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Abstract

Revising knowledge bases (KBs) in description logics (DLs)
in a syntax-independent manner is an important, nontrivial
problem for the ontology management and DL communities.
Several attempts have been made to adapt classical model-
based belief revision and update techniques to DLs, but they
are restricted in several ways. In particular, they do not pro-
vide operators or algorithms for general DL KB revision. The
key difficulty is that, unlike propositional logic, a DL KB may
have infinitely many models with complex (and possibly in-
finite) structures, making it difficult to define and compute
revisions in terms of models. In this paper, we study general
KBs in a specific DL in the DL-Lite family. We introduce
the concept of features for such KBs, develop an alternative
semantic characterization of KBs using features (instead of
models), define two specific revision operators for KBs, and
present the first algorithm for computing best approximations
for syntax-independent revisions of KBs.

Introduction
Description logic (DL) has proved to be the most success-
ful formalism for representing and reasoning about static
knowledge in ontology applications. Such applications re-
quire a knowledge base (KB) consisting of a TBox (of termi-
nological axioms) and an ABox (of data membership asser-
tions). For example, the W3C ontology language framework
OWL designed for Semantic Web applications is based on a
particular set of description logics.

However, ontologies in Semantic Web applications are
not static, but evolve over time. An important and nontrivial
problem for such applications is thus how to effectively and
efficiently revise/update KBs in a natural way. A typical sce-
nario is the need for incremental ontology design to satisfy
a changing environment.

Recently, there has been significant interest in revis-
ing/updating knowledge bases in description logics. In par-
ticular, several model-based revision/update approaches to
DLs have been proposed (Liu et al. 2006; Giacomo et al.
2007; Qi et al. 2009). However, these revision/update oper-
ators for DLs are unable to deal with general KBs. Specifi-
cally, the first two approaches deal with only ABox update,
while the third approach only considers revision of TBoxes.
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In contrast to previous approaches, we focus on a specific
DL, but address the problem of defining and computing re-
visions for general KBs, consisting of TBoxes and ABoxes.
DL-Lite (Calvanese et al. 2007; Artale et al. 2007), which
forms the basis of OWL 2 QL (one of the three profiles of
OWL 2), is a family of lightweight DLs with efficient KB
reasoning and query answering algorithms. We choose DL-
LiteNbool (Artale et al. 2007), one of the most expressive
members of the DL-Lite family, and define revision oper-
ators for DL-LiteNbool KBs in a way analogous to the model-
based approaches in propositional logic. Although our ap-
proach is based on DL-LiteNbool , we note that the definitions
and algorithms can easily be adapted to other DL-Lite lan-
guages. We also note that update traditionally addresses
changes of the actual state of the world (e.g., that resulted
from some action), whereas revision addresses the incorpo-
ration of new knowledge about the world. In this paper, we
focus on revision.

The key issues in adapting classical model-based ap-
proaches to DLs are how to define the distance between
models and how to construct the resulting KB (directly or
indirectly) from selected models. However, such adaption
is difficult for the following reasons. (1) DL interpretations
have complex (possibly infinite) structures, which require a
complex definition of the distance between two interpreta-
tions. (2) Unlike a propositional theory, a DL KB may have
infinitely many models, making it impossible to compute the
result effectively via models. (3) Given a collection M of in-
terpretations, there may not exist a single KB K such that M
is exactly the set of models forK. These are also the reasons
for the restrictions in previous approaches to DL revision.

In this paper, we first define features for DL-LiteNbool ,
which precisely capture the most important semantic prop-
erties of DL-LiteNbool KBs, and (unlike models) are always
finite. We adapt the techniques of model-based revision in
propositional logic to the revision of DL-LiteNbool KBs, and
define two specific revision operators based on two defini-
tions of distance between features. We show that both revi-
sion operators possess desirable logical properties, and one
of them preserves more knowledge from the original KB and
thus yields a better result. As a set of features may not cor-
respond exactly to any DL-LiteNbool KB, we also present syn-
tactic algorithms for approximating the result of revision as
a single DL-LiteNbool KB.
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The DL-Lite Family
A signature is a finite set S = SC ∪SR∪SI ∪SN where SC
is the set of atomic concepts, SR is the set of atomic roles,
SI is the set of individual names and SN is the set of natural
numbers in S. We assume 1 is always in SN . The special
symbol > is neither an atomic concept nor an atomic role.
Formally, given a signature S, a DL-LiteNbool language has
the following syntax:
R← P | P−
B ← > | A | > n R

C ← B | ¬C | C1 u C2

where n ∈ SN , A ∈ SC and P ∈ SR. B is called a basic
concept and C is called a general concept. We write ⊥ for
¬>, ∃R for ≥ 1 R, and C1 t C2 for ¬(¬C1 u ¬C2).

A TBox T is a finite set of concept inclusions of the form
C1 v C2, where C1 and C2 are general concepts. An
ABox A is a finite set of membership assertions of the form
C(a) or R(a, b), where a, b are individual names. We call
C(a) a concept assertion and R(a, b) a role assertion. A
knowledge base (KB) is a pair K = 〈T ,A〉.

The semantics of a DL-Lite KB is given by interpreta-
tions. An interpretation I is a pair (∆I , ·I), where ∆I is
a (possibly infinite) non-empty set called the domain and ·I
is an interpretation function that associates each atomic con-
cept A with a subset AI of ∆I , each atomic role P with a
binary relation P I ⊆ ∆I ×∆I , and each individual name a
with an element aI of ∆I , such that aI 6= bI for each pair
a, b ∈ SI (unique name assumption).

The interpretation function ·I can be extended to general
concept descriptions:

(P−)I = { (aI , bI) | (bI , aI) ∈ P I },
(> n R)I = { aI | |{bI | (aI , bI) ∈ RI}| ≥ n },
(¬C)I = ∆I \ CI
(C1 u C2)I = CI1 ∩ CI2 .
An interpretation I satisfies inclusion C1 v C2 if CI1 ⊆

CI2 ; I satisfies assertion C(a) if aI ∈ CI ; I satisfies as-
sertion R(a, b) if (aI , bI) ∈ RI . I satisfies TBox T (or
ABox A) if I satisfies each inclusion in T (resp., each as-
sertion in A). I is a model of a KB 〈T ,A〉, if I satisfies
both T and A. We use mod(K) to denote the set of models
of KB K and sig(K) to denote the signature of K.

A KB K is consistent if it has at least one model. A KB
K is coherent if, for each concept name A in K, there exists
a model I of K such that AI 6= ∅. Two KBs K1,K2 are
equivalent, written K1 ≡ K2, if they have the same models.
A KB K entails an inclusion or assertion α, written K |= α,
if all models of K satisfy α.

Given a set M of interpretations and a signature S, in
most cases there does not exist a KB K over S such that
the set of models of K is exactly M. To address this inex-
pressibility problem, a notion of best approximation is in-
troduced in (Giacomo et al. 2007). A KB K is said to be
a maximal approximation of M over S if (1) sig(K) ⊆ S ,
(2) M ⊆ mod(K), and (3) there exists no KB K′ over S
such that M ⊆ mod(K′) ⊂ mod(K).

A disjunctive knowledge base (DKB) (Meyer et al. 2005)
is a set K of KBs, and mod(K) =

⋃
K∈K mod(K).

Features in DL-LiteNbool
In this section, we introduce the concept of a feature in DL-
LiteNbool , which provides an alternative semantic characteri-
zation for DL-LiteNbool . An advantage of semantic features
over models is that the number of all features for a DL-
LiteNbool knowledge base is finite and each feature is finite.
These finiteness properties provide a means to adapt pre-
viously used revision approaches for classical propositional
logic to DL-LiteNbool .

Features for DL-LiteNbool are based on the notion of types
defined in (Kontchakov et al. 2008).

In the following sections, if not specified, we assume S is
a (finite but large enough) fixed signature, i.e., sig(E) ⊆ S
for any general concept, inclusion, assertion, or KB E used.

An S-type τ is a set of basic concepts over S, s.t. > ∈ τ ,
and for any m,n ∈ SN with m < n, R ∈ SR ∪ {P− | P ∈
SR }, > n R ∈ τ implies > m R ∈ τ . When the signature
S is clear from context, we will simply call an S-type a type.
As > ∈ τ for any type τ , we omit it in examples.

For example, let SC = {A,B}, SR = {P}, and SN =
{1, 3}. Then τ = {A, ∃P, > 3 P, ∃P− } is a type.

Intuitively, if each concept C is viewed as a propositional
atom, types correspond to propositional interpretations ofC.
But a type is different from a propositional interpretation
in that an element in a type may be of complex form, e.g.,
> n R or ∃P . We say type τ satisfies basic concept B if
B ∈ τ , τ satisfies ¬C if τ does not satisfy C, and τ satisfies
C1 u C2 if τ satisfies both C1 and C2.

We also say type τ satisfies concept inclusion C1 v C2 if
τ satisfies concept ¬C1 tC2, and type τ satisfies TBox T if
it satisfies every inclusion in T .

Types are sufficient to capture the semantics of TBoxes,
but as they do not refer to individuals, they are insufficient
to capture the semantics of ABoxes. We need to extend the
notion of types and thus define Herbrand sets for ABoxes.

Definition 1 An S-Herbrand set (or Herbrand set when S is
clear from the context) H is a finite set of assertions of the
form B(a) or P (a, b), where a, b ∈ SI , P ∈ SR and B is a
basic concept over S, satisfying the following conditions

1. For each a ∈ SI , >(a) ∈ H, and > n R(a) ∈ H implies
> m R(a) ∈ H for m,n ∈ SN with m < n.

2. For each P ∈ SR, P (a, bi) ∈ H (i = 1, . . . , n) implies
> m P (a) ∈ H for any m ∈ SN such that m ≤ n.

3. For each P ∈ SR, P (bi, a) ∈ H (i = 1, . . . , n) implies
> m P−(a) ∈ H for any m ∈ SN such that m ≤ n.

By condition 1 in Definition 1, given all the concept as-
sertions of a in H, B1(a), . . . , Bk(a) (k ≥ 1), then τ =
{B1, . . . , Bk} is a type. We call τ the type of a in H. Con-
ditions 2 and 3 preserve the consistency of a Herbrand set.
Since >(a) is always in H for any H and a ∈ SI , for sim-
plicity, we will omit it in examples.

We say Herbrand setH satisfies concept assertion C(a) if
the type of a in H satisfies concept C. H satisfies role as-
sertions P (a, b) and P−(b, a) if P (a, b) is in H. H satisfies
ABox A ifH satisfies every assertion in A.

To provide an alternative characterization for reasoning in
a KB, we could use pairs 〈τ,H〉, where τ is a type and H is
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a Herbrand set, to replace standard interpretations, such that
〈τ,H〉 satisfies KB 〈T ,A〉 if τ satisfies T andH satisfiesA.
The resulting satisfaction relation should guarantee thatK is
consistent iff there is a pair 〈τ,H〉 satisfying K. However,
the following example shows that this is not the case.

Example 1 Let K = 〈{ ∃P− v ⊥}, { ∃P (a) }〉. Obvi-
ously, K is inconsistent and thus has no model. However, if
S = {P, a, 1}, then 〈{∃P}, {∃ P (a)}〉 satisfies K.

The problem with using pairs 〈τ,H〉 is that they are not
sufficient to capture the semantic connection between the
TBox and the ABox of a KB. Our investigation shows that it
is necessary to use a set of types (instead of a single type) in
such a pair, as an alternative semantic characterization for a
DL-LiteNbool KB. Using sets of types as semantic characteri-
zations of DL-Lite TBoxes is also suggested in (Kontchakov
et al. 2008).

Thus, we introduce the definition of a feature as follows.

Definition 2 (Features) Given a signature S, an S-feature
(or simply feature when S is clear) is a pair F = 〈Ξ,H〉,
where Ξ is a non-empty set of S-types andH an S-Herbrand
set, satisfying the following conditions:

1. ∃P ∈
⋃

Ξ iff ∃P− ∈
⋃

Ξ, for each P ∈ SR.
2. τ ∈ Ξ, for each a ∈ SI and τ the type of a inH.

The intuition behind the two conditions in Definition 2
can be easily seen after we explain how features can be used
as an alternative for DL-Lite interpretations later.

We define the satisfaction relation of an inclusion or as-
sertion w.r.t. a feature F = 〈Ξ,H〉 as follows:
- F satisfies C1 v C2 if τ satisfies ¬C1 t C2 for all τ ∈ Ξ.
- F satisfies assertion C(a) or R(a, b) ifH satisfies it.

We can see that the first condition in Definition 2 guar-
antees that ∃P is unsatisfiable (i.e., ∃P v ⊥ is satis-
fied) w.r.t. the TBox if and only if ∃P− is also unsatisfi-
able w.r.t. the TBox. The second condition in Definition 2
requires that if F satisfies assertion C(a), then C must be
satisfiable w.r.t. the TBox.

We call F a model feature of KB K if F satisfies every
inclusion and assertion in K. We use MF (K) to denote the
set of all model features of K.

From the definition of features, as we only consider finite
signatures, a model feature is always finite in structure, and
the number of model features of a KB is also finite.

Example 2 Consider the KB K = 〈T ,A〉, where T =
{A v ∃P, B v ∃P, ∃P− v B, A u B v ⊥, ≥ 2 P− v
⊥} and A = {A(a), P (a, b) }. It is shown in (Calvanese
et al. 2006) that K is a KB having no finite model. In fact,
an infinite model I of K can be defined as follows:

∆I = {da, db, d1, d2, d3 . . .}, aI = da and bI =
db; the concept A is interpreted as a singleton {da} and
B as {db, d1, d2, d3 . . .}; and role P is interpreted as
{(da, db), (db, d1), (d1, d2), . . . , (di, di+1), . . .}.

Take S = sig(K) = {A,B, P, 1, 2, a, b}. The
(finite) model feature of K that corresponds to I is
F = 〈Ξ,H〉, where Ξ = {τ1, τ2} with τ1 =
{A,∃P} and τ2 = {B, ∃P,∃P−}, and H =
{A(a), ∃P (a), B(b), ∃P (b), ∃P−(b), P (a, b) }.

Given an inclusion or assertion α, define K |=f α if
all features in MF (K) satisfy α. Given two KBs K1,K2

and S = sig(K1 ∪ K2), define K1 |=f K2 if MF (K1) ⊆
MF (K2), and K1 ≡f K2 if MF (K1) = MF (K2).

The following two results show that model features do
capture the semantic properties of DL-Lite KBs.

Proposition 1 Let K be a DL-LiteNbool KB and S = sig(K).
Then we have
- K is consistent iff K has a model feature.
- K |= (C1 v C2) iff K |=f (C1 v C2) for any C1 v C2

over S .
- K |= C(a) iff K |=f C(a) for any C(a) over S.
- K |= R(a, b) iff K |=f R(a, b) for any R(a, b) over S.

Theorem 1 Let K1,K2 be two DL-LiteNbool KBs and S =
sig(K1 ∪ K2). Then K1 |= K2 iff K1 |=f K2, and K1 ≡ K2

iff K1 ≡f K2.

As with interpretations, given a set F of S-features, there
may be no KB K such that F = MF (K). Hence, we define
the maximal approximation of a set F of S-features to be the
KB K such that: (1) sig(K) ⊆ S , (2) F ⊆ MF (K), and
(3) there exists no KB K′ over S such that F ⊆ MF (K′) ⊂
MF (K). The maximal approximation of any given set F
always exists in DL-LiteNbool , and is unique up to KB equiv-
alence.

Feature Distance and Revision
In the following two sections, we define two notions of dis-
tance between features, in the spirit of Hamming distance for
propositional models. The first distance is defined as the set
of concept and role names interpreted differently in the two
features. The second distance is based on a generalized no-
tion of symmetric difference. Based on these two distances,
we define two specific revision operators for DL-Lite KBs
in an analogous way to Satoh’s (Satoh 1988), and show that
they have desirable properties.

Given a set Σ of concept and role names and S-types
τ1, τ2, denote τ1 ∼Σ τ2 if for all basic concepts B over
S − Σ, B ∈ τ1 iff B ∈ τ2.

Let F1 = 〈Ξ1,H1〉 and F2 = 〈Ξ2,H2〉 be two S-
features, and Σ ⊆ SC ∪ SR. Define F1 ↔Σ F2 if the
following conditions are satisfied:
1. For each τ1 ∈ Ξ1, there exists τ2 ∈ Ξ2 s.t. τ1 ∼Σ τ2; and
for each τ2 ∈ Ξ2, there exists τ1 ∈ Ξ1 s.t. τ1 ∼Σ τ2.
2. For each a ∈ SI , τ1 ∼Σ τ2, where τi (i = 1, 2) is the
type of a inHi; and P (a, b) ∈ H1 iff P (a, b) ∈ H2 for each
P ∈ SR − Σ and a, b ∈ SI .

Intuitively, the minimal sets Σ such that F1 ↔Σ F2 are
the sets of concept and role names on whose interpretations
F1,F2 disagree.

Given two KBs K1,K2 and S = sig(K1 ∪ K2), define
the distance between K1 and K2 as the set of all minimal
distances between model features of K1 and K2:
df (K1,K2) = min⊆({ Σ ⊆ SC ∪ SR | ∃F1 ∈

MF (K1), ∃F2 ∈ MF (K2) s.t. F1 ↔Σ F2 }).
To define a revision operator K ◦ K′ in analogy to classi-

cal model-based revision, we need to specify the subset of
MF (K′) that is closest to MF (K) (w.r.t. feature distance).
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Definition 3 (S-Revision) Let K,K′ be two DL-LiteNbool
KBs and S = sig(K ∪ K′). Define the s-revision of K by
K′, denoted K ◦s K′, such that MF (K ◦s K′) = MF (K′) if
MF (K) = ∅, and otherwise,

MF (K ◦s K′) = { F ′ ∈ MF (K′) | ∃F ∈ MF (K)
s.t. F ↔Σ F ′ and Σ ∈ df (K,K′) }.

Example 3 Consider the following KB,
K = 〈 { PhD v Student u Postgrad ,

Student v ¬∃teaches, ∃teaches− v Course,
Student u Course v ⊥}, {PhD(Tom) } 〉.

The TBox ofK specifies that PhD students are postgraduate
students, and students are not allowed to teach any courses,
while the ABox states that Tom is a PhD student. Suppose
PhD students are actually allowed to teach, and we want to
revise K with K′ = 〈 {PhD v ∃teaches }, ∅ 〉.
F ′ = 〈 {τ1}, {Student(Tom),Postgrad(Tom)} 〉,

where τ1 = {Student ,Postgrad} is a model fea-
ture of K′. From the model features of K, take F =
〈 {τ1, τ2}, {PhD(Tom),Student(Tom),Postgrad(Tom)} 〉
where τ2 = {PhD ,Student ,Postgrad}. Then
F ↔{PhD} F ′ and {PhD} ∈ df (K,K′). Thus, F ′
is a model feature of K ◦s K′.

Finally, K ◦s K′ is the DKB {K1,K2}, where

K1 = 〈 { PhD v ∃teaches, Student v ¬∃teaches,
∃teaches− v Course, Student u Course v ⊥},
{ Student(Tom), Postgrad(Tom) } 〉, and

K2 = 〈 { PhD v ∃teaches, PhD v Student u Postgrad ,
Student u Course v ⊥}, {PhD(Tom) } 〉.

This definition improves on the more coarse-grained,
concept-based definition of the distance between models in
(Qi et al. 2009), which cannot reflect the difference between
the two models on their interpretations on roles.

We note that corresponding feature-based revision opera-
tors can be defined for all three revision operators in (Qi et
al. 2009), and can be used to resolve incoherence, as they
are there, but, as resolving incoherence is not the focus of
this paper, we omit the details here.

An important observation is thatK◦sK′ can be computed
by query-based forgetting. In particular, if forget(K,Σ) de-
notes a result of QuL-forgetting about Σ in K (Wang et al.
2010), then we have the following connection between revi-
sion and forgetting.
Theorem 2 Let K,K′ be two consistent DL-LiteNbool KBs
and S = sig(K ∪ K′). Then

K ◦s K′ = { forget(K,Σ) ∪ K′ | Σ ∈ df (K,K′) },
where forget(K,Σ) is a result of QuL-forgetting about Σ
in K.

As shown in (Wang et al. 2010), the result of QuL-
forgetting is always expressible in DL-Liteubool , an extension
of DL-LiteNbool (Kontchakov et al. 2008). Thus we have
shown that K ◦s K′ is always expressible as a DKB in DL-
Liteubool . However,K◦sK′ may not be expressible as a single
KB in DL-Liteubool , e.g., the revision defined in Example 3
can not be so expressed.

Revision under Approximation
For many applications, it is desirable to have the revision as
a single DL-LiteNbool KB rather than a DKB, e.g., in the case
of iterative revision. That is, the maximal approximation of
the revision is desired. However, in most cases,K◦sK′ does
not preserve enough knowledge of the original KB K.
Example 4 In Example 3,K◦sK′ is a DKB, whose maximal
approximation is the following KB,
〈 {PhD v ∃teaches, Student u Course v ⊥},
{ (Student(Tom), Postgrad(Tom),(
PhD t (¬∃teaches u ¬∃teaches−)

)
(Tom) } 〉.

Note that in the above example, knowledge in K about
concept PhD and about role teaches are totally lost after
revision and approximation. In particular, PhD v Postgrad
and ∃teaches− v Course are eliminated, though they have
nothing to do with the inconsistency.

We argue that the reason why the revision operator ◦s
performs poorly under approximation is that the distance
defined on concept and role names is too simple to reflect
differences between model features, as can be seen from the
following example. Let F = 〈 {τ1, τ3}, {A(a), B(a)} 〉,
F ′ = 〈 {τ1, τ2, τ3}, {A(a), A(b)} 〉, and F ′′ =
〈 {τ2}, {A(a), A(b), A(c), A(d)} 〉, where τ1 = {A,B},
τ2 = {A}, and τ3 = ∅. Obviously, F is closer to F ′ than
to F ′′. However, such difference cannot be measured using
only concept names, as F ↔{A,B} F ′ and F ↔{A,B} F ′′.

From the above discussion, we can see that it is insuffi-
cient to measure the distance between two features or mod-
els using only a set of concepts (and roles). To obtain a better
definition of KB revision, we need to introduce a more com-
plex notion of feature distance, by extending the definition
of symmetric difference4.

Recall that S14S2 = (S1 − S2) ∪ (S2 − S1) for any two
sets S1 and S2. Given two S-features F1 = 〈Ξ1,H1〉 and
F2 = 〈Ξ2,H2〉, we define the distance between F1 and F2,
denoted F14F2, as a pair 〈Ξ14Ξ2, H14H2 〉. Note that
we do not requireH14H2 to be a Herbrand set.

To compare two distances, given Fi = 〈Ξi,Hi〉 for i =
1, 2, 3, 4, we could define F14F2 ⊆f F34F4 if Ξ14Ξ2 ⊆
Ξ34Ξ4 and H14H2 ⊆ H34H4; and F14F2 ⊂f F34F4

if F14F2 ⊆ F34F4 and F34F4 6⊆ F14F2. However,
our research shows that such a measure is still too weak to
preserve enough knowledge of the original KB, as many fea-
tures are still incomparable under such measure. Instead,
we define a preference for Herbrand sets over type sets:
F14F2 ⊂f F34F4 iff
-H14H2 ⊂ H34H4, or
-H14H2 = H34H4 and Ξ14Ξ2 ⊂ Ξ34Ξ4.

The intuition behind such a preference for Herbrand sets
over type sets is that when both TBox inclusions and ABox
assertions contribute to the inconsistency, assertions in the
original ABox have priority to be preserved whereas TBox
inclusions are candidates for revision. The reason for this
is two-fold: First, due to the nature of revision and update,
revision is more suitable for DL TBox change whereas up-
date is more suitable for ABox change. This claim is justi-
fied in the literature (Liu et al. 2006; Giacomo et al. 2007;
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Qi et al. 2009). Second, if inconsistency is caused by inco-
herence of the combination of the TBoxes (as in Example 3),
modifying only ABox assertions can help restore consis-
tency but will leave the resulting TBox incoherent. Giving
TBox inclusions priority for change has the merit that incon-
sistency and incoherence can be resolved at the same time,
so that no extra mechanism is needed to restore coherence.
We will demonstrate this point with an example. Before that,
we first introduce our revision operator in terms of the new
distance measure.

Definition 4 (F-Revision) Let K,K′ be two DL-LiteNbool
KBs and S = sig(K ∪ K′). Define the f-revision of K by
K′, denoted K ◦f K′, such that MF (K ◦f K′) = MF (K′) if
MF (K) = ∅, and otherwise
MF (K ◦f K′) = { F ′ ∈ MF (K′) | ∃F ∈ MF (K) s.t.
∀Fi ∈ MF (K), ∀F ′j ∈ MF (K′), (Fi4F ′j) 6⊂f (F4F ′) }.
The next example shows that ◦f performs better ◦s under

maximal approximation.
Example 5 Consider the KBs K,K′ in Example 3. The
maximal approximation of K ◦f K′ is
〈 { PhD v Student u Postgrad , PhD v ∃teaches,

Student u ∃teaches v PhD , ∃teaches− v Course,
Student u Course v ⊥},
{ Student(Tom), Postgrad(Tom) } 〉.

Note that Student v ¬∃teaches is revised (and weakened)
to Studentu∃teaches v PhD . In this way, consistency and
coherence are both restored. Also, more of the knowledge
in K is preserved than in Example 4.

The AGM postulates are widely used to value the ratio-
nality of belief revision operators, which we adapt to DLs as
follows.
(R1) K ◦ K′ |=f K′;
(R2) if K ∪ K′ is consistent, then K ◦ K′ = K ∪ K′;
(R3) if K′ is consistent, then MF (K ◦ K′) 6= ∅;
(R4) if K1 ≡ K2 and K′1 ≡ K′2, then K1 ◦ K′1 ≡f K2 ◦ K′2;
(R5) (K ◦ K′) ∪ K′′ |=f K ◦ (K′ ∪ K′′);
(R6) if (K ◦K′)∪K′′ is consistent, then K ◦ (K′ ∪K′′) |=f

(K ◦ K′) ∪ K′′.
As with Satoh’s (Satoh 1988) revision operator, both ◦s

and ◦f satisfy the first five postulates.

Proposition 2 The revision operators defined in Defini-
tions 3 and 4 both satisfy postulates (R1) – (R5).

If using its maximal approximation to replace the revision,
postulates (R1) – (R4) are always satisfied.

However, (R5) and (R6) together require a total order
over feature distances, which we argue is too strong for DL
revision. For this reason, like Satoh, we do not require our
revision operators to satisfy (R6).

Algorithm for Computing Revision
In this section, we introduce an algorithm for computing the
maximal approximation of revision syntactically. As the two
revision operators are based on model features of KBs, we
first introduce a method for computing all the model features

of a KB, and then show how the maximal approximation of
revision can be constructed via model features.

We first introduce a method that computes MF (K) from
K through syntactic transformations (ref. Figure 1).

Algorithm 1
Input: A DL-LiteNbool KB K = 〈T ,A〉 and a signature S.
Output: MF (K).
Method: Initially, let F = ∅.
Step 1. Compute the set ΞT of all S-types satisfying T .
Let P = { P (a, b) | P (a, b) or P−(b, a) ∈ A }.
Step 2. Add into F all pairs 〈Ξ,H〉 such that:
1. Ξ ⊆ ΞT , and ∃P ∈

⋃
Ξ iff ∃P− ∈

⋃
Ξ for all P ∈ SR.

2. P ⊆ H, and for each a ∈ SI , the type τ of a inH satisfies
the following conditions:

(1) τ ∈ Ξ, and τ satisfies C for every C(a) ∈ A.
(2) > m P ∈ τ , for each P ∈ SR s.t. P (a, bi) ∈ H

with i = 1, . . . , n, and m ∈ SN with m ≤ n.
(3) > m P− ∈ τ , for each P ∈ SR s.t. P (bi, a) ∈ H

with i = 1, . . . , n, and m ∈ SN with m ≤ n.
Step 3. Return F as MF (K).

Figure 1: Compute model features.

Note that each pair 〈Ξ,H〉 added to F is a feature, and
satisfies both T and A. Algorithm 1 returns ∅ if and only if
K is inconsistent.

Proposition 3 Given a DL-LiteNbool KB K and a signature
S, Algorithm 1 always returns MF (K).

Given that MF (K) and MF (K′) can be computed by Al-
gorithm 1, and they are finite, it is straightforward to obtain
MF (K◦sK′) and MF (K◦f K′) through Definitions 3 and 4.
Now we show that the maximal approximation ofK◦K′ can
be constructed from MF (K ◦ K′). Indeed, the maximal ap-
proximation of F can be constructed for any set F of model
features in the same way. Given a S-type τ , we denote the
concept Cτ =

d
B∈τ B u

d
B 6∈τ ¬B, where B is a basic

concept over S. In what follows, we present an algorithm
for DL-LiteNbool KB revision (ref. Figure 2).

Algorithm 2
Input: Two DL-LiteNbool KBs K and K′, S = sig(K ∪ K′).
Output: K ◦f K′.
Method: Initially, let T = ∅ and A = ∅.
Step 1. Use Algorithm 1 to compute MF (K) and MF (K′).
Step 2. Obtain MF (K ◦f K′) from MF (K) and MF (K′) by
Definition 4.
Step 3. For each S-type τ not occurring in any type set in
MF (K ◦f K′), add inclusion Cτ v ⊥ into T .
Step 4. For each individual a ∈ SI , add concept asser-
tion (

⊔
τ∈Ξa

Cτ )(a) into A, where Ξa = { τ | ∃〈Ξ,H〉 ∈
MF (K ◦f K′) s.t. τ is the type of a inH }.
Step 5. For each role assertion P (a, b) occurring in every
Herbrand set in MF (K ◦f K′), add P (a, b) into A.
Step 6. Return 〈T ,A〉 as K ◦f K′.

Figure 2: Compute f-revision.
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Note that Algorithm 2 does not rely on the definition of a
specific revision operator, as long as it is defined in terms of
feature distance. Hence, Algorithm 2 can be used to com-
pute K ◦s K′ if Definition 3 is adopted in Step 2. Such an
algorithm based on features gives us the flexibility to com-
pute other possible revisions proposed according different
application needs.

Theorem 3 Given two consistent DL-LiteNbool KBs K and
K′, Algorithm 2 always returns the maximal approximation
of K ◦f K′.

In the worst case, the maximal approximation of K ◦f K′
is exponential in size w.r.t. K andK′. We argue that there ex-
ists no tractable algorithm for DL revision, as propositional
logic revision has been shown to have high complexity, and
DL revision is even more complex.

However, in most applications, only a small part of the
whole knowledge base needs to be revised. As a result, the
algorithms can be optimized. In particular, only the subset
of K that is relevant to K′ needs to be revised, whereas the
other irrelevant inclusions and assertions in K can be added
directly into the result of revision.

A notion of (signature) relevance is formally defined in
propositional logic via language splitting (Parikh 1996), and
is adapted to DLs for decomposing TBoxes (Konev et al.
2010). In what follows, we generalize this notion and show
its application in KB revision. Given a KB K, we say that a
set of signatures S = {S1 . . . ,Sn} (n ≥ 1) is a splitting of
K if Si∩Sj ⊆ SN for 1 ≤ i < j ≤ n, where SN consists of
all the numbers in S, and there exist KBs K1 . . . ,Kn such
that sig(Ki) ⊆ Si for 1 ≤ i ≤ n and K ≡

⋃
1≤i≤nKi.

The following result states that our revision operators en-
joy a decomposition property regarding signature relevance.
We use ◦ to denote either one of the revision operators de-
fined in Definitions 3 and 4.

Proposition 4 Let {Sr,Sir} be a splitting of K, with K ≡
Kr ∪ Kir, sig(Kr) ⊆ Sr and sig(Kir) ⊆ Sir. Suppose
sig(K′) ∩ Sir ⊆ SN with SN consisting of all the numbers
in {Sr,Sir}, then K ◦ K′ = (Kr ◦ K′) ∪ Kir.

In ontology revision applications, the new knowledge K′,
which represents changes to the knowledge of the world, is
often small both in size and in signature, compared to the
large existing KB K. The subset Kr of K, that is relevant
to K′, is usually also small. Thus, it is reasonable to expect
efficient revision computation in realistic applications.

Conclusion
We have developed a formal framework for revising gen-
eral KBs (consisting of both TBoxes and ABoxes) in DL-
LiteNbool , based on the notion of features. We have de-
fined two specific revision operators, which are natural adap-
tion of model-based revision approaches from propositional
logic. We have shown that the second operator performs bet-
ter w.r.t. maximal approximation. We have also developed
algorithms for computing maximal approximations of KB
revisions in DL-LiteNbool . We note that other propositional
revision operators, e. g., Dalal’s revision, belief contraction
and update can also be easily defined in our framework.

In contrast to previous revision/update approaches in DLs,
we consider revisions of general KBs, and a KB can be
revised by another KB with both (nonempty) ABox and
(nonempty) TBox. Therefore, the situation in our case is
much more complex than previous works. As a result, some
tasks such as developing an algorithm for revision become
more difficult.

There are several interesting issues remaining for future
work. One is to extend our approach to KB revision in other
DLs. However, for more expressive DLs, the structure of
features will need to be more complex. It would be useful to
develop more efficient algorithms for each specific revision
operator. A final ongoing problem is to consider applica-
tions of our revision operator for ontology evolution in the
Semantic Web.
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