
Two-Player Game Structures for Generalized Planning and Agent Composition

Giuseppe De Giacomo, Paolo Felli, Fabio Patrizi
Dipartimento di Informatica e Sistemistica

SAPIENZA Università di Roma
Roma, ITALY

lastname@dis.uniroma1.it

Sebastian Sardina
School of Computer Science and IT

RMIT University
Melbourne, AUSTRALIA

sebastian.sardina@rmit.edu.au

Abstract

In this paper, we review a series of agent behavior syn-
thesis problems under full observability and nondeter-
minism (partial controllability), ranging from condi-
tional planning, to recently introduced agent planning
programs, and to sophisticated forms of agent behavior
compositions, and show that all of them can be solved
by model checking two-player game structures. These
structures are akin to transition systems/Kripke struc-
tures, usually adopted in model checking, except that
they distinguish (and hence allow to separately quan-
tify) between the actions/moves of two antagonistic
players. We show that using them we can implement
solvers for several agent behavior synthesis problems.

Introduction
AI has been long concerned with agent behavior synthesis
problems: the best known such problem being Automated
Planning in its various forms (Ghallab, Nau, and Traverso
2004). Here we consider a variety of agent behavior syn-
thesis problems characterized by full observability and non-
determinism (i.e., partial controllability). Specifically, we
focus on three problems of increasing sophistication. The
simplest problem we consider is standard conditional plan-
ning in nondeterministic fully observable domains (Rinta-
nen 2004), which is well understood by the AI community.
Then, we move to a sophisticated form of planning recently
introduced in (De Giacomo, Patrizi, and Sardina 2010), in
which so-called agent planning programs—programs built
only from achievement and maintenance goals—are meant
to merge two traditions in AI research, namely, Automated
Planning and Agent-Oriented Programming (Wooldridge
2009). Solving, that is, realizing, such planning programs
requires temporally extended plans that loop and possi-
bly do not even terminate, analogously to (Kerjean et al.
2006). Finally, we turn to agent behavior composition.
Composition of nondeterministic, fully observable avail-
able behaviors for realizing a single target behavior was
studied, e.g., in (Sardina, De Giacomo, and Patrizi 2008;
Stroeder and Pagnucco 2009), and it is linked to composi-
tion of stateful, or “conversational,” web services (Su 2008).
Here, we shall consider an advanced form of that composi-

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tion, in which several devices are composed in order to real-
ize multiple virtual agents simultaneously (Sardina and De
Giacomo 2008). Such a problem is relevant for robot ecol-
ogy, ubiquitous robots, or intelligent spaces (Lundh, Karls-
son, and Saffiotti 2008).

The techniques originally proposed for the above synthe-
sis problems are quite diverse, ranging from specific forms
of planning (for conditional planning), to simulation (for
composition), to LTL-based synthesis (for agent planning
programs and advanced forms of composition).

The main contribution of this paper is to show that diverse
agent behavior synthesis problems, including all the ones
mentioned above, can be treated uniformly by relying on two
foundational ingredients:

• making explicit the assumption of two different roles in
reasoning/synthesis: a role that works against the solu-
tion, the so-called “environment;” and a role that works
towards the solution, the so-called “controller;”

• exploiting full observability even in the presence of non-
determinism (i.e., partial controllability) to do reasoning
and synthesis based on model checking (Clarke, Grum-
berg, and Peled 1999).

On the basis of these two points, we introduce two-player
game structures, which are akin to the widely adopted tran-
sition systems/Kripke structures in model checking, except
that they distinguish between the actions/moves of two an-
tagonistic players: the environment and the controller. Such
a distinction has its roots in discrete control theory (Ra-
madge and Wonham 1989), and has lately been adopted in
Verification for dealing with synthesis from temporal speci-
fications (Piterman, Pnueli, and Sa’ar 2006). Also, this dis-
tinction has been explicitly made in some AI work on rea-
soning about actions and on agents, e.g., (Lespérance, De
Giacomo, and Ozgovde 2008; Genesereth and Nilsson 1987;
Wooldridge 2009). Formally, such a distinction allows for
separately quantifying over both environment’s and con-
troller’s moves. To fully exploit this possibility, we in-
troduce a variant of (modal) µ-calculus (Emerson 1996)—
possibly the most powerful formalism for temporal specifi-
cation (Clarke, Grumberg, and Peled 1999)—that takes into
account such a distinction.

We demonstrate then that the resulting framework is in-
deed a very powerful one. To that end, we show that one can
reformulate each of the above synthesis problems, as well as

297

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)



many others, as the task of model checking a (typically sim-
ple) µ-calculus formula over suitable two-player game struc-
tures. By exploiting the result on µ-calculus model check-
ing, we are able to solve, optimally wrt computational com-
plexity and effectively in practice, through model checking
tools, several forms of agent behavior synthesis.

Two-player Game Structures
We start by introducing the notion of two-player game struc-
ture (2GS, for short), largely inspired by those game struc-
tures used in synthesis by model checking in Verification
(Piterman, Pnueli, and Sa’ar 2006; de Alfaro, Henzinger,
and Majumdar 2001), which in turn are at the base of
ATL interpretation structures (Alur, Henzinger, and Kupfer-
man 2002), often used in modeling multi-agent systems
(Wooldridge 2009). 2GS’s are akin to transition systems
used to describe the systems to be checked in Verification
(Clarke, Grumberg, and Peled 1999), with a substantial dif-
ference, though: while a transition system describes the evo-
lution of a system, a 2GS describes the joint evolution of two
autonomous systems—the environment and the controller—
running together and interacting at each step, as if engaged
in a sort of game.

Formally, a two-player game structure (2GS) is a tuple
G , , start , ρe, ρc , where:

• x1, . . . , xm and y1, . . . , yn are two disjoint
finite sets representing the environment and controller
variables, respectively. Each variable xi (resp. yi) ranges
over finite domain Xi (resp. Yi). Set is the set of
game state variables. A valuation of variables in is
a total function val assigning to each xi (resp. yi )
a value val xi Xi (resp. val yi Yi . For conve-
nience, we represent valuations as vectors x, y X Y ,
whereX X1 Xm and Y Y1 Yn. Notice that
X (resp. Y ) corresponds to the subvaluation of variables
in (resp. ). A valuation x, y is a game state, where
x and y are the corresponding environment and controller
states, respectively.

• start xo, yo is the initial state of the game.

• ρe X Y X is the environment transition relation,
which relates each game state to its possible successor en-
vironment states (or moves).

• ρc X Y X Y is the controller transition relation,
which relates each game state and environment move to
the possible controller replies. Notice that formally the
projection of ρc on X Y X , which does not include
the controller response, is trivially ρe.

The idea of 2GS is that from a current game state x, y , the
environment moves by choosing an x such that ρe x, y, x
holds, and, after this, the controller replies back by choos-
ing a y such that ρc x, y, x , y holds. Intuitively, a game
structure represents the rules of a game played by these two
adversaries, the environment and the controller. More pre-
cisely, the game structure defines the constraints each player
is subject to when moving (but not the goal of the game).

Given a 2GS G as above, one can express the win-
ning conditions for the controller (i.e., its goal) through a

goal formula overG. To express such goal formulas, we use
a variant of the µ-calculus (Emerson 1996) interpreted over
game structures. The key building block is the operator Ψ
interpreted as follows

x, y Ψ iff
x .ρe x, y, x
x .ρe x, y, x y .ρc x, y, x , y s.t. x , y Ψ.

In English, this operator expresses the following: for every
move x of the environment from the game state x, y , there
is a move y of controller such that in the resulting state of
the game x , y the property Ψ holds. With this operator at
hand, we develop the whole µ-calculus as follows:

Ψ ϕ Z Ψ1 Ψ2 Ψ1 Ψ2 Ψ µZ.Ψ νZ.Ψ,

where ϕ is an arbitrary boolean expression built from propo-
sitions of the form xi x̄i and yi ȳi ; Z is a predicate
variable; Ψ is as defined above; and µ (resp. ν) is the least
(resp. greatest) fixpoint operator from the µ-calculus. We
say that a 2GS G satisfies goal formula Ψ, written G Ψ, if
and only if start Ψ.

We recall that one can express arbitrary temporal/dynamic
properties using least and greatest fixpoints constructions
(Emerson 1996). For instance, to express that the controller
wins the game if a state satisfying a formula ϕ is reached
from the initial state, one can write G ϕ, where:

ϕ µZ. ϕ Z.

Similarly, a greatest fixpoint construction can be used to ex-
press the ability of the controller to maintain a property ϕ,
namely, we write G ϕ, where:

ϕ νZ.ϕ Z.

Fixpoints can be also nested into each other, for example:

ϕ νZ1. µZ2. ϕ Z1 Z2

expresses that the controller has a strategy to force the game
so that it is always the case that eventually a state where ϕ
holds is reached.1

In general, we shall be interested in checking whether the
goal formula is satisfied in a game structure, which amounts
to model checking the game structure. In fact, such a form
of model checking is essentially identical to the standard
model checking of transition systems (Clarke, Grumberg,
and Peled 1999), except for the computation of the pre-
images, which, in the case of game structures are based on
the operator Ψ. Hence, one can apply classical results in
model checking for µ-calculus (Emerson 1996), thus obtain-
ing a computational characterization of the complexity of
checking goal formulas in 2GSs.
Theorem 1. Checking a goal formula Ψ over a game struc-
ture G , , start , ρe, ρc can be done in time

O G Ψ k ,

where G denotes the number of game states ofG plus ρe
ρc , Ψ is the size of formula Ψ (considering propositional
formulas as atomic), and k is the number of nested fixpoints
sharing the same free variables in Ψ.

1See (Emerson 1996) for details about fixpoint nesting. Note
that the LTL-style abbreviations used cannot be composed trivially.

298



Proof. The thesis follows from the results in (Emerson
1996) on fixpoints computations and from the definition of

Ψ, which, though more sophisticated than in standard µ-
calculus, only involves local checks, that is, checks on tran-
sitions and states directly connected to the current state.

We are not merely interested in verifying goal formulas,
but, also and more importantly, in synthesizing strategies to
actually fulfill them. A (controller) strategy is a partial func-
tion f X Y X Y such that for every sequence λ
x0, y0 xn, yn and every x X such that ρe xn, yn, x

holds, it is the case that ρc xn, yn, x , f λ, x applies.
We say that a strategy f is winning if by resolving the
controller existential choice in evaluating the formulas of
the form Ψ according to f , the goal formula is satisfied.
Notably, model checking algorithms provide a witness of
the checked property (Clarke, Grumberg, and Peled 1999;
Piterman, Pnueli, and Sa’ar 2006), which, in our case, con-
sists of a labeling of the game structure produced during the
model checking process. From labelled game states, one can
read how the controller is meant to react to the environment
in order to fulfill the formulas that label the state itself, and
from this, define a strategy to fulfill the goal formula.

Conditional Planning
To better understand how game structures work, we first use
them to capture conditional planning with full observabil-
ity (Rintanen 2004; Ghallab, Nau, and Traverso 2004).

Let P,A,S0, ρ be a (nondeterministic) dynamic
domain, where: (i) P p1, . . . , pn is a finite set of
domain propositions, and a state is a subset of 2P ; (ii)
A a1, . . . , ar is the finite set of domain actions; (iii)
S0 2P is the initial state; (iv) ρ 2P A 2P is the
domain transition relation. We freely interchange notations
S, a,S ρ and S

a
S .

Suppose next that ϕ is the propositional formula over P
expressing the (reachability) goal for . We then define the
game structure G , , start , ρe, ρc as follows:
• P and act , with act ranging over A ainit ;
• start S0, ainit ;
• ρe ρ S0, ainit, S0 ;
• ρc S, a,S , a iff for some 2P , ρ S , a ,S holds

(i.e., the action a is executable next).
In words, the environment plays the role of the the nondeter-
ministic domain , while the controller is meant to capture
a plan. At each step, the controller chooses an action act,
which must be executable in the current state of the domain
(fourth point above). Once the controller has selected a cer-
tain action, the environment plays its turn by choosing the
next state to evolve to (third point above). This move ba-
sically involves resolving the nondeterminism of the action
act selected by the controller. A special action ainit is used
as the initial (dummy) controller move, which keeps the en-
vironment in ’s initial state S0.

Finally, we represent the planning goal ϕ as the goal for-
mula ϕ over G . Such a formula requires that, no matter
how the environment moves (i.e., how domain happens
to evolve), the controller guarantees reachability of a game
state where ϕ holds (i.e., a domain state satisfying ϕ).

Theorem 2. There exists a conditional plan for reaching
goal ϕ in the dynamic domain iff G ϕ.

As discussed above, we can check such a property by
standard model checking. What is more, from a witness,
we can directly compute a winning strategy f , which corre-
sponds to a conditional plan for goal ϕ in domain .

As for computational complexity, by applying Theorem 1
and considering that the goal formula ϕ µZ. ϕ Z
has no nested fixpoints, we get that such a technique com-
putes conditional plans in O G O 2P A ρ . That
is, its complexity is polynomial in the size of the domain
and exponential in its representation, matching the problem
complexity, which is EXPTIME-complete (Rintanen 2004).

It is worth noting that, although we have focused on stan-
dard conditional planning, similar reductions can be done
for other forms of planning with full observability. In par-
ticular, all planning accounts tackled via model checking of
CTL, including strong cyclic planning (Cimatti et al. 2003),
can be directly recast as finding a winning strategy for a
goal formula without nesting of fixpoints in a 2GS as above.
Also the propositional variant of frameworks where both the
agent and the domain behaviors are modeled as a Golog-like
program (Lespérance, De Giacomo, and Ozgovde 2008) can
be easily captured, see (Fritz, Baier, and McIlraith 2008).

Agent Planning Programs
Next, we consider an advanced form of planning that re-
quires loops and possibly non-terminating plans (De Gia-
como, Patrizi, and Sardina 2010). Given a dynamic domain

P,A,S0, ρ as above, an agent planning program for
is a tuple T, , t0, δ , where:

• T t0, . . . , tq is the finite set of program states;
• is a finite set of goals of the form “achieve φ while

maintaining ψ,” denoted by pairs g ψ,φ , where ψ and
φ are propositional formulae over P ;

• t0 T is the program initial state;
• δ T T is the program transition relation. We freely

interchange notations t, g, t δ and t
g
t in .

Intuitively, an agent planning program provides a struc-
tured representation of the different goals that an agent may
need to satisfy—it encodes the agent’s space of deliberation.

Agent planning programs are realized as follows (for the
formal definition see (De Giacomo, Patrizi, and Sardina
2010)): at any point in time, the planning program is in a
state t and the dynamic domain in a state S; the agent re-

quests a transition t
ψ,φ

t in (e.g., t
Driving,At(pub)

t , i.e.,
be at the pub and never be driving); then, a plan π from S
that leads the dynamic domain to a state satisfying φ, while
only traversing states where ψ holds, is synthesized—notice
that such a plan must also guarantee the continuation of the
program; upon plan completion, the agent planning program
moves to t and requests a new transition, and so on. Notice
also that, at any point in time, all possible choices avail-
able in the agent planning program must be guaranteed by
the system, since the actual request that will be made is not
known in advance—the whole agent’s space of deliberation
ought to be accounted for.

299



For example, imagine a planning program for specifying
the routine habits of a young researcher. Initially, the re-
searcher is at home, from where she may choose to go to
work or to a friend’s house. After work, she may want to
go back home or to a pub, and so on. So, in order to ful-
fill the initial possible request to go to work, plans involving
driving or taking a bus to the lab are calculated and one of
them is chosen. Further plans are then calculated to fulfill
the request of going to the pub, and so on. Now suppose that
the researcher would like to always leave the car home when
going to the pub. Then, plans involving driving to work are
not appropriate, not because they fail to satisfy the goal of
being at work, but because they would prevent the fulfill-
ment of further goals (namely, going to the pub with the car
left at home). Thus, plans must not only fulfill their goals,
but must also make fulfilling later requests encoded in the
structure of the program, possibly within loops, possible.

Let us now show how the problem of finding a realiza-
tion of a planning program can be reduced to building a
winning strategy for a goal over a 2GS. Precisely, from
and , we shall build a 2GS G and a goal formula ϕ, such
that G ϕ iff is realizable in . Also, from a witness of
the check G ϕ, we shall extract a winning strategy f that
corresponds to a realization of .

The construction of G , , start , ρe, ρc is as fol-
lows. The set of environment variables is P, tr ,
where tr ranges over δ trinit , that is, the set of ’s
transitions (plus trinit, for technical convenience only). The
set of controller variables is act, last , where vari-
able act ranges over A ainit (again, ainit is introduced
for convenience), and last is a propositional variable. Vari-
able act stands for the action to be executed next, while last
marks the end of current plan’s execution.

As for the transitions of the game structure, we have:
• start S0, trinit, ainit, ;
• the environment transition relation ρe is such that
ρe S, tr , a, l , S , tr iff:

– tr is a transition t
ψ,φ

t δ;
– S ψ and S

a
S ρ, i.e., S both fulfills the mainte-

nance goal required by tr and enables a’s execution;
– if l , then tr tr , i.e., if a is not the last ac-

tion and thus the transition realization is not completed,
then the planning program keeps requesting the same
(current) transition tr ;

– if l , then S φ and tr is any t
ψ ,φ

t δ, i.e.,
if a is indeed the last action for tr realization, then goal
φ is indeed achieved and a new transition is chosen
according to δ.

Furthermore, for each initial transition t0
ψ,φ

t δ we

have that ρe S0, trinit , ainit, , S0, t0
ψ,φ

t , cap-
turing all possible initial moves for the environment;

• the controller transition relation ρs is such that
ρs S, tr , a, l , S , tr , a , l iff there exists a tran-

sition S
a

S in for some state S (i.e., action a is
executable in current domain state S ). Observe no con-
straint is required on controller variable l .

Intuitively, G represents the synchronous evolution of do-
main and program , which together form the environ-
ment, operated by the controller. The environment includes
all ’s and all ’s transitions, both chosen nondeterministi-
cally from the controller’s viewpoint. The controller, on the
other hand, represents the possible decisions made at each
step, namely, the action to be performed next and the noti-
fication for plan completion, in order to fulfill the requests
issued by the environment. Observe that can issue a new
transition request only after its current request is deemed
fulfilled by the controller (i.e., last holds).

As for the goal formula, we have ϕ last, which re-
quires that it is always the case that eventually the controller
does reach the end of the (current) plan, thus fulfilling the
(current) request issued by program .
Theorem 3. Let be a planning program over a dynamic
domain , and G be the corresponding 2GS built as above.
Then, there exists a realization of in iff G last .

Since ϕ last has two nested fixpoints, we get
that such a technique computes a realization of in in
O G O 2P δ ρ 2 , i.e., in polynomial time in
the size of and and in exponential time in their repre-
sentations. This upperbound is indeed tight, as conditional
planning, which is a special case of agent planning program
realization, is already EXPTIME-complete.

Multitarget Composition
We now turn to composition in the style of (Sardina, De Gia-
como, and Patrizi 2008; Su 2008). In particular, we focus on
a sophisticated form of composition originally proposed in
(Sardina and De Giacomo 2008). Namely, we want to real-
ize a collection of independent (target) virtual agents that are
meant to act autonomously and asynchronously on a shared
environment. For example, a surveillance agent and a clean-
ing agent, among others, may all operate in the same smart
house environment. Such agents have no fixed embodiment,
but must be concretely realized by a set of available devices
(e.g., a vacuum cleaner, microwave, or video camera) that
are allowed to “join” and “leave” the various agents, dynam-
ically depending on agent’s requests. Each agent’s embodi-
ment is dynamically transformed while in execution.

Both agents and devices (i.e., their logics) are described
by transition systems of the form TS A,S, s0, δ , where:
(i)A is a finite set of actions; (ii) S is the finite set of possible
states; (iii) s0 S is the initial state of TS; and (iv) δ S

A S is the transition relation, with s, a, s δ or s
a
s

denoting that TS may evolve to state s when action a is
executed in state s. We assume, wlog, that each state may
evolve to at least one next state. Intuitively, the transition
systems for the agents encode the space of deliberation of
these agents, whereas the transition systems for the devices
encode the capabilities of such artifacts.

So, we consider a tuple of available devices 1, . . . , n ,
where i A ,Bi, b0i, δi , and a tuple of virtual agents

1, . . . , m , where i A ,Ti, t0i, τi . All i’s are de-
terministic, i.e., fully controllable—in the sense that there is
no uncertainty on the resulting state obtained by executing
an action—whereas each i may be nondeterministic, i.e.,
only partially controllable (though their current state is fully

300



observable). The composition problem we are concerned
with involves guaranteeing the concurrent execution of the
virtual agents as if each of them were acting in isolation,
though, in reality, they are all collectively realized by the
same set of (actual) available devices. A solution to this
problem amounts to synthesizing a controller that intelli-
gently delegates the actions requested by virtual agents to
concrete devices. The original problem, which was shown
to be EXPTIME-complete, allowed the controller to assign
agents’ requested actions to devices without simultaneously
progressing those agents whose actions have been done. In
other words, the controller may instruct the execution of an
action in a certain device without stating to which particular
agent it corresponds. Obviously, afterm steps (i.e., the num-
ber of agents), no more requests are pending so some agent
is allowed to issue a new request (Sardina and De Giacomo
2008). 2GSs can be used to encode and solve this problem
within the same complexity bound as the original solution.

Here we detail an interesting variant of this problem, in
which the served agent is progressed, simultaneously, when
an action is executed by a device. Differently from the orig-
inal problem, such a variant requires to actually identify
which devices are “embodying” each agent at every point
in time. Also, it shows how easy it is to tackle composition
variants using 2GSs.

Specifically, from tuples 1, . . . , n and 1, . . . , m ,
we build a 2GS G , , start, ρe, ρc as
follows. The environment variables are
s1 , . . . , sn , s1 , . . . , sm, r1 , . . . , rm , where variables
si , si and ri range over Bi, Ti, and A , respectively.
Each si corresponds to the current state of i, si to
the current state of i, and ri to the last request issued
by i. The controller variables, on the other hand, are

dev, full , where dev ranges over 0, . . . , n and full
over 1, . . . ,m . Variable dev stores the index of the avail-
able device selected to execute the action (0 being a dummy
value denoting the game’s initial state). Variable full stores
the index of the virtual agent whose request is to be ful-
filled. As before, we denote assignments to -variables as
x X B1 Bn T1 Tm A m, and assignments
to -variables as y Y 0, . . . , n 1, . . . ,m .

The initial state is start x0, y0 , with x0

b01, . . . , b0n, t01, . . . , t0m, a, . . . , a , for a arbitrarily cho-
sen inA , and y0 0,1 , i.e., the only state where dev 0.

The environment transition relation ρe X Y X
is such that, for x, y start, x, y, x ρe iff for
x b1, . . . , bn, t1, . . . , tm, r1, . . . , rm , y k, f , and
x b1, . . . , bn, t1, . . . , tm, r1, . . . , rm we have that:

• there exists a transition bk, rf , bk in δk, i.e., the selected
device actually executes the action requested by the agent
to be fulfilled (i.e., agent f ); while for each i k, bi bi
applies, that is, non-selected devices remain still;

• the f -th agent moves (deterministically) according to
transition tf , rf , tf τf , and from tf there exists a fur-
ther transition tf , rf , tf τf , for some tf , i.e., the vir-
tual agent whose request is fulfilled moves according to its
transition function and issues a new (legal) request; while
for each i f , ti ti and ri ri apply, i.e., all virtual

agents whose request are not yet fulfilled remain still.

In addition, from start x0, y0 , we have that x0, y0, x
ρe with x b01, . . . , b0n, t01, . . . , t0m, r1, . . . , rm for ri
such that t0i, ri, t τi, for some t Ti, i.e., from the initial
state each virtual agent issues an initial legal request.

Finally, the controller transition relation ρc X Y
X Y is such that x, y, x , y ρc iff x, y, x ρe and for
x b1, . . . , bn, t1, . . . , tm, r1, . . . , rm and y k , f ,
there exists a transition bk , rf , bk δk , for some bk , i.e.,
the action requested by agent f is actually executable by
device k . That completes the definition of 2GS G.

Now, on such 2GS, we define the goal formula ϕ simply
as ϕ m

f 1 full f , thus requiring that each time a
virtual agent request is issued, it is eventually fulfilled.
Theorem 4. There exists a composition for the virtual
agents 1, . . . , m by the available devices 1, . . . , n

(according to the assumptions considered here) iff G ϕ,
for G and ϕ constructed as above.

From a witness of G ϕ, one can extract an actual
controller able to do the composition. As for complex-
ity, since the goal formula contains two nested fixpoints,
the time needed to check the existence of a composition
(and to actually compute one) is O G 2 O X Y

ρe ρc
2 , where X O Bmax

n Tmax
m A m ;

Y n m 1; ρe O X Y Bmax A ; and
ρc O ρe m n , with Bmax and Tmax being the max-
imum number of states among devices and virtual agents,
respectively. Such a bound, under the natural assumption
that the number of actions is at most polynomial in the num-
ber of states of virtual agents, reduces to O um n , where
u max Bmax, Tmax , which is essentially the complexity
of the problem (Sardina and De Giacomo 2008).

Implementation
The approach presented here is ready implementable with
model checking tools. However, the need of quantifying
separately on environment and controller moves, requires
the use of µ-calculus, and not simply CTL or LTL (Clarke,
Grumberg, and Peled 1999) for which model checking tools
are much more mature. As an alternative, if the goal formula
does not require nested fixpoints, we can adopt ATL model
checkers (Lomuscio, Qu, and Raimondi 2009). ATL inter-
pretation structures are indeed quite related to 2GSs, and we
can split the set of ATL agents into two coalitions represent-
ing (possibly in a modular way) the environment and the
controller—e.g., (De Giacomo and Felli 2010) encodes sin-
gle target composition in ATL.

Another alternative is to use (procedure synth in) the
TLV system (Piterman, Pnueli, and Sa’ar 2006), which is
a framework for the development of BDD-based procedures
for formal synthesis/verification. TLV takes a generic 2GS
G expressed in the concrete specification language SMV
(Clarke, Grumberg, and Peled 1999), and uses special SMV
modules Env and Sys to distinguish the environment and
the controller. Also, it takes an LTL formula ϕ of “GR1”
form: ϕ n

i 1 pi
m
j 1 qj , with pi and qj propo-

sitions overG. Then, it synthesizes, if any, a controller strat-
egy to satisfy ϕ, by transforming ϕ into a µ-calculus formula

301



ϕµ over G, which quantifies separately on the environment
and the controller. Because of the fixed structure of ϕ, the
resulting ϕµ has 3 nested fixpoints.

It turns out that TLV can be used to solve both agent plan-
ning programs and multi target composition problems; in-
deed, the goal formulas ϕg of such problems, are special
cases of the ϕµ that TLV uses. Specifically, for the multi tar-
get problem, we can proceed as follows. To encode a 2GS
in SMV, one essentially needs to describe both controller’s
and environment’s behaviors. They are actually encoded as
SMV modules—each representing a transition system, with
its initial state, state variables and transition rules, speci-
fied in SMV sections VAR, INIT and TRANS, respectively—
possibly communicating via input/output parameters. We do
so by defining: (i) one SMV module for each available de-
vice i and one for each virtual agent i, wrapping them in
an Env module to form the 2GS environment; and (ii) a fur-
ther Sys module, representing the controller, which com-
municates with all available devices, to delegate them ac-
tion executions, and with all virtual agents, to inform them
of request fulfillment. The controller is modeled so as to
guarantee that action delegations are always safe, i.e, the de-
vice instructed to execute the action can actually do it in
its current state. As for goal formula, this corresponds to
the µ-calculus formula obtained in TLV by processing the
GR1 LTL formula true n

i 1 fulfilledi (n
number of virtual agents), which technically is encoded as a
list fulfilled1 . . .fulfilledn in the JUSTICE sec-
tion of controller’s module. We used TLV to actually solve
several variants of the example in (Sardina and De Giacomo
2008), using the version of the multitarget composition in-
troduced above. The tool was able to find the solution for
those simple problems in around 10 seconds (on a Core2Duo
2.4Ghz laptop with 2GB of RAM).

Conclusions
We have shown that model checking 2GS’s is a very power-
ful, yet fully automatically manageable, technique for syn-
thesis in a variety of AI contexts under full observabil-
ity. By observing that most current model checking algo-
rithms are based on the so-called “global” model check-
ing, we conclude that these can be seen as a generalization
of planning by backward reasoning when applied to 2GSs.
Model checking algorithms based on forward reasoning are
also available, the so-called “local” model checking tech-
niques (Stirling and Walker 1991), though they are currently
considered less effective in Verification (Clarke, Grumberg,
and Peled 1999). On the contrary, within AI, planning by
forward reasoning is currently deemed the most effective,
mainly due to use of heuristics that seriously reduce the
search space. An interesting direction for future research,
thus, would be to apply local model checking to 2GSs, while
taking advantage of such heuristics developed by the auto-
mated planning community.

Acknowledgments We dedicate this paper to the memory of
Amir Pnueli, who first showed us the power of game structures for
tackling synthesis problems.

We acknowledge the support of EU Project FP7-ICT ACSI
(257593), EU Project FP7-ICT SM4All (224332), and of Agent

Oriented Software and the Australian Research Council (under
grant DP1094627).

References
Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002. Alternating-
time temporal logic. Journal of the ACM (49):672–713.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003. Weak,
strong, and strong cyclic planning via symbolic model checking.
Artificial Intelligence Journal 1–2(147).
Clarke, E. M.; Grumberg, O.; and Peled, D. A. 1999. Model check-
ing. Cambridge, MA, USA: The MIT Press.
de Alfaro, L.; Henzinger, T. A.; and Majumdar, R. 2001. From
verification to control: Dynamic programs for omega-regular ob-
jectives. In Proc. of LICS’01, 279–290.
De Giacomo, G., and Felli, P. 2010. Agent composition synthesis
based on ATL. In Proc. of AAMAS’10.
De Giacomo, G.; Patrizi, F.; and Sardina, S. 2010. Agent program-
ming via planning programs. In Proc. of AAMAS’10.
Emerson, E. A. 1996. Model checking and the mu-calculus. In
Descriptive Complexity and Finite Models, 185–214.
Fritz, C.; Baier, J. A.; and McIlraith, S. A. 2008. ConGolog,
Sin Trans: Compiling ConGolog into Basic Action Theories for
Planning and Beyond. In Proc. of KR’08, 600–610.
Genesereth, M. R., and Nilsson, N. J. 1987. Logical foundations
of artificial intelligence. Morgan Kaufmann.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated Plan-
ning: Theory and Practice. Morgan Kaufmann.
Kerjean, S.; Kabanza, F.; St.-Denis, R.; and Thiébaux, S. 2006.
Analyzing LTL model checking techniques for plan synthesis and
controller synthesis (work in progress). Electronic Notes in Theo-
retical Computer Science (ENTCS) 149(2):91–104.
Lespérance, Y.; De Giacomo, G.; and Ozgovde, A. N. 2008. A
model of contingent planning for agent programming languages.
In Proc. of AAMAS’08, 477–484.
Lomuscio, A.; Qu, H.; and Raimondi, F. 2009. MCMAS: A model
checker for the verification of multi-agent systems. In Proc. of
CAV’09, 682–688.
Lundh, R.; Karlsson, L.; and Saffiotti, A. 2008. Automatic con-
figuration of multi-robot systems: Planning for multiple steps. In
Proc. of ECAI’08, 616–620.
Piterman, N.; Pnueli, A.; and Sa’ar, Y. 2006. Synthesis of reac-
tive(1) designs. In Proc. of VMCAI’06, 364–380. Springer.
Ramadge, P. J., and Wonham, W. M. 1989. The control of discrete
event systems. IEEE Trans. on Control Theory 77(1):81–98.
Rintanen, J. 2004. Complexity of Planning with Partial Observ-
ability. In Proc. of ICAPS’04, 345–354.
Sardina, S., and De Giacomo, G. 2008. Realizing multiple au-
tonomous agents through scheduling of shared devices. In Proc. of
ICAPS’08, 304–312.
Sardina, S.; De Giacomo, G.; and Patrizi, F. 2008. Behavior Com-
position in the Presence of Failure. In Proc. of KR’08, 640–650.
Stirling, C., and Walker, D. 1991. Local model checking in the
modal mu-calculus. Theor. Comput. Sci. 89(1):161–177.
Stroeder, T., and Pagnucco, M. 2009. Realising deterministic be-
haviour from multiple non-deterministic behaviours. In Proc. of
IJCAI’09, 936–941.
Su, J., ed. 2008. Semantic Web Services: Composition and Analy-
sis. IEEE Data Eng. Bull., volume 31. IEEE Comp. Society.
Wooldridge, M. 2009. Introduction to MultiAgent Systems. John
Wiley & Sons, 2nd edition.

302




