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Abstract

Connecting between standard AI planning constructs and a
classical cooperative model of transferable-utility coalition
games, we introduce the notion of transferable-utility (TU)
planning games. The key representational property of these
games is that coalitions are valued implicitly based on their
ability to carry out efficient joint plans. On the side of the
expressiveness, we show that existing succinct representa-
tions of monotonic TU games can be efficiently compiled into
TU planning games. On the side of computation, TU plan-
ning games allow us to provide some of the strongest to date
tractability results for core-existence and core-membership
queries in succinct TU coalition games.

Introduction
In many settings, self-interested agents in a multi-agent sys-
tem require both the ability to plan a non-trivial course of
action and the ability to collaborate strategically with other
agents in order to carry out such plans or to improve their
efficiency. While to date these two core capabilities—action
planning and strategic collaboration—have been studied
very successfully, unfortunately they were studied mostly in
isolation, by the AI planning and computational game theory
communities respectively.

Looking for a common ground between the successful
techniques for AI planning and collaboration, one may no-
tice that both (i) target succinctly representable problems
and (ii) exploit the relationship between the structure of the
problems induced by these succinct representations, and the
complexity of solving the problems. Here, however, comes a
pitfall. It appears that all existing succinct representations of
games assume this or another form of locality and/or com-
pactness of the dependence of agent’s payoffs on the choices
of other agents.This, however, almost “by definition” re-
quires the planning part of the system to be simplistic as the
complexity of planning stems from the, possibly indirect,
global dependence between the agents’ choices.

While due to the reasons above most computational re-
sults for AI planning and multi-agency remain effectively
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tangential, some recent work aims at changing this picture.
In particular, Brafman et al. (2009) introduce the concept
of planning games that combines and properly extends both
certain standard game-theoretic concepts and some recent
developments in decomposition-based AI planning (Amir
and Engelhardt 2003; Brafman and Domshlak 2008). The
key point is that each agent in planning games can in prin-
ciple influence the utility of each other agent, resulting in
global inter-agent dependency within the system. Despite
that, considering planning games with non-transferable util-
ities (NTU), Brafman et al. (2009) provide some positive
computational results by exploiting the structure of the so
called agent-interaction graph. This graph captures the
global topology of the direct dependencies between the
agents’ capabilities, and the positive results of Brafman et
al. hold for tree-shaped agent-interaction graphs.

In this work we consider the model of planning games
with transferable utilities (TU), connecting between the idea
of planning games and the classical model of TU coali-
tion games. As a solution concept for the latter, we focus
on the classical concept of the core. We show that both
core-existence and core-membership queries in TU plan-
ning games can be answered efficiently when the underlying
agent-interaction graphs have a O(1)-bounded treewidth.
Hence, for the TU model we achieve much beyond the
current positive results for NTU planning games that hold
only for tree-shaped (that is, 1-bounded treewidth) agent-
interaction graphs of Brafman et al. (2009). Our contribu-
tion can be summarized from two viewpoints:
• On the side of planning, we show that our notion of stable

cost-optimal planning is tractable when cooperative cost-
optimal planning is tractable.

• On the side of cooperative game theory, the model of TU
planning games is succinctness-wise as general as all pre-
vious models for general monotone TU coalition games,
and for core computations it reveals tractability classes
strictly larger than obtained for previous succinct models.

Preliminaries and Related Work
Coalition Games and the Core
Let Φ = {ϕ1, . . . , ϕn} denote a set of agents. A (transfer-
able utility) coalition game is a pair (v,Φ) where v : 2Φ →
<+ captures the value of all possible coalitions Γ ⊆ Φ.
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Semantically, v(Γ) corresponds to an amount of welfare,
or utility, that Γ can achieve without cooperating with the
rest of the agents. Coalition games are often assumed to be
monotonic, meaning that v(Γ) ≤ v(Γ′) when Γ ⊆ Γ′ ⊆ Φ,
and hence in particular the value of Φ (called the grand
coalition) is the largest of all coalitions. We assume mono-
tonicity throughout this paper.

The key question in cooperative game theory is how the
value v(Φ) of the grand coalition should be divided among
the agents. There are several solution concepts that provide
various guarantees; in this work we focus on the notion of
stable solutions, as captured by the concept of the core (von
Neumann and Morgenstern 1944).

Definition 1. A vector x ∈ <n is an imputation for a coali-
tion game (v,Φ) if

∑n
i=1 xi = v(Φ). An imputation x for

(v,Φ) is in the core of the game if

∀Γ ⊆ Φ,
∑
ϕi∈Γ

xi ≥ v(Γ) (1)

A core solution is hence an imputation under which no
subset of agents can get a higher amount of utility by acting
on its own. For a given imputation x, a coalition that violates
its respective constraint (1) is said to be blocking for x.

The setting of coalition games poses several interesting
challenges to computational game theory. First, the basic
representation of a coalition game, called the characteris-
tic form, corresponds to the coalitions’ value function v be-
ing given in its explicit, tabular form. This of course re-
quires space linear in the number of coalitions, and hence
exponential in the number of agents. For these reasons re-
cent works have studied various succinct representations
for cooperative games. Of the rich literature on this topic,
we refer to work that explicitly considers complexity of core
related computation. Deng and Papadimitriou (1994) con-
sider coalition games representable via an edge-weighted
graph. Conitzer and Sandholm (2003) propose a represen-
tation for superadditive games; later, the same authors pro-
pose the multi-issue representation (Conitzer and Sandholm
2004) that is based on an additive decomposition of the value
function to a set of subgames. All these three representations
can be efficiently reduced to MC-nets that were later intro-
duced by Ieong and Shoham (2005). In the MC-net model,
the value function v is given via a set of logical rules such
that the body of each rule is a conjunctive formula over the
agent identities, and the rule head is a numeric weight. For
each coalition Γ, the value v(Γ) is the sum of the weights
of all the rules satisfied by Γ. For example, a rule with
body ϕ1 ∧ ϕ2 ∧ ¬ϕ3 is satisfied by Γ if ϕ1, ϕ2 ∈ Γ and
ϕ3 /∈ Γ. Another popular but non-generic representation is
by weighted voting games, for which core-related complex-
ity is studied by Elkind et al. (2007).

Both multi-issue and MC-nets models are fully expres-
sive, meaning that they can represent any transferable-utility
coalition game. Of course, the compactness of the repre-
sentation is determined by the effectiveness of the additive
decomposition to issues or rules. In general, all the afore-
mentioned proposals connect between the succinctness of
game representation with this or another compact additive

decomposition of the value function. This joint property of
the previous proposals is important for putting our work in
a proper context because, in contrast, our contribution relies
on a very different type of structural assumption that places
no explicit constraints on value function structure, and in
particular, can compactly represent value functions that are
not additively decomposable.

Once a game is represented succinctly, it becomes rel-
evant to consider the complexity of computational tasks
associated with it. The fundamental tasks related to the
core are core membership (CORE-MEM) and core existence
(CORE-EX).

CORE-MEM Given a coalition game (v,Φ) and an impu-
tation x, return true iff x is in the core.

CORE-EX Given a coalition game (v,Φ), return true iff
there exists an imputation that is a core solution for (v,Φ).

To make the solution operational, we require an algorithm
for CORE-EX to also return an imputation in the core, if
one exists. In general, with succinct representations the
two problems are computationally hard. However, previous
works emphasize the potential of exploiting the structure
of the value function to reduce the complexity of the core-
related (and other) computational queries. In particular, for
MC-nets, Ieong and Shoham (2005) show that the complex-
ity of both CORE-MEM and CORE-EX is exponential only
in the treewidth of a graph having the agents as its nodes and
an edge between a pair of agents iff both agents appear in the
body of some rule. Later on, we formally defined the notion
of treewidth.

Planning Games
The notion of planning games recently proposed by Brafman
et al. (2009) builds upon an earlier work of Brafman and
Domshlak (2008) on extending the classical, single-agent
STRIPS planning to multi-agent planning for fully coopera-
tive agents. In STRIPS, the world states are captured by sub-
sets of some atoms (propositions) P , the transitions between
states are described via actions A, and each action a is de-
scribed via its precondition pre(a) ⊂ P , and effects add(a)
and del(a). Action a is feasible in state s if pre(a) ⊆ s, and
if applied in s, it deterministically transforms the system to
state (s \ del(a)) ∪ add(a). Given an initial state I ⊆ P ,
a sequence of actions is feasible if its actions are feasible
in the respective states. A feasible action sequence achieves
g ∈ P if g holds in the final state reached by the sequence.

MA-STRIPS, a simple extension of STRIPS suggested by
Brafman and Domshlak (2008) for multi-agent settings, is
defined as follows.

Definition 2. An MA-STRIPS problem for a system of
agents Φ = {ϕi}ni=1 is given by a 5-tuple Π =
〈P, {Ai}ni=1, c, I, g〉 where P is a finite set of atoms, I ⊆ P
and g ∈ P encode the initial state and goal, respectively,
and, for 1 ≤ i ≤ n, Ai is the set of actions of agent ϕi.
Each action a ∈ A =

⋃
Ai has the STRIPS syntax and se-

mantics. c : A→ <+ is an action cost function.

A basic technical construct we adopt here is that of anno-
tated action (Brafman and Domshlak 2008). An annotated
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action of agent ϕ is a tuple (a, t, {(j1, t1), . . . , (jm, tm)})
where a ∈ Ai, t, t1, . . . , tm are time points, and j1, . . . , jm
are identities of some other agents. The semantics of such
an annotated action is that at time t, ϕ will perform action
a, and it requires agents ϕjl to provide the (jl-th) precon-
dition of a at time tjl , respectively.1 The multi-agent part
of the planning algorithms for MA-STRIPS in (Brafman and
Domshlak 2008) reasons at the level of feasible sequences
of annotated actions, or strategies, of individual agents. A
sequence of annotated actions θ of agent ϕ is called a strat-
egy if all the action preconditions along θ that have not been
requested by ϕ from the other agents can be provided by ϕ
itself in the order postulated by θ. In other words, each strat-
egy of ϕ is an abstraction of an individual plan for ϕ to only
the “interface”, that is, only to actions that have something
to do with the other agents. The cost of a ϕ’s strategy θ is
c(θ) = LocalCost(θ) +

∑
a∈θ c(a), where LocalCost(θ) is

the cost ϕ incurs to provide all the preconditions it implic-
itly requires from itself along θ. The domain of ϕ, denoted
D(ϕ), includes all strategies of ϕ, including the “null strat-
egy” ⊥, corresponding to the empty sequence. From these
building blocks the following concepts are defined:

matching A pair of strategies θ ∈ D(ϕ) and θ′ ∈ D(ϕ′) are
matching, denoted byM(θ, θ′), if (i) whenever θ′ requires
a precondition from ϕ at time t, θ contains an action pro-
ducing this precondition at t, and (ii) ϕ destroys no pre-
condition requested by ϕ′ in the respective time interval;
and vice versa. Note that M(θ,⊥) where ⊥ ∈ D(ϕ′),
means that θ in particular does not require ϕ′ to supply
any precondition.

a joint strategy θ̃ of a set of agents Γ ⊆ Φ, consists of a
strategy θ ∈ D(ϕ) for each ϕ ∈ Γ, such that all strate-
gies are pairwise matching. The domain D(Γ) is the set
of joint strategies of Γ. We use θ̃|ϕ to denote the strat-
egy of agent ϕ within θ̃. The cost of a joint strategy θ̃
is c(θ̃) =

∑
ϕ∈Γ c(θ̃|ϕ). A plan π of a set of agents

Γ ⊆ Φ is a self-sufficient joint strategy for Γ, that is, for
each (a, t, {(ji, ti)}mi=1) ∈ π and each l ∈ {1, . . . ,m},
we have ϕjl ∈ Γ. The effects eff(π) of a plan π is the set
of atoms p ∈ P such that ∃(a, t, . . .) ∈ π with p ∈ add(a)
(or p is in I , in which case t = 0), and ¬∃(a, t′, . . .) ∈ π
with p ∈ del(a) and t′ ≥ t. π is a goal-achieving plan
for Π if g ∈ eff(π).

the agent interaction graph, AIGΠ, is a graph in which
the nodes are the agents, and there is an edge between two
agents if an action of one of them either adds or deletes a
precondition of some action of the other agent.

Following the previous works on MA-STRIPS, we focus
on what is termed the simple agents assumption, corre-
sponding to considering agents that (i) can generate their
individual local plans in polynomial time, and (ii) ex-
hibit to the rest of the system personal strategies of up
to O(1) annotated actions (Brafman and Domshlak 2008;

1For convenience, we sometimes still refer directly to
plain actions in strategies, with a ∈ θ being equivalent to
∃(a, t, {(j1, t1), . . . , (jm, tm)}) ∈ θ.

Brafman et al. 2009). Note that assumption (ii) puts a linear
bound only on the “interface” between the agents, not on the
actual joint, or even individual, plans of the agents; the plans
can still be of arbitrary (polynomial) length.

Previous results for MA-STRIPS in the context of simple
agents are as follows. Brafman and Domshlak (2008) pro-
vide a polynomial-time planning algorithm for problems in
which the treewidth of AIG is bounded by a constant. This
algorithm can also be straightforwardly extended to compute
a plan (i) for a particular subset of agents Γ ⊂ Φ, and/or (ii)
one that is cost-optimal for Γ, that is, having the cost

cΓ = min
π∈D(Γ),g∈eff(π)

c(π). (2)

Brafman et al. (2009) extend MA-STRIPS to accommodate
self-interested agents, by game-theoretic means. In partic-
ular, the coalition planning games model they propose is in
the spirit of coalition games with non-transferable utilities,
and the algorithm they provide computes a stable (core) plan
when the AIG is tree-shaped. In this work we consider plan-
ning games with transferable utilities, and show that much
stronger computational results can be achieved in this set-
ting. Somewhat relevant to ours is also the recent work on
the so called cooperative boolean games (Dunne et al. 2008),
defined over a set of boolean variables, each controlled by
a different agent. The authors define solution concepts in
the spirit of the core, and show that computing such solu-
tions is hard. The mutual ground of that work and ours is in
the usage of knowledge representation to structure cooper-
ative games. However, our focus is on identifying tractable
classes of problems by exploiting the structure of interac-
tions between the agents, and, in that context, on the classi-
cal notion of core.

TU Planning Games
In planning games, self-interested agents need to cooperate
in order to achieve goals that yield a reward.
Definition 3. A TU planning game (TuPG) for a system
of agents Φ is a tuple Π = 〈P,A, c, I, g, r〉, where all the
components but r are as in MA-STRIPS, and r ∈ <+ is a
specification of a reward associated with achieving g.

Such a setting is naturally associated with coalition
games, which are defined by the value that groups of agents
obtain from cooperation. The definition for the value of a
coalition in a planning game is straightforward: it is the re-
ward associated with the goal, minus the cost the coalition
must incur to attain the goal. Since any coalition Γ will al-
ways prefer to perform its optimal plan, the cost associated
with Γ is cΓ as in Eq. 2, with cΓ = ∞ if Γ has no goal-
achieving plan whatsoever. This leads to a definition of a
coalition game, associated with a particular planning game.
Definition 4. Let Π = 〈P,A, I, g, c, r〉 be a TU planning
game for the system of agent Φ. The coalition game in-
duced by Π is (vΠ·,Φ), where vΠ(Γ) = max{r − cΓ , 0}.2

In this framework, it is assumed that any coalition Γ can
execute its optimal plan without the interference of other

2We omit the subscript Π of vΠ(·) when clear from context.
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algorithm TUPG-CM-Tree(Π,Φ)

input: a tree-shaped TuPG problem Π over agents Φ, an imputation x
output: is x in the core of the coalition game corresponding to Π

fix a topological ordering ϕ1, . . . , ϕk over Φ

for i = k down to 1:
for each θ ∈ D(ϕi):

if for some child ϕj of ϕi, θ has no matches inD(ϕj) then
remove θ fromD(ϕi)

if wg(θ) < r andM(θ,⊥) for⊥ ∈ D(Pa(ϕi)) then return false
return true

Figure 1: CORE-MEM algorithm for acyclic AIG.

agents. Formally, if π is a plan for Γ, then all Φ \ Γ do
⊥ under π. Semantically, the problem setup is as follows. A
task is published to a given agent system Φ, along with a re-
ward r. An outcome of this protocol is that a plan is selected
and r is divided in some way between the agents, that is, the
outcome is a pair (π, x) where π is a plan and x is a division
of r among the agents Φ. Due to agents’ rationality, we can
limit ourselves to solutions in which the payment for each
agent is at least as high as his cost under π. Therefore, given
a plan π, the net welfare to be divided is r − c(π). If the
grand coalition Φ cooperates, they can execute the globally
optimal plan, hence incur the minimal cost cΦ. A solution to
the induced coalition game is an imputation x, dividing the
value of the grand coalition, hence

∑n
i=1 xi = r − cΦ. xi is

the net utility given to ϕi, under the globally optimal plan.
In order to ensure that all the agents cooperate with this

optimal plan, we need to divide the net utility obtained by
this plan in a way that is stable, that is, no subset of agents
prefers to offer their own plan. In other words, if any smaller
coalition performs its plan and gets all of r, its utility should
not exceed the sum of its members’ individual utility values
under the proposed solution. This exactly corresponds to an
imputation for which (1) holds, and thus the set of stable
plans corresponds to the core of the induced coalition game.

As an example, consider a complex construction project,
such as a bridge or a building. The project requires co-
operation between various autonomous agents (builders,
plumbers, electricians, etc.), and requires coalitions among
these agents to solve a planning problem in order to figure
out their costs. Finding a core solution ensures the stabil-
ity of the economically efficient outcome by dividing the net
utility in a way that mitigates the incentives of any smaller
coalition to bid on its own.

Core Membership
Our first computational result is that CORE-MEM can be
efficiently computed for coalition games induced by a wide
class of TU planning games. We first present a simplified al-
gorithm that works for TU planning games with tree-shaped
AIGs, and generalize the algorithm afterwards.

The algorithm TUPG-CM-Tree (depicted in Figure 1),
first fixes an arbitrary rooting of AIG, and schematically
numbers the agents consistently with that rooting, starting
with the root ϕ1. The basic concept used by the algorithm is
the weight w(θ) of each agent strategy θ ∈ D(ϕ). This
weight captures the minimum, over all joint strategies θ̃
of only the agents in the subtree rooted at ϕ and having
θ̃|ϕ = θ, of the sum of total cost and imputation values of

Figure 2: AIG, agent strategies, their costs, and their match-
ing relation for the inline example.

the agents participating in θ̃. Note that, though the weight
is associated with a strategy of a single agent ϕ, it refers to
the “most blocking” joint strategy within the subtree of ϕ
that, in particular, includes θ. Crucially, these weights can
be computed bottom up from the leafs of AIG as

w(θ) =

{
0 θ = ⊥
c(θ) + xi + ϕ′∈Ch(ϕi)

minθ′∈D(ϕ′),
M(θ,θ′)

w(θ′) θ 6= ⊥

where θ ∈ D(ϕi), and Ch(ϕ) are the immediate successors
of ϕ in the rooted AIG. Essentially, a blocking coalition ex-
ists if and only if we find a strategy θ in the domain of some
agent ϕ, for which (i) w(θ) < r, and (ii) it does not re-
quire preconditions from the parent of ϕ, meaning that the
“subtree joint strategy” responsible for w(θ) is a plan.3 The
key to proving algorithm correctness is showing that for any
plan π, w(π|ϕ) is bounded by the sum of xϕi and the costs
of π|ϕi over all agents ϕi in the AIG subtree rooted in ϕ.

Theorem 1. TUPG-CM-Tree is sound and complete for
CORE-MEM in TU planning games with tree-shaped AIGs.

All proofs are omitted here due to space constraints and
are available in a full version technical report. As an ex-
ample we introduce a system of agents Φ = {ϕ1, . . . , ϕ5},
and a reward r = 20. The agents’ domains and their re-
lationships are depicted in Figure 2 on top of the system’s
AIG. Each dot in an agents’ ellipse denotes a strategy with
the cost specified right above it. A line connecting two
strategies indicate a match. Goal achieving strategies are
denoted by a ∗ next to their cost. The resulting coalitions,
their costs, and their values are shown in Table 1a. The op-
timal plan is by Γ4, hence v(Φ) = 20 − 10 = 10. Let the
input imputation be x = (0, 2, 4, 2, 2). The weights com-
puted by the algorithm are listed in Table 1b. For example,
w(θ ∈ D(ϕ3)) = 8 + 4 + 5 + 5, corresponding to local
cost + local imputation value + minimal weight of a match
in D(ϕ1) + weight of the only match in D(ϕ2). When the
algorithms encounters a strategy that requires no precondi-
tions from the parent (that is, the algorithm finds a plan), it
checks whether the weight of that strategy is smaller than
the reward. Such strategies in our example are denoted by ∗

3It also has to be ensured that any such plan is goal-achieving.
This can be done either by pruning the domain using constraint
propagation (Brafman and Domshlak 2008), or, alternatively, by
maintaining another weight value per strategy. We omit the techni-
cal details to simplify the presentation.
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agents cΓi v(Γi)

Γ1 ϕ1ϕ2ϕ3 16 4
Γ2 ϕ2ϕ3ϕ5 13 7
Γ3 ϕ4 22 0
Γ4 ϕ2ϕ3ϕ4ϕ5 10 10
Γ5 ϕ4ϕ5 15 5

w(θ) w(θ′) w(θ′′)

ϕ1 7 5

ϕ2 5 4 7

ϕ3 22∗ 10

ϕ4 24∗ 5

ϕ5 21∗ 20∗ 19∗

(a) (b)

Table 1: (a) coalitions, their costs, and their values, and
(b) strategy weights computed by the algorithm; ∗ denotes
strategies associated with completed plans.

next to the weight in Table 1b. The weight is at least the re-
ward for Γ1,Γ2,Γ3, but it is not so for Γ5, meaning that this
coalition is blocking and the algorithm returns false. Indeed,
v(Γ5) = 5 > 4 = x4 +x5. The imputation is thus not in the
core. In contrast, the imputation (0, 2, 3, 2, 3) is in the core:
the weights of θ ∈ D(ϕ3) and θ ∈ D(ϕ4) are each reduced
by 1, and are still not blocking, the weight of the (previously
blocking) plan of Γ5 is 20, meaning it is no longer blocking,
and the rest of the weights are the same as before.

Extension to Graphs with Cycles
In optimization problems over graphical structures, tree-
specialized algorithms can often be generalized to cyclic
graphs using tree decompositions. Whereas no such gen-
eralization has been found so far for the tree-specialized al-
gorithm of brafman et al. (2009) for NTU planning games,
we now show that such a generalization does exist for our
CORE-MEM algorithm for TU planning games.
Definition 5. A tree decomposition for a graph G =
(N,E) is a pair (T = (I, E), {Ψi|i ∈ I}), where T is an
acyclic graph, Ψi ⊆ N for all i ∈ I, and (i)

⋃
i∈I Ψi = N ,

(ii) for each edge (n1, n2) ∈ E, there exists Ψi such that
n1, n2 ∈ Ψi, and (iii) for any i, j, k ∈ I, if j is on the path
from i to k in T then Ψi ∩Ψk ⊆ Ψj .

Any graph can be tree-decomposed, and typically in
various ways. The width of a tree decomposition is
maxi∈I |Ψi| − 1, and the treewidth of a graph is the mini-
mum width among all its possible tree decompositions.

Let TDΠ denote a tree decomposition of AIGΠ of a prob-
lem Π. Each node in TDΠ, which we refer to as join-node,
refers to some set of agents Ψ ⊆ Φ, and the domain D(Ψ)
includes all the joint strategies of Ψ. We define the match-
ing relation over joint strategies as follows. Let θ̃ ∈ Ψ and
θ̃′ ∈ Ψ′. M(θ̃, θ̃′) if θ̃|ϕ = θ̃′|ϕ for any ϕ ∈ Ψ ∩ Ψ′.
Any collection π of join-node strategies which are pairwise
matching is a joint strategy of the respective collection of
agents. To see that, let ϕ and ϕ′ be neighbors in AIGΠ. By
property (ii) of tree decomposition, ϕ and ϕ′ must appear
together in at least one join-node Ψ. If θ̃ ∈ D(Ψ), θ = θ̃|ϕ ,
and θ′ = θ̃|ϕ′ , then M(θ, θ′) must hold. The matching rela-
tion over join-nodes ensures that θ and θ′ are the strategies
assigned to ϕ and ϕ′ (respectively) all over the tree, so we
can write θ = π|ϕ and θ′ = π|ϕ′ . Therefore, M(π|ϕ , π|ϕ′).

To generalize TUPG-CM-Tree to TDΠ, we redefine the
weight of a (now joint for agents Ψ) strategy θ̃. First, let

Ψθ̃ = {ϕ | ϕ ∈ Ψ, θ̃|ϕ 6= ⊥, ∀Ψ′ ∈ Ch(Ψ) : ϕ /∈ Ψ′}, (3)

that is, Ψθ̃ consists of the agents of Ψ that participate in θ̃
and are “new” to Ψ with respect to its children. Then

w(θ̃) =
ϕj∈Ψ

θ̃

(c(θ̃|ϕj ) + xj) +
Ψ′∈Ch(Ψ)

min
θ̃′∈D(Ψ′),
M(θ̃,θ̃′)

w(θ̃′). (4)

The condition θ̃|ϕ 6= ⊥ in (3) ensures that we count the
imputation value only for the agents in Ψ that actively
participate in the joint strategy, and the condition ∀Ψ′ ∈
Ch(Ψ), ϕ /∈ Ψ′ in (3) prevents double counting of agents
in the intersection of the join-nodes. In the resulting algo-
rithm, named TUPG-CM, we traverse TDΠ bottom-up, and
compute the weight of each joint strategy of each join-node
incrementally as before. Again, a blocking coalition exists
iff there is a joint strategy with weight smaller than r.

Theorem 2. TUPG-CM is sound and complete for CORE-
MEM in arbitrary TU planning games, and its time com-
plexity is exponential only in the treewidth of AIG.

Core Existence
Considering now the CORE-EX problem, we first note that
the existence of a core solution in TU planning games de-
pends in an interesting way on the amount of the reward.
First, it is easy to see that for any planning problem, there
exists a reward amount that ensures core existence. For in-
stance, if the reward is exactly the cost of the optimal plan
cΦ, then the coalition game is trivial (all values are zero)
and hence the zero imputation is in the core. In fact, in some
cases this is the only reward for which a core solution exists;
if two disjoint coalitions have goal-achieving plans of cost
cΦ, and r − cΦ > 0, then any imputation will be blocked by
one of these coalitions.

This is a special case of the following characterization.
Let Γ be a minimal coalition with a goal-achieving plan of
the globally optimal cost cΦ, and let Γ = Φ\Γ. The second-
best cost with respect to Γ is defined as cΓ , that is the opti-
mal value of a coalition disjoint from Γ.

Proposition 1. If there exists a coalition Γ with cΓ = cΦ for
which r > cΓ , then the core is empty.

The converse does not hold, however; it is possible that
the reward is smaller than any second-best cost, and yet the
core is empty. For example, let c{ϕ1} = c{ϕ2} = 3, let
Γ = {ϕ1, ϕ2}, and cΓ = 2. Assume also that Γ do not have
a goal-achieving plan at all, meaning that cΓ = ∞ is the
unique second-best cost. Yet, for r > 4 the core is empty
because there is no way to divide v(Φ) = r − 2 between ϕ1

and ϕ2 such that each gets at least its own value r − 3.
The fact that lower reward is more stable may seem

counter-intuitive; however, it has a simple economic expla-
nation. With a large reward, agents have more leverage to
act on their own and ensure themselves a high amount, and
this leads to inefficiencies. With a small return, agents can
gain only if they cooperate in order to reduce costs.

When Proposition 1 is not applicable, CORE-EX has to
be solved explicitly. The problem corresponds to a linear
program (LP) with objective minx

∑
ϕi∈Φ xi and a set of

constraints corresponding to (1). If the objective value of
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the solution to this LP is no higher than v(Φ), then it is
a core solution, otherwise the core is empty. The num-
ber of constraints in this LP is exponential in the number
of agents. However, the set of constraints need not be cre-
ated explicitly. It is well-known that the ellipsoid algorithm
for linear programming can be executed without the explicit
set of constraints. This requires availability of a separa-
tion oracle, which is a polynomial-time algorithm that gets
a prospect solution as input, and either confirms that all the
constraints are satisfied, or returns a violated constraint. In
our case, the TUPG-CM algorithm for core-membership can
serve as a separation oracle—for a given imputation it deter-
mines whether it is in the core or not, and if not, it identi-
fies the coalition that blocks it (corresponding to a violated
constraint). Identifying this coalition requires a very minor
extension to the algorithm.4

Theorem 3. CORE-EX for TU planning games can be
solved in time exponential only in the treewidth of AIG.

Controlling Core Existence
Given that the choice of the reward in planning games has a
substantial impact on the core non-emptiness, consider now
a slightly different problem. Suppose that an external au-
thority wishes to ensure stability of the most efficient out-
come (meaning, Φ committing to a globally cost-optimal
plan) by choosing both the reward and an imputation. Of
course, as we just discussed, a zero imputation under a zero
net reward will ensure stability of any cost-optimal plan of
Φ. However, such a solution is not likely to work in practice
because agents would normally have other, more profitable
things to do. To ensure both stability and participation, the
authority hence wishes to find the highest amount, up to the
second cost (or a reserve price) under which a core solution
still exists. Formally, a controllable-reward TU planning
games are similar to regular TU planning games with only
the reward r being replaced by an upper bound ρ ≥ 0 on the
reward. Hence our problem, denoted R-CORE-EX, is

max {r | CORE-EX(〈P,A, c, I, g, r〉) = true, r ≤ ρ}.
One way to solve R-CORE-EX is by an iterative appli-

cation of an algorithm for CORE-EX, starting from a high
reward and gradually reducing it by some ε until the answer
is positive. This procedure converges to the highest (up to
ε) “stable” reward for the following reason: if there exists
a core imputation under reward r, then for any r > ε > 0,
there also exists a core imputation under reward r − ε. To
see that, simply take a core imputation x under r, and re-
duce one of its elements by ε. The value of each coalition
given the lower reward is lower by exactly ε, while its to-
tal payment under the new imputation is lower by at most ε.
Having mentioned that, we note that R-CORE-EX can also
be solved directly via LP:

max r s.t.
r ≤ ρ, n

i=1 xi = r − cΦ
∀Γ ⊆ Φ : ϕi∈Γ xi ≥ r − cΓ

For a reward and an imputation which satisfy the first two
constraints, TUPG-CM again serves as a separation oracle.

4This relationship between CORE-MEM and CORE-EX was
noted and employed by Ieong and Shoham (2005).

Theorem 4. R-CORE-EX for controllable-reward TU plan-
ning games can be solved in time exponential only in the
treewidth of AIG.

Succinctness and Tractability
It is easy to show that TU planning games is a fully general
representation of monotonic TU coalition games. Interest-
ingly, it turns out that they are also at least as general as all
existing succinct representations surveyed earlier in the pa-
per, with respect to both succinctness and tractability results.
Theorem 5. Any coalition game (v,Φ) represented by ei-
ther a MC-net, weighted graph, multi-issue game, or super-
additive game can be efficiently compiled into a TU planning
game Π with an efficiently computable bijective mapping be-
tween the cores of (v,Φ) and Π.

Importantly, as formalized by Theorem 6 below, the con-
struction in the proof of Theorem 5 reveals that our tractabil-
ity results for TU-planning games strictly generalize the
tractability results of Ieong and Shoham (2005) in the con-
text of monotone coalition games.
Theorem 6. Any MC-net M with treewidth tw(M) can be
efficiently compiled into a TU planning game ΠM having
AIG with treewidth tw(ΠM ) ≤ tw(M)+2. Moreover, there
exist MC-netsM such that tw(M) = |Φ| and tw(ΠM ) = 1.

A simple example shows the second part of the claim: the
graph of any MC-net containing a rule whose body involves
k agents necessarily includes a clique of size k. In contrast,
a planning game can express this synergy with just a tree of
size k. The key insight of this result is as follows. Whereas
edges in previous dependency models such as MC nets must
reflect all the synergies among agents, TU planning games
reveal and exploit a more refined knowledge representation
structure, in which two agents are connected with an edge
only if one agent has a strategy that directly enables or dis-
ables a strategy of the other agent.
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