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Abstract

Recent work has demonstrated that several trust and reputa-
tion models can be exploited by malicious agents with cycli-
cal behaviour. In each cycle, the malicious agent with cycli-
cal behaviour first regains a high trust value after a number
of cooperations and then abuses its gained trust by engag-
ing in a bad transaction. Using a game theoretic formulation,
Salehi-Abari and White have proposed the AER model that
is resistant to exploitation by cyclical behaviour. Their simu-
lation results imply that FIRE, Regret, and a model due to Yu
and Singh, can always be exploited with an appropriate value
for the period of cyclical behaviour. Furthermore, their re-
sults demonstrate that this is not so for the proposed adaptive
scheme. This paper provides a mathematical analysis of the
properties of five trust models when faced with cyclical be-
haviour of malicious agents. Three main results are proven.
First, malicious agents can always select a cycle period that
allows them to exploit the four models of FIRE, Regret, Prob-
abilistic models, and Yu and Singh indefinitely. Second, ma-
licious agents cannot select a single, finite cycle period that
allows them to exploit the AER model forever. Finally, the
number of cooperations required to achieve a given trust value
increases monotonically with each cycle. In addition to the
mathematical analysis, this paper empirically shows how ma-
licious agents can use the theorems proven in this paper to
mount efficient attacks on trust models.

1 Introduction

Recently, researchers have identified the existence of
cheaters (exploitation) in artificial societies employing trust
and reputation models (Kerr and Cohen 2009; Salehi-Abari
and White 2009b; 2009a). (Kerr and Cohen 2009) examined
the security of several e-commerce marketplaces employing
a trust and reputation system. To this end, they proposed
several attacks and examined their effects on each market-
place. (Salehi-Abari and White 2009b) introduced and for-
mally modeled the con-man attack. In the con-man attack,
the con-man has cyclical behaviour such that in each cycle
he first regains a high trust value with a number of coop-
erations and then misuses the trust gained by engaging in
a bad transaction. (Salehi-Abari and White 2009b) empir-
ically demonstrated the vulnerability of several trust mod-
els (i.e., the model due to Yu and Singh, Regret, and FIRE)
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against this attack. Moreover, their proposed adaptive up-
dating scheme, called AER, prevented such exploitation as
supported by empirical simulation evidence. Furthermore,
AER does not rely on reputation obtained in terms of gain-
in-exchange as other systems do. However, Salehi-Abari
and White could not demonstrate that their results are valid
for all parameter settings. More specifically, it was not clear
whether the success or failure of the con-man attack against
the examined trust models is the result of specific parameter
settings or the design of those models.

This paper is motivated by the need to develop trust and
reputation schemes that have provable properties. While
simulation can often provide insights into average case trust
and reputation model performance, mathematical analysis
based upon known or potential attacks are important to in-
crease confidence in the true utility of such models. To this
end, this paper provides mathematical analysis of the con-
man attack against several prominent trust models.

There are two types of contribution in this paper. To be-
gin, we define what is meant by an attack on a trust and
reputation model and what it is meant for such models to
be vulnerable to an attack or exhibit exploitation resistance
to the attack. Our principal contributions are analytical and
consist of 5 results. First, we prove that the Yu and Singh
model and FIRE can be exploited indefinitely if malicious
agents are aware of the model’s parameter settings. Second,
Regret and probabilistic trust models can be exploited in-
definitely by malicious agents mounting a con-man attack
even when malicious agents are not aware of the model’s
parameters. Third, malicious agents can not indefinitely ex-
ploit AER. Fourth, the number of cooperations required to
achieve a given trust value increases monotonically with-
out any upper bound in AER, while this is not true for the
other models. Fifth, as forgiveness is a frequently noted as-
pect of trust and reputation theory (Sabater and Sierra 2001;
Axelrod 1984), it is proven that the AER scheme is forgiv-
ing but that forgiveness is slower when several defections
have happened. In addition, this paper empirically shows
how malicious agents can use the theorems provided in this
paper to mount efficient attacks on trust models.

The remainder of this paper proceeds as follows. Sec-
tion 2 provides background material and briefly describes
five trust and reputation models whose properties in the face
of the con-man attack are analyzed in this paper. Section 3
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introduces definitions for vulnerability and exploitation re-
sistance and provides a formal model of the con-man attack.
We describe our hypotheses and conjectures in Section 4.
Section 5 presents lemmas and theorems. Section 6 presents
simulation results and discussion. Finally, concluding re-
marks are explained in Section 7.

2 Background and Terminology

2.1 Direct Interaction Components

Direct interaction is the most popular source of information
for trust and reputation models (Ramchurn, Huynh, and Jen-
nings 2004). Trust and reputation models usually have a di-
rect interaction trust variable that indicates the level of an
agent’s trustworthiness. We discuss the direct interaction
trust components of Yu and Singh’s model, Regret, FIRE,
and probabilistic trust models in the following subsections.

Yu and Singh Yu and Singh’s (Yu and Singh 2000) trust
variable is defined by Ti,j(t) indicating the trust rating as-
signed by agent i to agent j after t interactions between
agent i and agent j, with Ti,j(t) ∈ [−1, +1] and Ti,j(0) = 0.

An agent will update this variable based on the perception
of cooperation/defection. Cooperation by the other agents
generates positive evidence of α, with 1 > α > 0 and de-
fection generates negative evidence of β, with −1 < β < 0.
If Ti,j(t) > 0 and Cooperation then
Ti,j(t + 1) := Ti,j(t) + α(1 − Ti,j(t))
If Ti,j(t) < 0 and Cooperation then
Ti,j(t + 1) := (Ti,j(t) + α)/(1 − min(|Ti,j(t))| , |α|)
If Ti,j(t) > 0 and Defection then
Ti,j(t + 1) := (Ti,j(t) + β)/(1 − min(|Ti,j(t))| , |β|)
If Ti,j(t) < 0 and Defection then
Ti,j(t + 1) := Ti,j(t) + β(1 + Ti,j(t))

Regret Regret defines an impression as the subjective
evaluation made by an agent on a certain aspect of an out-
come and bases its trust model upon it. The variable ri,j(t),
with ri,j(t) ∈ [−1, 1], is the rating associated with the im-
pression of agent i about agent j as a consequence of specific
outcome at time t. Ri,j is the set of all ri,j(t) for all possi-
ble t. A subjective reputation at time t from agent i’s point

of view regarding agent j is noted as Ti,j(t)
1. To calculate

Ti,j(t), Regret uses a weighted mean of the impressions’ rat-
ing factors, giving more importance to recent impressions.
The formula to calculate Ti,j(t) is:

Ti,j(t) =
∑

wk∈Ri,j

ρ(t, tk).wk (1)

where tk is the time that wk is recorded, t is the current time,

ρ(t, tk) = f(tk,t)

rl∈Wi,j
f(tl,t)

, and f(tk, t) = tk

t
which is called

the rating recency function.

FIRE FIRE (Huynh, Jennings, and Shadbolt 2006) uti-
lizes the direct trust component of Regret but does not use
its rating recency function. FIRE introduced a rating recency
function based on the time difference between current time
and the rating time. The parameter λ is introduced into the

1For the purpose of simplification, we have changed the original
notations from (Sabater and Sierra 2001).

rating recency function to scale time values. FIRE’s rating
recency function is:

f(tk, t) = e−
t−tk

λ (2)

Probabilistic Trust Models Considerable progress has re-
cently been made in the development of probabilistic trust
models, the Beta Reputation System (BRS) and TRAVOS
being two examples (Josang and Ismail 2002; Teacy et al.
2005). Probabilistic trust models are built based on observa-
tions of past interactions between agents mapping observa-
tions to cooperations and defections.

In probabilistic trust models, the probability that agent
j satisfies its obligations for agent i is expressed by Bi,j .
The trust value of agent i for agent j at time t, denoted by
Ti,j(t), is the expected value of Bi,j given the set of out-
comes Oi,j(t) at time t.

Ti,j(t) = E[Bi,j |Oi,j(t)] (3)

As the standard equation for the expected value of a beta
distribution is E[B|α, β] = α

α+β
, the trust value Ti,j(t) after

t interactions is:

Ti,j(t) = E[Bi,j |α, β] =
α

α + β
(4)

where α = nc(t)+ 1 and β = nd(t) + 1. nc(t) and nd(t)
denote the number of cooperations (successful interactions)

and the number of defections (unsuccessful interactions)2.

AER AER extended the direct trust of (Yu and Singh
2000) by introducing the following update schema for a pos-
itive evidence weighting coefficient of α > 0 and a negative
evidence weighting coefficient β < 0 when the agent per-
ceives defection:

α(i) = α(i − 1) × (1 − |β(i − 1)|)

β(i) = β(i − 1) − γd × (1 + β(i − 1))

Where γd is the discounting factor and is in the range of

[0, 1]. Note that, α(i) and β(i) will be updated when the ith

defection occurs.

3 Definitions
In this paper we consider an agent’s trust and reputation
model, M, to be characterized by two attributes, S and P; S is
the trust and reputation strategy being employed and P is the
set of parameter values that are used to operate it. This pa-
per deals with the concept of vulnerability. We define more
precisely vulnerability and the levels of vulnerability of trust
models against an attack as follows:

Definition Attack. An attack, A, is a sequence of coop-
erations and defections used by a malicious agent, ma, to
achieve or maintain a trustworthy status as maintained by an
agent, ta, with which it is interacting.

Definition Vulnerability. A trust model, M, is vulnerable
to an attack, A, if a malicious agent, ma, adopting some strat-
egy and with full or partial knowledge of an agent, ta, and its
associated trust model, M, can be trustworthy as determined
by ta.

2It is worth mentioning that the trust value in probabilistic mod-
els is in the range of [0, 1] as opposed to Yu and Singh, Regret, and
FIRE models in which trust is in the range of [-1, 1].
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We define the following levels of vulnerability in this paper:

Definition Low-level. A trust model, M, is vulnerable to
an attack, A, with low-level risk, if it is vulnerable only for
some specific model parameter settings and ma needs to be
aware of the parameter values used by ta to mount a success-
ful attack.

Definition Medium-level. A trust model, M, is vulnerable
to an attack, A, with medium-level risk, if it is vulnerable for
any parameter settings and ma needs to be aware of the value
of parameters used by ta to successfully mount an attack.

Definition High-level. A trust model, M, is vulnerable to an
attack, A, with high-level risk, if ma is able to successfully
mount an attack under any conditions even when ma is not
aware of the values of parameters.

Finally, we say that a trust and reputation model, M, ex-
hibits exploitation resistance to an attack, A, if it is not vul-
nerable to that attack. We also refer to a trust and reputation
model, M, as being exploitation resistant when faced with an
attack, A.

3.1 Con-man Attack and Terminology

In the con-man attack introduced in (Salehi-Abari and White
2009b), a con-man is modeled by the parameter θ. The con-
man will defect after cooperating θ times. After each de-
fection, the con-man will again cooperate θ times possibly
repeating this interaction pattern several times.

In this paper, there is a slight modification in the con-
man interaction pattern when compared to (Salehi-Abari and
White 2009b). Here, the con-man has a higher level of in-
telligence such that it will defect in an interaction with the
victim agent whenever its trust value is equal to or greater
than a threshold, denoted by Tc. In other words, the con-man
will cooperate until its trust value reaches Tc. We formally
model this interaction pattern with Equation 5:

L =
{

(CθiD)+|i = 0...n, θi ∈ N
}

(5)

Where C and D represent cooperation and defection respec-
tively. The main difference in this interaction pattern when
compared with that presented in (Salehi-Abari and White
2009b) is that θi is subject to change for each cycle of coop-
eration and defection instead of being a constant. The value
of θi is determined by the number of the cooperations which
the con-man needs to increase its trust value above Tc.

For the purpose of simplification in the proofs which fol-
low, we rewrite the interaction pattern in such a way that the

ith cycle of interactions starts with a defection and followed
by θi cooperations. In this sense, the first cooperations of
con-man, θ0, which results in an increment of trust from T0

to Tc is not modeled. In other words, we consider the con-
man has already built up its trust to Tc from T0 by θ0 coop-
erations. The modified interaction pattern of the con-man is
presented in Equation 6.

L =
{

(DCθi)+|i = 1...n, θi ∈ N
}

(6)

More precisely, we herein highlight the terminology that is
used in this paper and is illustrated in Figure 1. The variable
θi is the number of cooperations that the con-man will have

in the ith cycle of defection-cooperations. The ith cycle in-

cludes the ith defection and θi cooperations. The trust value

at the end of the ith cycle is Tc or greater; i.e., Tc defines

the criterion for ending the ith cycle. The trust value of the

con-man before the ith defection is denoted by Tb(i). Td(i)
denotes the trust value of the con-man after the ith defection.

Figure 1: Trust value changes in the ith cycle of defection-
cooperations

4 Hypothesis and Conjectures

This paper intends to prove, for the con-man attack, that:

• Yu and Singh model is vulnerable with medium-level risk.

• Regret is vulnerable with high-level risk.

• FIRE is vulnerable with medium-level risk.

• Probabilistic models are vulnerable with high-level risk.

• AER is not vulnerable to the con-man attack.

5 Lemmas and Theorems

We here provide principal lemmas and theorems proved us-
ing mathematical analysis. The proofs from (Salehi-Abari
and White 2010) are omitted owing to space limitations.

5.1 Yu and Singh

Our proof strategy is to find θi for any parameter setting in
any defection-cooperations cycle and show that θi+1 ≤ θi.
It is not straightforward to calculate θi for the Yu and Singh
model since it includes several recurrent formulae. The
proof is broken down into a series of cases that mirror the
distinct forms of the formulae. Lemmas, 1, 2 and 3 present
results for the cases. Theorem 1 provides a closed form so-
lution for the number of cooperations that are required in a
con-man attack to reach a given level of trust that is simply
a function of α and β. This results in Theorem 2 that proves
the middle-level risk vulnerability of this trust model.

Lemma 1 Given that Tc > 0 and Tc ≥ |β|, then θi =
ln(1+β)
ln(1−α) .

Lemma 2 Given that 0 < Tc < |β| and −α < Td(i), then

θi = ln(1+β)
ln(1−α) .

Lemma 3 Given that 0 < Tc < |β| and −α ≥ Td(i), then

θi = ln(1+β)
ln(1−α) .
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Theorem 1 If 1 > Tc > 0, θi will be calculated by
ln(β+1)
ln(1−α)

for Yu and Singh’s model.

Theorem 2 Yu and Singh model is vulnerable to the con-
man attack with a medium-level risk for any α and β.

5.2 Regret

Our proof strategy is to find θi for any parameter setting
in any defection-cooperations cycle and show that θi+1 ≤
θi. Throughout our analysis and proofs, cooperation and
defection are mapped to 1 and −1 respectively for the Regret
model and the appropriate value is used as an input of the
trust model.

Lemma 4 Given ti is the number of interactions at the be-
ginning of the ith cycle, θi for the Regret model will be cal-

culated by θi =
−3−2ti+ (2ti+

Tc−5
Tc−1 )2− 8(Tc+1)

(Tc−1)2

2

Theorem 3 Let 1 > Tc > 0, θi < Tc+1
1−Tc

for any i ∈ N in

the Regret model.

Theorem 4 The Regret model is vulnerable to the con-man
attack with high-level risk.

5.3 FIRE

Our proof strategy is to find θi for any parameter setting
in any defection-cooperations cycle and show that θi ≤ θc,
where θc is a constant. Throughout our analysis and proofs,
the cooperation and defection is mapped to 1 and −1 respec-
tively for the FIRE model and the value is used as an input
of the trust model.

Lemma 5 Let T (t) and Tta be the starting trust value
and the target trust value as a result of θ coopera-
tion respectively, where t is the number of interactions
used for calculation of T (t). θ is calculated by θ =

λ ln
(

1 − 1−e
t
λ

Tta−1 × (T (t) − 1)
)

− t.

Lemma 6 Let ti be the number of interactions at the begin-
ning of the ith cycle, the trust value after the ith defection,

Td(i) will be calculated by Td(i) = 1−e
ti
λ

1−e
ti+1

λ

×(Tb(i)+1)−1

where Tb(i) is the trust value before the ith defection.

Theorem 5 Given ti be the number of interactions at the
beginning of the ith cycle, θi for the FIRE model will be
calculated by:

θi = λ ln

(

Tc + 1 − 2e
1
λ

Tc − 1

)

− 1 (7)

Theorem 6 The FIRE model is vulnerable to the con-man
attack with medium-level risk for any value of λ.

5.4 Probabilistic Trust models

Our proof strategy is to show that the value of θ is a simple
function of the trust threshold, Tc, thereby implying that the
trust model is vulnerable to a con-man attack.

Lemma 7 Let T (t) and Tta be the starting trust value and
the target trust value as a result of θ cooperations respec-
tively, where t is the number of interactions used for calcu-

lation of T (t). θ is calculated by θ = (t+2)(Tta−T (t))
1−Tta

.

Theorem 7 Given ti as the number of interactions at the
beginning of the ith cycle, θi for a probabilistic trust model

will be calculated by θi = Tc

1−Tc

Theorem 8 Probabilistic models are vulnerable to the con-
man attack with high-level risk.

5.5 AER

We will prove here that the AER update scheme for α and
β is con-resistant in such a way that the con-man requires
more cooperations in each cycle of defection-cooperations
when compared to the previous cycle in order to reach to Tc.
In other words, θi < θi+1.

Lemma 8 β(i) is ever-decreasing (i.e., β(i) > β(i + 1)).

Lemma 9 α(i) is ever-decreasing (i.e., α(i) > α(i + 1)).

Theorem 9 Let Tc > 0, θi will be calculated by
ln(β(i)+1)
ln(1−α(i))

for AER.

Theorem 10 AER will not let the con-man regain a high
trust value easily with the same or smaller number of coop-
erations (i.e., θi < θi+1). AER is exploitation resistant to
the con-man attack.

Corollary 1 AER is forgiving in any cycle of defection-
cooperations but is more strict after each defection.

6 Simulation Experiments
We here demonstrate how a con-man agent efficiently
mounts an attack using the theorems proven in previous sec-
tions using simulation. All simulations were run with one
trust-aware agent (TAA) which utilizes a specific compu-
tational trust model and a con-man agent (CA). The inter-
action of agents with each other can be either cooperation
or defection. The interaction strategy of TAAs is tit-for-tat
which starts by cooperation and then imitates the opponent’s
last move. The interaction strategy of CAs follows the for-
mal language presented in Section 3.1 which is solely de-
pendent on the parameter θi. CAs calculate the optimized θi

using the theorems presented in Section 5

6.1 Yu and Singh

We here demonstrate how a CA can efficiently mount an
attack when θc is calculated by using Theorem 1. We as-
sume that the con-man knows the values of α and β for
calculating θc. The values of (α,β) for the 4 experiments
were set to (0.1,−0.2), (0.075,−0.25), (0.05,−0.3), or
(0.025,−0.35). The CA has set Tc = 0.8 for itself.

Figure 2 shows the variation of the trust value of the TAA.
As shown, the con-man agent by using Theorem 1 could
successfully calculate θc and consequently regain lost trust
with the same number of cooperations in each cycle. The θc

values for different settings of α and β are shown in Table
1. As θc should be an integer, we calculate the ceiling of θc,
denoted by ⌈θc⌉, to use in our simulations. The side effect of
this ceiling appears in Figure 2 for α = 0.1 and β = −0.2
settings when Tb(i) for high number of cycles reaches 1 as
opposed to Tc = 0.8 because of rounding up of 2.1179 to
3. It is interesting to note that when the magnitude of β is
much larger than that of α (e.g., α = 0.025 and β = −0.35),
which leads to a small improvement for a cooperation and
a big drop for a defection, the con-man needs to choose a
higher θc (e.g., 18) value.
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Figure 2: Exploitation of Yu & Singh model by a con-man.

α = 0.1 α = 0.075 α = 0.05 α = 0.025
β = −0.2 β = −0.25 β = −0.3 β = −0.35

θc 2.1179 3.6901 6.9536 17.0150
⌈θc⌉ 3 4 7 18

Table 1: The Values of θc for various α and β settings.

6.2 Regret

We repeated the previous experiment where the trust-aware
agent employs the Regret model and the con-man agent uses
Theorem 3. Figure 3 demonstrates how a CA can efficiently
mount an attack when θc is calculated by using Theorem 3.
We ran 4 simulations in each of which the con-man agent has
set Tc to 0.7, 0.8, 0.9, or 0.95 respectively for itself. As the
consequence of this Tc setting, the following θc is calculated
by the con-man agent: 5.67, 9, 19, 39. It is worth noting
that the con-man agent does not require knowledge of the
model’s parameter settings to mount a successful attack and
calculate an efficient θc. This is because θc is only dependent
on Tc which is the parameter set by the con-man itself.

6.3 FIRE

The previous experiments were repeated with the trust-
aware agent employing FIRE and the con-man agent using
Theorem 5. The con-man is assumed to know the value of
λ to calculate θc. Figure 4 depicts the variation of the trust
value of TAA over the of the first set of simulations where
we set λ to 4, 8, 16, or 32 while Tc = 0.8. The con-man
could successfully calculate the following θc for the exam-
ined λs and Tc: 4.38, 5.77, 6.96, 7.82. Although, FIRE is
more sensitive to defection for lower values of λ (e.g., the
sharp drop of trust value after each defection for λ = 4), θc

is lower for lower values of λ. In addition, It is interesting
to note that θc changes linearly in spite of an exponential in-
crease of λ. We set Tc to 0.7, 0.8, 0.9, or 0.95 while λ = 8.
For these settings, the following values of θc are calculated
by the con-man: 4.08, 5.77, 9.39, 13.76.

6.4 Probabilistic Trust Models

We ran 4 simulations where the trust-aware agent employs
the probabilistic trust model. For each simulation, the con-

Figure 3: Exploitation of Regret by a con-man.

Figure 4: Exploitation of FIRE by a CA for various λ.

man agent has set Tc to 0.7, 0.8, 0.9, or 0.95 respectively
for itself. These Tc settings yielded the following θc which
are calculated by the con-man agent using Theorem 7: 2.33,
4, 9, 19. Figure 5 demonstrates how the con-man agent can
efficiently mount an attack by using Theorem 7 to calculate
θc. As with Regret, the con-man agent does not need to
know any trust model’s parameter settings to mount a suc-
cessful attack by calculating an efficient θc. This is because
θc is only dependent on Tc which is the parameter set by the
con-man itself.

6.5 AER

We ran 4 simulations with the same settings of previous
experiments with the difference that the trust-aware agent
uses AER and the con-man agent uses Theorem 9 to cal-
culate θi for each cycle of defection-cooperations. For
each simulation, we set different values of (α0,β0) for TAA
as follows (0.1,−0.2), (0.075,−0.25), (0.05,−0.3), and
(0.025,−0.35). For all simulations, γd = 0.1 and the CA
has set Tc = 0.8 for itself. As the con-man needs the val-
ues (αi,βi) in each cycle of cooperation to calculate θi, we
assume that the con-man is aware of these values.

Figure 6 shows the trust value variation of the TAA for
various α0 and β0 settings. Note that the con-man can
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Figure 5: Exploitation of probabilistic trust models by a CA.

Figure 6: The con-man vs. AER

be forgiven after each defection but with the larger num-
ber of cooperations and a change in its pattern of interac-
tions (i.e., θi should be increased in each cycle of defection-
cooperations). The θi values for different settings of α0 and
β0 in each cycle of defection-cooperations are shown in Fig-
ure 7. Note that θi is increasing exponentially after each
defection regardless of α0 and β0.

7 Conclusions and Future work

This paper is motivated by the dire need to develop trust and
reputation schemes that have provable properties for artifi-
cial societies, especially e-commerce. This paper has proven
that simple malicious agents with cyclical behaviour can ex-
ploit Yu and Singh’s trust model, Regret, FIRE, and prob-
abilistic trust models regardless of the model’s parameters.
However, AER has been shown to be exploitation resistant.
Furthermore, malicious agents with cyclical behaviour will
have to increase the number of cooperations in each and ev-
ery cycle with AER in order to achieve a specific trust value.
It is proven that AER is forgiving but that the rate of for-
giveness slows with every defection. This paper has also
empirically demonstrated how con-man agents can mount
efficient attacks using theorems presented in this paper. Fu-
ture work will design adaptive schemes similar to AER for

Figure 7: θi over cycles of defection-cooperations.

Regret, FIRE, and probabilistic trust models and their ex-
ploitation resistance to the con-man attack proven.
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