
Automated Program Debugging via Multiple Predicate Switching

Yongmei Liu and Bing Li
Department of Computer Science

Sun Yat-sen University
Guangzhou 510006, China

ymliu@mail.sysu.edu.cn, libing5@mail2.sysu.edu.cn

Abstract

In a previous paper, Liu argued for the importance of estab-
lishing a precise theoretical foundation for program debug-
ging from first principles. In this paper, we present a first step
towards a theoretical exploration of program debugging algo-
rithms. The starting point of our work is the recent debugging
approach based on predicate switching. The idea is to switch
the outcome of an instance of a predicate to bring the pro-
gram execution to a successful completion and then identify
the fault by examining the switched predicate. However, no
theoretical analysis of the approach is available. In this paper,
we generalize the above idea, and propose the bounded de-
bugging via multiple predicate switching (BMPS) algorithm,
which locates faults through switching the outcomes of in-
stances of multiple predicates to get a successful execution
where each loop is executed for a bounded number of times.
Clearly, BMPS can be implemented by resorting to a SAT
solver. We focus attention on RHS faults, that is, faults that
occur in the control predicates and right-hand-sides of assign-
ment statements. We prove that for conditional programs,
BMPS is quasi-complete for RHS faults in the sense that
some part of any true diagnosis will be returned by BMPS;
and for iterative programs, when the bound is sufficiently
large, BMPS is also quasi-complete for RHS faults. Initial
experimentation with debugging small C programs showed
that BMPS can quickly and effectively locate the faults.

Introduction

Program debugging is one of the most time-consuming parts
of the software development cycle. In recent years, auto-
matic debugging has been an active research area in soft-
ware engineering. However, existing approaches are mostly
experiential, that is, they depend on expert experience and
heuristic information. In a previous paper, Liu (2008) ar-
gued for the importance of establishing a precise theoret-
ical foundation for debugging from first principles, which
would include two ingredients: a formal definition of the
debugging task, and an exploration of the associated com-
putational problem. Liu gave a formalization of the program
debugging task in the situation calculus, a logical language
suitable for describing dynamic worlds. In this paper, we
present a first step towards a theoretical exploration of de-
bugging algorithms.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A general approach to automated debugging is based on
modifying the program state to bring the execution to a suc-
cessful completion. However, searching for arbitrary state
changes is difficult due to the extremely large search space.
A recent solution proposed by (Zhang, Gupta, and Gupta
2006) is to only switch the outcome of an instance of a pred-
icate and then identify the fault by examining the switched
predicate, called critical predicate. Clearly, the search space
for predicate switching is far less than that for arbitrary
state changes. Through experimental evaluation, the authors
found their approach to be practical and effective. However,
they didn’t give any theoretical analysis of their approach,
for example, they didn’t analyze under what situations their
approach is applicable. Obviously, in some situations, a sin-
gle predicate switch is not sufficient.

In this paper, we generalize the idea behind the above
approach, and propose the bounded debugging via multi-
ple predicate switching (BMPS) algorithm, which locates
faults through switching the outcomes of instances of mul-
tiple predicates to get a successful execution where each
loop is executed for a bounded number of times. Clearly,
BMPS can be implemented by resorting to a SAT solver. As
in (Liu 2008), we restrict our attention to C-like programs
without procedures, called while programs. A formal study
of program debugging has to resort to the formal semantics
of programs. As in (Liu 2008), we treat while programs
as Golog programs, and hence obtain formal semantics of
while programs in the situation calculus via the semantics of
Golog, a programming language for high-level robotic con-
trol (Levesque et al. 1997).

The key concept underlying our approach is that of crit-
ical predicate sets. Intuitively, a critical predicate set for a
failing test case is a set of predicates whose outcomes we
can switch at runtime to produce the correct output. In this
paper, we restrict our attention to RHS faults, that is, faults
that occur in control predicates or right-hand-sides of assign-
ment statements. By applying restrictions on the program
dependency graph, we identify a class of faults which we
call predicate-cut faults. Intuitively, for predicate-cut faults,
the only way errors propagate is through control predicates.
Based on a key property which relates critical predicate sets
to predicate-cut faults, we prove that for conditional pro-
grams, BMPS is quasi-complete for RHS faults in the sense
that some part of any true diagnosis will be returned by

327

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

BMPS; and for iterative programs, when the bound is suf-
ficiently large, BMPS is also quasi-complete.

We experimented with implementing BMPS by using
CBMC (Clarke, Kroening, and Lerda 2004), a bounded
model checker for C programs. Our experiments with de-
bugging a dozen of programs written for C programming ex-
ercises showed that BMPS can quickly and effectively locate
the faults. We also analyzed the TCAS task of the Siemens
Suite (Rothermel and Harrold 1999), which has been used as
a benchmark suite for debugging approaches. Among the 41
faulty versions of the TCAS program, 39 versions are RHS
faults, among which only one is non-predicate-cut fault.

Background Work

The Situation Calculus and Golog

The situation calculus (Reiter 2001) is a many-sorted first-
order language (with some second-order ingredients) suit-
able for describing dynamic worlds. There are three dis-
joint sorts: action for actions, situation for situations, and
object for everything else. A situation calculus language L
has the following components: a constant S0 denoting the
initial situation; a binary function do(a, s) denoting the suc-
cessor situation to s resulting from performing action a; a
binary predicate Poss(a, s) meaning that action a is pos-
sible in situation s; action functions, e.g., move(x, y); re-
lational fluents, i.e., predicates taking a situation term as
their last argument, e.g., ontable(x, s); functional fluents,
e.g., height(x, s); and situation-independent predicates and
functions. We use L− to denote the language obtained from
L by removing the sort situation and removing the situa-
tion argument from every fluent. We call an L−-formula a
pseudo-fluent formula. Let φ be such a formula, and s be a
situation term. We let φ[s] denote the formula obtained from
φ by restoring s as the situation arguments to all fluents.

The formal semantics of Golog is specified by an abbre-
viation Do(δ, s, s′), which is inductively defined as follows:

1. Primitive actions: For any action term α,

Do(α, s, s′)
def
= Poss(α, s) ∧ s′ = do(α, s).

2. Test actions: For any pseudo-fluent formula φ,

Do(φ?, s, s′)
def
= φ[s] ∧ s = s′.

3. Sequence:

Do(δ1; δ2, s, s
′)

def
= (∃s′′).Do(δ1, s, s

′′)∧Do(δ2, s
′′, s′).

4. Nondeterministic choice of two actions:

Do(δ1 | δ2, s, s
′)

def
= Do(δ1, s, s

′) ∨ Do(δ2, s, s
′).

5. Nondeterministic iteration:

Do(δ∗, s, s′)
def
= (∀R).{(∀s1)R(s1, s1) ∧ (∀s1, s2, s3)

[R(s1, s2) ∧ Do(δ, s2, s3) ⊃ R(s1, s3)]} ⊃ R(s, s′).

The definition appeals to second-order logic to say that
the relation represented by Do(δ∗, s, s′) is the transitive
closure of that by Do(δ, s, s′).

We omit the definition of other constructs such as proce-
dures. Conditionals and loops are defined as abbreviations:

if φ then δ1 else δ2 fi
def
= [φ?; δ1] | [¬φ?; δ2],

while φ do δ od
def
= [φ?; δ]∗;¬φ?.

Formalization of Program Debugging

Liu (2008) presented a formalization of the program debug-
ging task in the situation calculus. The author restricted at-
tention to the debugging of while programs. We make the
same restriction in this paper. Let LP be the language of
Peano Arithmetic, i.e., LP = {0, s, +, ·, =}, where “s” de-
notes the successor function. Let L be LP extended with the
minus, division, modulo, and comparison operations, i.e.,
L = LP ∪{−, /, %, <, <=}. We call quantifier-free formu-
las of L conditions, and formulas of L assertions. We let W
denote the least set of programs such that

1. for every variable x and term t of L, x := t ∈ W ;

2. if δ1, δ2 ∈ W , then δ1; δ2 ∈ W .

3. if δ1, δ2 ∈ W , then for every condition e,
if e then δ1 else δ2 fi ∈ W ;

4. if δ ∈ W , then for every condition e,
while e do δ od ∈ W .

We call the condition e in an if or while statement a con-
trol predicate. In this paper, by components of a while pro-
gram P , we mean the set of assignment statements and con-
trol predicates of P . We distinguish between a component
and its expression: two different assignment (resp. predi-
cate) components might have the same expression.

Liu (2008) treated while programs as Golog programs and
hence obtain the formal semantics of while programs in the
situation calculus. The situation calculus language of arith-
metic programming Lap contains the following symbols:

1. An infinite set of memory location constants L1, L2, . . .;
2. A set of operator constants such as Add and Minus;

3. A functional fluent val(x, s) which denotes the value of
memory location x in situation s;

4. Action assn(z, o, x, y), which assigns to memory loca-
tion z the result of applying operator o to the values of
memory locations x and y.

Clearly, each assignment statement can be represented as
a sequence of assn actions. Hence each while program can
be expressed as a Golog program whose primitive actions
are assn actions.

The basic action theory of arithmetic programming Dap

consists of the following:

1. The foundational axioms for situations;

2. The action precondition axiom for assn;

3. The successor state axiom for assn which states that the
execution of assn(z, o, x, y) modifies the value of mem-
ory location z according to the arguments o, x, and y, and
leave unchanged the values of the other locations;

4. Unique names axioms for assn;

5. Initial database which includes the second-order axioma-
tization of Peano arithmetic.

Liu (2008) defined test cases as follows: A test case T for
a program P is a pair 〈InT , OutT 〉 of assertions where InT

specifies the exact values of the input variables, and OutT
specifies the values of the output variables.

Note that a while program is a deterministic one. Hence
a while program P passes a test case T iff the formula
Do(InT ?; P ; OutT ?, s, s′) is satisfiable wrt the theory Dap.

328

Basic Concepts

In this section, we define the basic concepts we use in this
paper and present their properties.

Execution Paths and Traces

When introducing Golog, we defined conditionals and loops
as abbreviations. Now we formally define the concept of
execution paths and traces for while programs.

Definition 1 Let P be a while program. We do the follow-
ing operations on its Golog representation:

1. replace each δ∗ with ǫ|δ|δ2| . . . |δn| . . ., where ǫ denotes
the empty program;

2. repeatedly apply the following distribution laws until they
are not applicable:
δ; (δ1|δ2) ⇔ (δ; δ1)|(δ; δ2), (δ1|δ2); δ ⇔ (δ1; δ)|(δ2; δ).

The result is a nondeterministic choice of (possibly infinitely
many) sequential programs consisting of assignments and
tests. We call each of them an execution path for P , and we
denote by EP(P) the set of all execution paths for P . We
call the sequence of assignments contained in an execution
path β the execution trace for β.

An execution path β carries with it the conditions for its
trace to be executed. For each test t on β, it is either a pos-
itive test e? or a negative test ¬e? of some predicate e of
P ; after the sequence of assignments that occur before t has
been executed, the truth value of e must be the same as the
polarity of the test.

For example, below is a program POWER which intends
to compute the nth power of 2 and its two execution paths:

p = 1; i = 1;

while (i < n)

{ p = p * 2; i = i + 1; }

β1 : p = 1; i = 1;¬(i < n)?.
β2 : p = 1; i = 1; (i < n)?; p = p ∗ 2; i = i + 1;¬(i < n)?.

Proposition 1

1. EP(δ) = {δ}, where δ is an assignment or a test;

2. EP(δ1; δ2) = EP (δ1); EP (δ2), which denotes the set
{β1; β2 | β1 ∈ EP (δ1), β2 ∈ EP (δ2)};

3. EP(δ1|δ2) = EP(δ1) ∪ EP(δ2).

Data Dependency Graphs

The dependency graph for a program describes the data de-
pendency and control dependency among statements of the
program. In this paper, we only need to use data depen-
dency. We now formally define the concept of data depen-
dency graph for a program.

Definition 2 Let P be a while program. The data depen-
dency graph (DDG) for P is a directed graph. The vertices
are components of P together with a special output vertex
vout which uses all the output variables. There is an edge
from v1 to v2 iff there is an execution path β for P such that
v1 occurs before v2, v2 uses a variable assigned by v1, and
there is no re-assignment of the variable between v1 and v2.

The following figure shows the DDG for POWER.

An important concept we use in our algorithm is that of
backward data slice.

Definition 3 Let G be the DDG of a program, and let v be a
node. The backward data slice of v, denoted BDS(v), is the
set of nodes from which v is reachable. The backward data
slice of a set V of nodes is the union of the backward data
slices of nodes in V .

Note the difference between backward data slice and the
concept of backward slice in the literature. The backward
slice of a node v consists of nodes from which v is reach-
able through a path of both data and control dependency.
An experimental study by (Zhang, Gupta, and Gupta 2006)
showed that the backward data slice of a node is much
smaller than the backward slice.

In the above example, the backward data slice of the pred-
icate i < n is {i = 1, i = i + 1, i < n}.

Diagnoses

A commonly used evaluation measure for debugging ap-
proaches is the scoring function proposed by Renieris and
Reiss (2003). This measure assumes the existence of a cor-
rect program; the differences between the correct program
and its faulty version point to where the fault is. In this pa-
per, we make a similar assumption: there are possibly mul-
tiple correct programs obtained by replacing one or more
assignments and/or predicates in the faulty program.

Definition 4 A substitution function θ for a program P is a
mapping from the components of P to assignment and pred-
icate expressions. We use θ(P) to denote the program ob-
tained from P by applying θ. To overload the notation, for a
component v of P , we also use θ(v) to represent the corre-
sponding component of the program θ(P).

Definition 5 Let P be a faulty program, and θ a substitution
function for P such that θ(P) is a correct version of P . We
call θ a repairing function for P . We call the set of compo-
nents of P whose expressions are modified by θ a diagnosis
for P , and we say components in ∆ are faulty wrt θ.

Definition 6 Let P be a faulty program, θ a repairing func-
tion for P and ∆ its associated diagnosis. We call ∆ an RHS
diagnosis or an RHS fault if for each assignment α of P , α
and θ(α) only differ on the right-hand-side (RHS). We call
∆ a predicate-cut diagnosis or a predicate-cut fault if it is an
RHS diagnosis and in the DDG of P , there is no path from
a node in ∆ to the output node.

For example, there are two diagnoses {i = 1} and {i <
n} for POWER, since we can either replace i = 1 with i = 0
or replace i < n with i ≤ n, and get a correct program.
From the DDG, it is easy to see that both are predicate-cut

329

diagnoses. In contrast, for the following program POWER′,
there is one diagnosis {p = p+2}, which is a non-predicate-
cut RHS diagnosis.

p = 1; i = 0;

while (i < n)

{ p = p + 2; i = i + 1; }

RHS diagnoses have the following property:

Proposition 2 Let P be a program, ∆ an RHS diagnosis
and θ its repairing function. Let v 6∈ ∆. Then there is a path
from ∆ to v iff there is a path from θ(∆) to θ(v).

The intuitive idea behind predicate-cut faults is that the
only way errors propagate is through control predicates. By
the above proposition, we have:

Proposition 3 Let P be a program, ∆ a non-predicate-cut
RHS diagnosis. Then ∆ ∩ BDS(vout) 6= ∅.

Thus any non-predicate-cut RHS fault is captured by
BDS(vout).

Critical Predicate Sets

Recall the definition of test cases from the section on back-
ground work. For example, POWER has a correct test case
〈n = 0, p = 1〉, and two failing test cases 〈n = 1, p = 2〉
and 〈n = 5, p = 32〉.

Definition 7 Let τ be a sequence of assignments. We call
τ a correct execution trace for a test case T if the execution
of τ produces the correct output for T , more formally, if
Do(InT ?; τ ; OutT ?, s, s′) is satisfiable wrt Dap.

Definition 8 Let P be a while program, and T a failing test
case for P . Let β be a correct execution path of P for T ,
that is, its trace is a correct trace for T . Let C be the set
of predicates e for which there exists a positive/negative test
t of e on β such that the polarity of t is different from the
truth value of e after the trace segment before t has been
executed for T . We call C a critical predicate set (CPS) wrt
T induced by β. If each loop is executed at most k times on
β, we call C a depth k CPS.

Intuitively, a CPS wrt T induced by β is the set of predi-
cates e such that we have to switch the outcome of some in-
stance of e in order for the execution of T to take the path β.
Of course, for a test case T , there might be multiple correct
execution paths for it; hence there might be multiple CPSes
wrt T , and we can define the concept of minimal CPS.

We now prove an important property of critical predicate
sets, which essentially says that any predicate-cut fault is
captured by the BDS of any predicate in some CPS. We need
the proposition below, which follows from Proposition 1.

Proposition 4 Let P be a program, and θ a substitution
function for P . Then EP(θ(P)) = θ(EP(P)).

Proposition 5 Let P be a while program, ∆ a predicate-cut
diagnosis for P , and T a failing test case for P . Then there
exists a CPS C such that for each e ∈ C, ∆ ∩ BDS(e) 6= ∅.

Proof: Let θ be the repairing function associated with ∆.
By Proposition 4, EP(θ(P)) = θ(EP(P)). Let β be an ex-
ecution path for P such that θ(β) is the execution path of

θ(P) for test case T . Let τ and τ ′ be the traces of β and
θ(β), respectively. We claim that they have the same effect
on the output variables. It suffices to prove that there is no
path from ∆ to the output node, and in the DDG of θ(P),
there is no path from θ(∆) to the output node either. This
holds by Proposition 2, since ∆ is a predicate-cut diagnosis.
Hence τ is a correct execution trace for T .

Now let C be the CPS induced by β. Let e ∈ C. If e ∈ ∆,
we have that ∆ ∩ BDS(e) 6= ∅. So assume that e 6∈ ∆. By
the definition of CPS, there exists a test t of e on β such that
the polarity of t is different from the truth value of e after
the trace segment before t, which we denote by γ, has been
executed for T . Since θ(β) is the execution path of θ(P) for
T , the polarity of t is the same as the truth value of e after
θ(γ) has been executed for T . So the truth value of e after γ
is executed for T is different from that after θ(γ) is executed
for T . Thus either there is a path from ∆ to e, or there is a
path from θ(∆) to e. Since ∆ is a predicate-cut diagnosis,
by Proposition 2, in either case, there is a path from ∆ to e.
Hence, ∆ ∩ BDS(e) 6= ∅.

The Bounded Debugging via Multiple

Predicate Switching Algorithm

In this section, we first consider debugging of conditional
programs, and then debugging of iterative programs. Fi-
nally, we discuss an extension of the algorithm.

Conditional Programs

Since there are no loops in conditional programs, critical
predicate sets are computable.

Proposition 6 Let P be a conditional program, and T a
failing test case for P . We can construct a Boolean formula
A such that its models correspond to the CPSes of P wrt T .
The size of A is linear in the size of P .

Proof: We obtain a program P ′ from P as follows: for each
predicate e in P , we introduce a Boolean variable swe, and
replace e with swe?¬e : e, which abbreviates the formula
¬swe ∧ e∨ swe ∧¬e. We then construct a Boolean formula
A encoding the executions of the program InT ?; P ′; OutT ?,
say using the encoding method of CBMC (see the section on
experimentation and evaluation). Then for any truth assign-
ment σ of swe’s, σ satisfies A iff the set {e | σ(swe) = 1}
is a CPS.

Thus we can use a SAT solver to compute all the minimal
critical predicate sets. We get the following debugging via
multiple predicate switching (MPS) algorithm and theorem.

MPS(P ,T)
Input: a conditional program P , and a failing test case T
Output: a collection of sets of components of P

1. Output BDS(vout);

2. Compute all the minimal critical predicate sets;

3. For each minimal CPS C, output BDS(C).

Theorem 7 Let P be a conditional program, and T a failing
test case for P . For any RHS diagnosis ∆ of P , there exists
a set S returned by MPS such that S ∩ ∆ 6= ∅.

330

Proof: If ∆ is not a predicate-cut diagnosis, by Proposition
3, ∆ ∩ BDS(vout) 6= ∅. Otherwise, by Proposition 5, there
is a CPS C s.t. for each e ∈ C, ∆ ∩ BDS(e) 6= ∅. Let C′ be
a minimal CPS contained in C. Then ∆∩ BDS(C′) 6= ∅.

Liu (2008) defined the concept of completeness for a de-
bugging algorithm: it is complete if any diagnosis is a subset
of some set returned by it. Thus essentially, the above theo-
rem means that MPS is quasi-complete for RHS diagnoses.
In fact, if we do not want a debugging algorithm to return
many false diagnoses, the goal of completeness as defined
by Liu (2008) is difficult to achieve.

Iterative Programs

For iterative programs, critical predicate sets should be un-
computable. To address this problem, like bounded model
checking, we consider depth k critical predicate sets. Re-
call that a depth k CPS is one induced by an execution path
where each loop is executed at most k times.

Definition 9 Let P be an iterative program, and let k ∈ N.
The unwinding of P to depth k, denoted P k, is obtained
from P as follows: replace each δ∗ with ǫ|δ|δ2| . . . |δk.

Proposition 8 Let P be an iterative program, T a failing
test case for P , and k ∈ N. We can construct a Boolean
formula A such that its models correspond to the depth k
CPSes of P wrt T . The size of A is linear in the size of P k.

Proof: We obtain a program P ′ from P k as follows: for
each predicate e in P , introduce a Boolean variable swe; for
each instance ei of e in P k, introduce a Boolean variable
swei and replace ei with swei?¬e : e. We then construct
a Boolean formula B encoding the executions of the pro-
gram InT ?; P ′; OutT ?. Take A as the conjunction of B and
the constraints swe ≡

∨
swei, where the disjunction ranges

over all instances of e, and e ranges over all predicates.

Thus we obtain the following bounded debugging via multi-
ple predicate switching (BMPS) algorithm and theorem.

BMPSk(P , T), where k ∈ N

Input: an iterative program P , a failing test case T
Output: a collection of sets of components of P

1. Output BDS(vout);

2. Compute all the minimal depth k critical predicate sets;

3. For each minimal depth k CPS C, output BDS(C).

Theorem 9 Let P be an iterative program, and T a failing
test case for P . Then there exists a k such that for any RHS
diagnosis ∆ of P , there exists a set S returned by BMPSk

such that ∆ ∩ S 6= ∅.

Thus when the bound is sufficiently large, MBPS is quasi-
complete for RHS diagnoses.

An Extension of the Algorithm

Clearly, we can extend the BMPS algorithm to also altering
the outcome of assignment statements where the assigned
variable is of an enumeration type with a small range of pos-
sible values. We call a predicate or such an assignment a
small-range-component (SRC). We can generalize the con-
cept of critical predicate set to that of critical SRC set. Also,
we say that ∆ is a SRC-cut diagnosis if there is an SRC on
each path from a node in ∆ to the output node.

Experimentation and Evaluation

The key part of the BMPS algorithm is to compute depth k
critical predicate sets. We experimented with implement-
ing this part by using CBMC, a bounded model checker
for ANSI C programs (Clarke, Kroening, and Lerda 2004).
CBMC supports assume and assert statements which can
be used to give program specification. Given an ANSI C
program P and an unwinding depth k, CBMC produces a
Boolean formula that is satisfiable iff there is an execution
of P where each loop is executed at most k times and which
satisfies all assume statements and violates an assert state-
ment. The formula is then checked by using a SAT solver.
If the formula is satisfiable, a counter-example is extracted
from the output of the SAT solver.

Given a while program P , a failing test case T , and m ∈
N, we produce a program Π(P, T, m) as follows. Here m is
a bound on the size of critical predicate sets.

• Let e0, e1, . . . , en−1 be all the predicates in P . We de-
clare a Boolean array sw[n], and replace each ei with
sw[i]?nondet bool() : ei, where nondet bool() returns
a non-deterministic Boolean value.

• We set the values of the input variables according to T .

• We add assume(OutT); assume(Σisw[i] ≤ m);
assert(false) at the end of the program.

Then we call CBMC on Π(P, T, m) with bound k. When a
counter-example is generated, we get a depth k CPS of size
≤ m. With some additional manipulation, we can compute
all minimal depth k critical predicate sets of a bounded size.

For example, let P be POWER, and T be the test case
〈n = 5, p = 32〉. Then below is the program Π(P, T, 1):

void main() {

int n,p,i; _Bool sw;

n = 5; p = 1; i = 1;

while (sw?nondet_bool():i<n)

{ p = p*2; i = i+1; }

assume(p==32); assert(0); }

When we call CBMC with bound 6 on the above program,
we obtain i < n as a switched predicate. The running time
is less than 0.1 second. The backward data slice of the pred-
icate contains both true diagnoses {i = 1} and {i < n}.

We experimented with debugging a dozen of while pro-
grams written for C programming exercises, such as com-
puting the greatest common divisor or least common mul-
tiple of two numbers, computing the number of primes or
Armstrong numbers within a certain range, etc. The results
showed that BMPS can quickly and effectively locate the
faults. In each case, the running time is less than 1 second.
For example, the following is a program SORT for selection
sort, where there are two faults.

void sort(int a[], int N) {

int i,j,k,temp;

for (i=0; i<N; i++)

{ k = i;

for (j=i+1; j<N; j++)

if (a[j]>a[k]) k=j;

// (correct version: a[j]<a[k])

331

if (k<i) // (correct version: k!=i)

{ temp = a[i]; a[i] = a[k];

a[k] = temp; }}}

When we call CBMC on Π(Sort, T, 2) with bound 6, where
T is a test case of array of size 6, we get a CPS {a[j] >
a[k], k < i}, which is exactly the true diagnosis.

An evaluation benchmark suite for debugging approaches
is the Siemens Suite (Rothermel and Harrold 1999), which
consists of 7 base programs, and for each of them, a
number of faulty variations and a large number of test
cases. Each variation is obtained by manually seeding
the base program with faults, usually by modifying a sin-
gle line of code. The TCAS program of the suite is
used for aircraft conflict detection and resolution. It has
173 lines of code, no loops, and there are 41 faulty ver-
sions for it. The major part of the program consists of
3 functions: alt sep test, Non Crossing Biased Climb, and
Non Crossing Biased Descend. Among the 41 versions,
only two of them are not RHS faults: one is obtained from
the correct version by deletion of an else branch, the other
is obtained by modifying the declaration of an array vari-
able. In the two Non Crossing functions, all variables are
Boolean, thus all assignments can be treated as predicates.
In the alt sep test function, there are 4 predicates. By an
manual examination, we identified among the 39 RHS faulty
versions, only one is not predicate-cut: here the value for a
constant is modified, and this constant is used in deciding
the return value. We have run CBMC on many faulty ver-
sions of TCAS and their failing test cases, in each case, we
get a CPS of size 1 in less than 0.01 second.

Related Work
In this paper, we resort to a SAT solver for program de-
bugging. Two other approaches along this line are those of
(Groce 2004) and (Griesmayer, Staber, and Bloem 2006).
The first approach consists of the steps: call CBMC to get
a failing run, use a pseudo-Boolean solver to get a clos-
est correct run, and then compute the differences between
the two runs. Given a failing run, the second approach re-
ports program components that may be changed to avoid the
failure. It first constructs a modified program that allows a
given number of expressions (i.e., control predicates and the
right-hand-sides of assignments) to be changed arbitrarily
and contains the negated specification from the original pro-
gram. Then it calls CBMC to find a failing run for the new
program. To construct the new program, for each expression
ei, introduce a Boolean variable abi which represents that ei

is abnormal, and replace ei with abi?nondet() : ei. Unfor-
tunately, this approach suffers from two problems. First, it
allows modifying any expression, which results in extremely
large search space. Secondly, it would return many absurd
false diagnoses. For example, suppose that there is a loop,
the loop body contains an assignment to the output variable,
and there is no assignment to the output variable after the
loop. Then this assignment would be returned as a diagnosis.
A concrete example is the POWER program where the as-
signment p = p∗ 2 would be returned as a diagnosis. This is
because p = p∗2 is replaced with p = abi?nondet() : p∗2,
and in the last execution of the loop, we can always assign

to p the correct value. By only allowing predicate switching,
these two problems are avoided in our approach.

Conclusions

In this paper, based on Zhang et al.’s work on debugging
via predicate switching, we proposed the bounded debug-
ging via multiple predicate switching algorithm, which can
be implemented by resorting to a SAT solver. We formal-
ized the concepts of critical predicate sets and predicate-cut
diagnoses. We proved that for conditional programs, BMPS
is quasi-complete for RHS diagnoses; and for iterative pro-
grams, when the bound is sufficiently large, BMPS is also
quasi-complete for RHS diagnoses. We analyzed the TCAS
task of the Siemens Suite, and identified that 38 of the 41
faulty versions are predicate-cut faults. Initial experimenta-
tion with debugging small C programs showed that our ap-
proach is promising.

What distinguishes our work from existing ones is that it
comes with a theoretical analysis. Secondly, inheriting from
Zhang et al.’s approach, the search space for our approach
is much reduced compared to those approaches based on ar-
bitrary state changes. Thirdly, by only allowing predicate
switching, our approach can avoid false diagnoses suffered
by some existing ones.

For the future, we would like to extend the BMPS algo-
rithm to accommodate procedures. Moreover, we would like
to develop a full implementation of our algorithm and do a
thorough experimentation and evaluation with it. The re-
search methodology we used in this paper is to do theoreti-
cal abstraction of a practical debugging approach. We would
like to continue with this methodology and perform theoret-
ical analysis of other practical debugging approaches.

References
Clarke, E. M.; Kroening, D.; and Lerda, F. 2004. A tool for check-
ing ANSI-C programs. In Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS).

Griesmayer, A.; Staber, S.; and Bloem, R. 2006. Automated fault
localization for C programs. In Proc. First Workshop on Debugging
and Verification.

Groce, A. 2004. Error explanation with distance metrics. In Proc.
10th Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems, 108–122.

Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and Scherl,
R. B. 1997. Golog: A logic programming language for dynamic
domains. J. Logic Programming 31(1-3).

Liu, Y. 2008. A formalization of program debugging in the situa-
tion calculus. In Proc. AAAI-08.

Reiter, R. 2001. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press.

Renieris, M., and Reiss, S. P. 2003. Fault localization with near-
est neighbor queries. In Proc. 18th IEEE Int. Conf. on Automated
Software Engineering, 30–39.

Rothermel, G., and Harrold, M. J. 1999. Empirical studies of
a safe regression test selection technique. Software Engineering
24(6):401–419.

Zhang, X.; Gupta, N.; and Gupta, R. 2006. Locating faults through
automated predicate switching. In Proc. 28th Int. Conf. on Software
Engineering, 272–281.

332

