

w-Monotonicity: For any Ki ∈ E, if w1 |= Ki implies
w2 |= Ki, then PE(w2) ≥ PE(w1). In addition, if
∃Kj ∈ E such that w2 |= Kj but w1 6|= Kj , then
PE(w2) > PE(w1).
w-Monotonicity says that if w2 is believed at least as plau-
sible as w1, then the induced probability value for w2

should not be less than that assigned to w1.

Syntax-Irrelevance: Let α, β be two formulae, then for
any w, PE∪{{α∧β}}(w) = PE∪{{α,β}}(w). If α′ is a for-

mula such that α ≡ α′, then for any w, PE∪{{α}}(w) =
PE∪{{α′}}(w).
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Syntax irrelevance property is a reasonable property in
many logic based reasoning systems, such as, knowledge
bases merging (Konieczny and Pino-Pérez 1998).

Principle of indifference to knowledge bases

The first extension we attempt to achieve is that for any w, if
it is considered possible by a subset of knowledge bases in
the profile, then each K in the subset provides an equally
likely probability value for w, regardless of which K it
is. The final probability value for w is proportional to the
sum of such equally likely probability values supporting it.
This extension is referred to the principle of indifference to
knowledge bases. That is, all knowledge bases are treated
equally w.r.t. a possible world that is their common model.
In another words, each of them contributes the same amount
of probability to a possible world that is a model of them.

Let ▽ be an operator mapping knowledge profiles to prob-
ability distributions and E be a knowledge profile.

Definition 1 (Principle of Indifference to Knowledge bases)
Based on this principle, ▽(E) produces a probability distri-
bution P IndK

E over W s.t., for w ∈ W

P IndK
E (w) =

S(w)∑
w′∈W S(w′)

(1)

where S(w) = |{Ki s.t. Ki ∈ E, w |= Ki}|.
S(w) is the number of KBs which consider w possible,
and

∑
w′∈W S(w′) can be rewritten as

∑
Ki∈E |Mod(Ki)|.

Obviously, we have
∑

w∈W P IndK
E (w) = 1 which shows

P IndK
E is a valid probability distribution.
For convenience, hereafter, we omit notation ▽(E) and

simply use a probability distribution as a result of merging.

Proposition 1 P IndK
E satisfies w-Positiveness, w-

Monotonicity, and Syntax-Irrelevance.

Example 2 (Example 1 Cont.) Let E = {K1, K2, K3}
such that K1 = {¬m}, K2 = {r ∧ m} and K3 = {r}, then
from Def. 1, we get P IndK

E (¬m ∧ r) = P IndK
E (m ∧ r) =

2
5 , P IndK

E (¬m ∧ ¬r) = 1
5 , P IndK

E (m ∧ ¬r) = 0.

In this example, five possible worlds are models of these
KBs (i.e., K1 has two models, K2 has one and K3 has two).
Possible world m ∧ r has 1/5 support from K2 and K3 re-
spectively. Therefore, it has a probability value 2/5.

The fact that K1 has more models than K2 is not fully
considered under this principle. It may be useful to take
such a fact into account, especially when a KB K has a large
number of models (so K is less specific than other KBs).
This leads us to the second extension below.

Principle of indifference to knowledge profile

The second extension we aim to achieve is that for a given
K , the contribution from K to w is 1

|Mod(K)| if w ∈

Mod(K) or 0 otherwise. Then for each w, its probability
contributions from all the KBs are accumulated, and finally
this accumulated value is normalized by the total number of
KBs that a profile has. In another word, it is the whole pro-
file (not just the KBs that have contributed to w) determines
the final outcome. This extension, is referred to as the prin-
ciple of indifference to knowledge profile.

Definition 2 (Principle of Indifference to Knowledge Pro-
file) Based on this principle, a probability distribution
P IndE

E over W is defined s.t. for w ∈ W

P IndE
E (w) =

1

|E|

|E|∑

i=1

w(K)

|Mod(Ki)|
. (2)

Note that w(K) = 1 if w |= K and 0 otherwise (definition
of a possible world). Also, Equation 2 requires each K con-
sidered is consistent whilst Definition 1 does not require this.
In addition, it is easy to check that

∑
w∈W P IndE

E (w) = 1.

Proposition 2 P IndE
E satisfies w-Positiveness, w-

Monotonicity, and Syntax-Irrelevance.

Example 3 (Example 1 Cont.) Let E = {K1, K2, K3}
such that K1 = {¬m}, K2 = {r ∧ m} and K3 = {r}, then
from Def. 2, we get P IndE

E (¬m ∧ r) = 1
3 , P IndE

E (¬m ∧

¬r) = 1
6 , P IndE

E (m ∧ r) = 1
2 , and P IndE

E (m ∧ ¬r) = 0.

With the different points of view captured by the two prin-
ciples of indifference, the merging result from either Ex-
ample 2 or Example 3 can be considered acceptable. For
instance, with the second extension (Example 3), we have
K1 strongly rejects m ∧ r, K2 strongly supports it, whilst
K3 partially supports it, therefore it is reasonable to obtain
P IndE

E (m ∧ r) = 1
2 . Therefore, which approach among the

two to use largely depends on the application scenario.

Effect of relationship between atoms

When we induce a probability distribution on a set of possi-
ble worlds as the result of merging, we have not yet consider
if any atoms defining the language are dependent in terms of
probability theory. This is consistent with what has been
done in logic-based merging, where relationships between
atoms are not considered. However, when we consider prob-
ability distributions emerging from a knowledge profile, we
must investigate how relationships among atoms will affect
an induced probability distribution.

Let us first recall the definition of independence relation-
ship in probability theory.

Definition 3 Let {p1, · · · , pn} be the set of atoms and P a
probability measure on {p1, · · · , pn}. p1, · · · , pn are mutu-
ally independent w.r.t. P iff for any subset {pi1, · · · , pik} of

{p1, · · · , pn}, we have P (pi1 ∧ · · · ∧ pik) =
∏k

j=1 P (pij).

The necessity of considering (in)dependence
relationships: an example

Example 4 (Example 1 Cont.) Recall that the conclusion
we draw from the first scenario in this example is that the
flag is red but we do not know whether the person is a male
or not. In terms of probability theory, we expect a proba-
bility distribution P that is compatible with this conclusion
would generate P (m) = P (¬m) = 1

2 (impartial about the
person being a male or a female), P (r) > P (¬r) (the flag
is more likely to be red), and P (m∧r) = P (¬m∧r) (other-
wise we may infer it is a male holding a red flag or a female
holding a red flag).

In Example 2, we have P IndK
E (¬m∧ r) = P IndK

E (¬m∧
¬r) = 2

5 , P IndK
E (m ∧ r) = 1

5 . Therefore, we get
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P IndK
E (m) = 1

5 , P IndK
E (¬m) = 4

5 , and P IndK
E (r) =

3
5 , P IndK

E (¬r) = 2
5 . This result is different from our in-

tuitive conclusion and tempts us to believe that the person
may not be a male, since P IndK

E (m) < P IndK
E (¬m).

In Example 3, we have P IndE
E (¬m ∧ r) =

1
3 , P IndE

E (¬m∧¬r) = 1
6 , P IndE

E (m∧ r) = 1
2 . Since m∧ r

has the largest probability value, it may lead us to believe
that it is a male holding a red flag which is also inconsistent
with our intuition.

The main reason for not being able to draw a satisfactory
result from the two induced probability distributions is that
the independence assumption between m (a male) and r (a
red flag) was not considered. In fact, from the intuitions that
P (m) = P (¬m) = 1

2 , P (r) > P (¬r), and P (m ∧ r) =
P (¬m∧r), we can infer that P (r|m) = P (r∧m)/P (m) =
2P (r ∧ m) = P (r ∧ m) + P (r ∧ ¬m) = P (r). That is, r
and m are probabilistically independent. This kind of inde-
pendence relationship among atoms, which cannot be repre-
sented in a logic-based representation of knowledge bases,
exists in common sense reasoning and real-world applica-
tions. Therefore, when considering probability distributions
induced from knowledge base merging, such independence
relationships must be considered.

All atoms are pair-wise independent

In this subsection, we consider situations where all atoms
are pair-wise independent. We start with defining probabil-
ities on atoms, since if all atoms are probabilistically inde-
pendent, a unique probability distribution on possible worlds
(w.r.t Def. 3) can be obtained, and hence probability on for-
mulae can be calculated from their models. It should be
pointed out that the following two definitions on induced
probability functions on atoms are counterparts of the ones
defined in Definitions 1 and 2, respectively. Probability
values on atoms derived from a knowledge profile should
also satisfy certain constraints. By extending the above con-
straints on a probability distribution on possible worlds, we
have the following revised constraints (Syntax-Irrelevance
does not need to be changed).

a-Positiveness If ∀Ki ∈ E, Ki |= p, then PE(p) = 1; if
∀Ki ∈ E, Ki |= ¬p, then PE(p) = 0; else PE(p) ∈
(0, 1).
a-Positiveness (atom-Positiveness) states that if all agents
believe that p is true, then the merging result should also
believe that p is true. Conversely, it all agents think p
is false, then the merging result also considers it false.
Otherwise p is not totally believed or disbelieved.

a-Monotonicity For any Ki ∈ E, if Ki |= p1 implies
Ki |= p2, then PE(p2) ≥ PE(p1). Furthermore, if
∃Kj ∈ E such that Kj |= p2 but Kj 6|= p1, then
PE(p2) > PE(p1).
a-Monotonicity says that if p2 is believed at least to the
degree of p1, then the induced probability value for p2

should not be less than that assigned to p1.

Below, we provide two counterparts of Def. 1 and Def. 2
on atoms.

Definition 4 (Support for p) Let E be a knowledge profile
and p be an atom, then the support for p w.r.t E is defined

as SuppE(p) =
∑|E|

i=1 |SuppKi
(p)| where SuppKi

(p) =
{w, s.t., w |= p, w |= Ki}.

SuppKi
(p) means that we count the number of possible

worlds that are models of p and are also models of a knowl-
edge base Ki. That is, p and Ki are consistent since they
have at least one common model w, and hence knowledge
base Ki can be considered as at least partially supporting p
w.r.t w. Then the support for p from the whole profile E is
the sum of its support from each Ki.

Based on the definition of support for p, a probability
value on p can be calculated as follows.

Definition 5 (Probability value on atom through its sup-
port) Let E be a knowledge profile and p be an atom, then a
probability value generated from E for p is defined as

P supp
E (p) =

|SuppE(p)|

|SuppE(p) + SuppE(¬p)|
. (3)

Obviously, SuppE(p) + SuppE(¬p) =
∑|E|

i=1 |Mod(Ki)|,
and we have ∀p, P supp

E (p) + P supp
E (¬p) = 1 which shows

that P supp
E is a valid probability distribution.

Proposition 3 P supp
E satisfies a-Positiveness, a-

Monotonicity, and Syntax-Irrelevance.

Example 5 (Example 1 Cont.) Let E = {K1, K2, K3}
such that K1 = {¬m}, K2 = {r ∧ m} and K3 = {r},
then from Def. 5, we get P supp

E (m) = 2
5 , P supp

E (r) = 4
5 .

Observe that P supp
E (m) = P IndK

E (m), P supp
E (r) =

P IndK
E (r). This fact holds in general as stated by the fol-

lowing proposition.

Proposition 4 Let E be a knowledge profile, then for
any p ∈ E , we have P supp

E (p) = P IndK
E (p), where

P IndK
E (p) =

∑
w|=p P IndK

E (w).

P supp
E is in fact a counterpart of P IndK

E on atoms
where relationships between atoms are considered. How-
ever, for a propositional formula µ, generally we do not
have P supp

E (µ) = P IndK
E (µ) due to the existence of

(in)dependence relations.

Definition 6 (Probability value on atom through its ratio of
support) Let E be a knowledge profile, and p be an atom,
then a probability value generated from E for p is defined as

P r
E(p) =

1

|E|

|E|∑

i=1

|SuppKi
(p)|

|SuppKi
(p)| + |SuppKi

(¬p)|
. (4)

It is easy to verify that ∀p, P r
E(p) + P r

E(¬p) = 1, hence P r
E

is indeed a valid probability function.

Proposition 5 P r
E satisfies a-Positiveness, a-Monotonicity,

and Syntax-Irrelevance.

Below we show that P r
E is indeed a counterpart of P IndE

E .

Proposition 6 Let E be a knowledge profile, then for any
p ∈ E , we have P IndE

E (p) = P r
E(p).
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Example 6 (Example 1 Cont.) Let E = {K1, K2, K3}
such that K1 = {¬m}, K2 = {r ∧ m} and K3 = {r},
then from Def. 6, we get P r

E(m) = 1
2 , P r

E(r) = 5
6 . Obvi-

ously this result is more consistent with our intuition such
that P r

E(m) = P r
E(¬m) = 1

2 , P r
E(r) > P r

E(¬r), and
P r

E(m ∧ r) = P r
E(¬m ∧ r).

Results from Examples 5 and 6 illustrate that in some sce-
narios, the principle of indifference to knowledge profile is
more reasonable than that to knowledge bases.

Some atoms are independent

Now we investigate situations where some atoms are inde-
pendent, contrary to what is assumed in the above subsec-
tion. This assumption is rational in many real-world appli-
cations. Typically when atoms (attributes) are defined, their
(in)dependent relationships are clear from context1.

To proceed, here we assume that the dependence relation
between atoms is an equivalence relation which satisfies the
following conditions.

• ∀p, p is dependent of p,

• ∀p, q, p is dependent of q iff q is dependent of p,

• ∀p, q, r, if p is dependent of q and q is dependent of r,
then p is dependent of r.

With these conditions, E = {p1, · · · , pn} can be par-
titioned by a dependence relation. Let a partition of E

be L = {{p1
1, · · · , p

0
m1

}, · · · , {pk
1 , · · · , p

k
mk

}} s.t. for any

p, p′ ∈ E if ∃L ∈ L where p, p′ ∈ L then p and p′ are
dependent, otherwise they are independent. Two extremes
are either all the atoms are dependent (so there is only one
subset in the partition) or all the atoms are independent (then
we have exactly n partition groups).

For a subset L = {pi
1, · · · , p

i
mi

}, let Si be the set of terms

generated from {pi
1, · · · , p

i
mi

}, and s ∈ Si be an arbitrary
term, then a probability value for s is defined as follows.

Definition 7 (A counterpart of P supp
E ) Let E be a knowl-

edge profile and s ∈ Si be a term generated as above. Then
the probability value of s is calculated by

P
suppdep

E (s) =
SuppE(s)∑

s∈Si SuppE(s)
. (5)

where SuppE(s) is defined similarly to SuppE(p) in Def 4
when replacing p with s.

The soundness of P
suppdep

E is verified by ∀Si,∑
s∈Si P

suppdep

E (s) = 1. Since a possible world w

can be written as w =
∧k

i=1 si where si ∈ Si is a term and
k is the number of partitions (partitioned by dependence
relations) described above, and si is independent of sj for

i 6= j, we have P
suppdep

E (w) =
∏k

i=1 P
suppdep

E (si).

Example 7 Let E = {K1, K2, K3} such that K1 = {(p ∨
q)∧r}, K2 = {¬p∧¬r} and K3 = {q}. We further assume
that p, q are dependent, and r is independent of p and q,

1Determining whether atoms are (in)dependent can be a com-
plex task which is beyond the scope of this paper. Here we assume
that (in)dependence relations among atoms concerned are given.

which gives a partition of atoms as L = {{p, q}, {r}}. Then
we have S1 = {p∧q, p∧¬q,¬p∧q,¬p∧¬q}, S2 = {r,¬r}
and

P
suppdep

E (p ∧ q) = 1/3, P
suppdep

E (p ∧ ¬q) = 1/9,

P
suppdep

E (¬p ∧ q) = 4/9, P
suppdep

E (¬p ∧ ¬q) = 1/9,

P
suppdep

E (r) = 5/9, P
suppdep

E (¬r) = 4/9.

Now we can calculate probability values on possible
worlds and also on formulae. For instance, we have
P

suppdep

E (p ∧ q ∧ r) = 5/27 and P
suppdep

E (p ∧ r) = 20/81.

Proposition 7 Let E be a knowledge profile, then for any
p ∈ E , we have P supp

E (p) = P
suppdep

E (p).

This proposition shows that P
suppdep

E is actually a counter-

part of P supp
E and hence of P IndK

E .
Propositions 4 and 7 together reveal that no matter how

atoms are related (dependent or independent), the support to
them by the original knowledge bases in a profile is solely
determined by these KBs. Therefore, all these apparently
different probability functions produce the same probability
values on atoms, but with different probability values on for-
mulae giving different (in)dependence assumptions. This is
not surprising, because (in)dependence relations only influ-
ence the calculation of probability values on formulae (and
possible worlds) but not on atoms.

Now we consider the counterpart of P r
E .

Definition 8 (A counterpart of P r
E) Let E be a knowledge

profile and s ∈ Sj be a term generated as above. Then the
probability value of s is calculated by

P
rdep

E (s) =
1

|E|

|E|∑

i=1

SuppKi
(s)∑

s∈Sj SuppKi
(s)

. (6)

where SuppKi
(s) is defined similarly to SuppKi

(p) in Def
4 when replacing p with s.

Similarly, for P
rdep

E , we have ∀Si,
∑

s∈Si P
rdep

E (s) = 1.

Example 8 Let E = {K1, K2, K3} such that K1 = {(p ∨
q) ∧ r}, K2 = {¬p ∧ ¬r} and K3 = {q}, and we have p, q
are dependent, and r is independent of p and q, then we have

P
rdep

E (p ∧ q) = 5/18, P
rdep

E (p ∧ ¬q) = 1/9,

P
rdep

E (¬p ∧ q) = 4/9, P
rdep

E (¬p ∧ ¬q) = 1/6,

P
rdep

E (r) = 1/2, P
rdep

E (¬r) = 1/2.

We also have the following result.

Proposition 8 Let E be a knowledge profile, then for any
p ∈ E , we have P r

E(p) = P
rdep

E (p).

A possible world w = p′1 ∧ · · · ∧ p′n (where p′i is pi or
¬pi) can be rewritten as w = s1 ∧ · · · ∧ sk (where each
si is a term from subset Li of a partition). Since atoms
in different subsets of a partition are mutually independent,

we have P
rdep

E (w) =
∏k

i=1 P
rdep

E (si) (or P
suppdep

E (w) =∏k

i=1 P
suppdep

E (si)).
Definitions 7 and 8 together can be regarded as a general

framework subsuming Definitions 1 and 2 respectively when
no independence relationships are observed, and Definitions
5 and 6 respectively when all the atoms are independent.
Formally, we have the following two propositions.

343



Proposition 9 Given a knowledge profile E, if no indepen-
dence relationships on atoms are given, then P

suppdep

E (Eq.

5) is reduced to P IndK
E (Eq. 1); if all atoms are pair-wise

independent, then P
suppdep

E is reduced to P supp
E (Eq. 3).

Proposition 10 Given a knowledge profile E, if no indepen-
dence relations are specified, then P

rdep

E (Eq. 6) is reduced

to P IndE
E (Eq. 2); if all atoms are assumed pair-wise inde-

pendent, then P
rdep

E is reduced to P r
E (Eq. 4).

From Propositions 9 and 10, and the fact that P IndK
E and

P IndE
E follow the principles of indifference on knowledge

bases and on profile, respectively, we can say that P
suppdep

E

(resp. P supp
E ) and P

rdep

E (resp. P r
E) also follow the prin-

ciples of indifference on knowledge bases and on profile,
respectively, except that the principles are focused on terms
(resp. atoms) instead of on possible worlds. Therefore, the
principle of indifference is the foundation for defining all the
probability distributions.

Related Work

In (Konieczny and Pino-Pérez 1998), an merging operator
∆ is a mapping from knowledge profiles to knowledge bases
satisfying the following set of postulates:

A1 ∆(E) is consistent.

A2 If E is consistent, then ∆(E) =
∧

E.

A3 If E1 ↔ E2, then ⊢ ∆(E1) ↔ ∆(E2).

A4 If K ∧ K ′ is not consistent, then ∆(K
⊔

K ′) 6⊢ K .

A5 ∆(E1) ∧ ∆(E2) ⊢ ∆(E1

⊔
E2).

A6 If ∆(E1) ∧ ∆(E2) is consistent, then ∆(E1

⊔
E2) ⊢

∆(E1) ∧ ∆(E2).

In our framework, an operator is a mapping from knowledge
profiles to probability distributions. Therefore, it is nature
to consider which postulates given above may be applica-
ble to the operators in our merging framework. Since in-
dependence relationships are not considered in (Konieczny
and Pino-Pérez 1998), here we only consider operators pro-
ducing P IndK

E and P IndE
E as merging results. To facilitate

the comparisons, we first define the set of most plausible
possible worlds generated based on either the total pre-order
P IndK

E on W or P IndE
E on W . To this, we use max(W,≤)

to denote the set {w ∈ W |∄w′ ∈ W, w′ ≥ w} where ≤ is a
total-preorder, and form({w1, · · · , wk}) to denote a propo-
sitional formula whose models are w1, · · · , wk.

Definition 9 Let E be a knowledge profile, then the sets of
most plausible possible worlds from operator ∆IndK based
on P IndK

E and operator ∆IndE from P IndE
E are defined re-

spectively as
∆IndK(E) = form(max(W,≤P IndK

E
)) and

∆IndE(E) = form(max(W,≤P IndE
E

)).

Then, we have the following result.

Proposition 11 Operator ∆IndK satisfies A1-A6, and op-
erator ∆IndE satisfies A1-A3,A5,A6.

Due to space limitation, we omit the comparison between
∆IndK(E) and ∆IndE(E) with the Majority and the Arbi-
trary postulates in (Konieczny and Pino-Pérez 1998). We
can conclude that both ∆IndK(E) and ∆IndE(E) are nei-
ther majority operators nor arbitrary operators.

Conclusion

In this paper, we have investigated how probability distri-
butions can be obtained when merging multiple knowledge
bases. A key motivation for obtaining a probability distri-
bution rather than a flat knowledge base is to better preserve
inconsistent knowledge from the original KBs. We have pro-
posed two definitions to define an induced probability distri-
bution based on two extensions to the principle of indiffer-
ence to possible worlds proposed in (Bacchus et al. 1996).

These two definitions were then revised for situations
where all atoms are independent or some atoms are depen-
dent, since independence relations between atoms can sig-
nificant affect induced probability distributions. Compar-
ison with logic based merging postulates shows that our
merging framework is consistent with logic based merg-
ing when no information about (in)dependent relationships
among atoms is available.

One possibility for future work is to investigate if other
approaches to inducing probability distributions can be de-
veloped when the requirement on principle of indifference
on possible worlds (resp. KBs, or profile) is removed.
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