
Cloning in Elections

Edith Elkind∗
School of Physical and Mathematical

Sciences
Nanyang Technological University

Singapore

Piotr Faliszewski†
Department of Computer Science

AGH Univ. of Science and Technology
Kraków, Poland

Arkadii Slinko
Department of Mathematics

University of Auckland
Auckland, New Zealand

Abstract

We consider the problem of manipulating elections via
cloning candidates. In our model, a manipulator can replace
each candidate c by one or more clones, i.e., new candidates
that are so similar to c that each voter simply replaces c in his
vote with the block of c’s clones. The outcome of the result-
ing election may then depend on how each voter orders the
clones within the block. We formalize what it means for a
cloning manipulation to be successful (which turns out to be
a surprisingly delicate issue), and, for a number of prominent
voting rules, characterize the preference profiles for which a
successful cloning manipulation exists. We also consider the
model where there is a cost associated with producing each
clone, and study the complexity of finding a minimum-cost
cloning manipulation. Finally, we compare cloning with the
related problem of control via adding candidates.

Introduction
In real-life elections with more then two candidates, the win-
ner does not always have broad political support. This is
possible, for example, when the opposing views are repre-
sented by several relatively similar candidates, and therefore
the vote in favor of these views gets “split”. For example, it
is widely believed that in the 2000 U.S. Presidential election
spoiler candidate Ralph Nader have split votes away from
Democratic candidate Al Gore allowing Republican candi-
date George W. Bush to win.

One can also imagine scenarios where having several sim-
ilar candidates may bias the outcome in their favor. For
example, suppose that an electronics website runs a com-
petition for the best digital camera by asking consumers to
vote for their two favorite models from a given list. If the
list contains one model of each brand, and half of the con-
sumers prefer Sony to Nikon to Kodak, while the remaining
consumers prefer Kodak to Nikon to Sony, then Nikon will
win the competition. On the other hand, if each brand is

∗Supported by NRF Research Fellowship (NRF-RF2009-08).
†Supported by AGH University of Technology Grant

no. 11.11.120.865, by Polish Ministry of Science and Higher
Education grant N-N206-378637, and by Foundation for Polish
Science’s program Homing/Powroty.
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

represented by several similar models, then the “Sony” cus-
tomers are likely to vote for two models of Sony, the “Ko-
dak” customers are likely to vote for two models of Kodak,
and Nikon receives no votes.

The above-described scenarios present an opportunity for
a party that is interested in manipulating the outcome of an
election. Such a party—most likely, a campaign manager
for one of the candidates—may invest in creating “clones”
of one or more candidates in order to make its most preferred
candidate (or one of its “clones”) win the election. A natural
question, then, is which voting rules are resistant to such
manipulation, and whether the manipulator can compute the
optimal cloning strategy for a given election.

A variant of this question was first studied by Tide-
man (1987) (see also (Laffond, Laine, and Laslier 1996)),
who introduced the concept of “independence of clones”
as a criterion for voting rules. He considered a number of
well-known voting rules, and discovered that among these
rules, STV is the only one that satisfies this criterion. How-
ever, STV does not satisfy many other important criteria
for voting rules, such as Condorcet consistency. Thus,
Tideman (1987) proposed a voting rule, the “ranked pairs
rule,” that was both Condorcet-consistent and independent
of clones in all but a small fraction of settings. Subse-
quently, Tideman and Zavist (1989) proposed a modification
of this rule that is completely independent of clones. Later
it was shown that some other voting rules, such as Schulze’s
rule (Schulze 2003), are also resistant to cloning.

However, the existing work on cloning does not place
any restrictions on the number or identities of the candi-
dates that can be cloned, or the number of clones that can
be produced. On the other hand, it is clear that in practical
campaign management scenarios these issues cannot be ig-
nored: not all candidates can be cloned, and creating a clone
of a given candidate may be costly. Further, while previous
work demonstrates that many well-known voting rules are
susceptible to cloning, no attempt has been made to char-
acterize the elections in which a specific candidate can be
made a winner with respect to a given voting rule by means
of cloning. Finally, to the best of our knowledge, there has
been no work on computational aspects of cloning.

In this paper, we study feasibility and complexity of
cloning viewed as a campaign management tool. We start
by presenting a formal description of the manipulator’s

768

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

cloning problem. Compared to the model of (Tideman 1987;
Zavist and Tideman 1989): it has two additional compo-
nents: the definition of what it means for cloning to succeed
(which turns out to be a very delicate issue), and the notion
of cloning costs. We then investigate the complexity of the
manipulator’s problem for several well-known voting rules.
Interestingly, for many of these rules, the manipulable pro-
files can be characterized in terms of well-known notions of
social choice, such as Pareto optimality, Condorcet loser, or
uncovered set. However, we show that for many rules find-
ing a minimum-cost manipulation is computationally hard,
even for very simple cost models. We conclude the paper
by exploring the relationship between cloning and control
by adding candidates. Due to space constraints, most proofs
are omitted.

Preliminaries
Given a set A of alternatives (also called candidates), a
voter’s preference R is a linear order over A, i.e., a total
transitive antisymmetric binary relation over A. An election
E with n voters is given by its set of alternatives A and a
preference profile R = (R1, . . . , Rn), where Ri is the pref-
erence of voter i; we write E = (A,R). For readability, we
sometimes write �i in place of Ri. Also, we denote by |R|
the number of voters inR.

A voting rule F is a mapping from pairs of the form
(A,R), where A is some finite set and R is a preference
profile over A, to subsets of A. The elements of F(E) are
called the winners of the election E. (Thus, we allow an
election to have more than one winner, i.e., we work in the
so-called non-unique winner model.) We consider the fol-
lowing voting rules (for all rules described in terms of scores
the winners are the alternatives with the maximum score):

Plurality. The Plurality score ScP (c) of a candidate c ∈ A
is the number of voters that rank c first.

Veto. The Veto score ScV (c) of a candidate c ∈ A is the
number of voters that do not rank c last.

Borda. Given an election (A,R) with |R| = n, the Borda
score ScB(c) of a candidate c ∈ A is given by ScB(c) =∑n

i=1 |{a ∈ A | c �i a}|.
k-Approval. For any k ≥ 1, the k-Approval score Sck(c)

of a candidate c ∈ A is the number of voters that rank c
in the top k positions. Plurality is simply 1-Approval.

Plurality with Runoff. In the first stage, all but two can-
didates with the top two Plurality scores are eliminated.
Then the winner is the one of the survivors that is pre-
ferred to the other one by at least half of the voters. We
use the parallel universes rule (Conitzer, Rognlie, and Xia
2009) for intermediate tie-breaking.

Maximin. Given an election (A,R) with |R| = n, for any
a, c ∈ A, let W (c, a) = |{i | c �i a}|. The Maximin
score ScM (c) of a candidate c ∈ A is given by ScM (c) =
mina∈A W (c, a), i.e., it is the number of votes c gets in
her worst pairwise election.

Copeland. The Copeland score ScC(c) of a candidate c ∈
A is |{a | W (c, a) > W (a, c)}| − |{a | W (a, c) >
W (c, a)}|.

Our Framework
Cloning and independence of clones were previously de-
fined in (Tideman 1987; Zavist and Tideman 1989). How-
ever, we need to modify the definition given in these papers
in order to model the manipulator’s intentions and the bud-
get constraints. We will now describe our setting formally.

Definition 1. Let E = (A, (R1, . . . , Rn)) be an election
with a set of candidates A = {c1, . . . , cm}. We say that
an election E′ = (A′, (R′1, . . . , R

′
n)) is obtained from E by

replacing a candidate cj ∈ A with k clones for some k > 0
if A′ = A \ {cj} ∪ {c(1)

j , . . . , c
(k)
j } and for each i ∈ [n], R′i

is a total order over A′ such that for any a ∈ A \ {cj} and
any s ∈ [k] it holds that c

(s)
j �′i a if and only if cj �i a.

We say that an election E∗ = (A∗,R∗) is cloned from
an election E = (A,R) over a set of alternatives A =
{c1, . . . , cm} if there is a vector of non-negative integers
(k1, . . . , km) such that E∗ is derived from E by replacing
each cj , j = 1, . . . ,m, with kj clones.

Thus, when we clone a candidate c, we replace her with
a group of new candidates that are ranked together in all
voters’ preferences.

The definition above is essentially equivalent to the one
given in (Zavist and Tideman 1989); the main difference
is that we explicitly model cloning of more than one can-
didate. However, we still need to introduce the two other
components of our model: a definition of what it means for
a cloning to be successful, and the budget.

We start with the former assuming throughout this dis-
cussion that the voting rule is fixed. To see that this is a
non-trivial issue, observe that the final outcome of cloning
depends on the relative ranking of the clones chosen by each
voter, which is not under the manipulator’s control. Thus, a
cloning may succeed for some orderings of the clones, but
not for others. We can approach this issue from the worst-
case perspective, and ask if a given cloning succeeds for
some ordering, or, more ambitiously, if it succeeds for all
orderings. Alternatively, we can view our problem from the
average-case perspective. That is, we can ask whether one
can find a cloning that succeeds with certain probability, as-
suming that the voters rank the clones randomly and inde-
pendently, with each ordering of the clones being equally
likely. This models the situation where all clones of a given
candidate are similar, so that the voters do not really distin-
guish between them.

Definition 2. Given a positive real 0 < q ≤ 1, we say
that the manipulation by cloning (or simply cloning) is q-
successful if (a) the manipulator’s preferred candidate is
not a winner of the original election, and (b) a clone of the
manipulator’s preferred candidate is a winner of the cloned
election with probability at least q.

The two worst-case approaches discussed above are spe-
cial cases of this framework. Indeed, a cloning succeeds for
all orderings if and only if it is 1-successful, and it succeeds
for some ordering if and only if it is q-successful for some
q > 0; we abuse notation by referring to such cloning as 0-
successful. Saying that cloning is 0-successful is equivalent

769

to saying that the cloning would be successful if the manip-
ulator could dictate each voter how to order the clones. We
will use this observation very often as it simplifies proofs.

Observe that, according to our definition, the manipulator
succeeds as long as any one of the clones of the preferred
candidate wins. This assumption is natural if the clones rep-
resent the same company (e.g., Coke Light and Coke Zero)
or political party. However, if a campaign manager has cre-
ated a clone of his candidate simply by recruiting an inde-
pendent candidate to run on a similar platform, he may find
the outcome in which this new candidate wins less than op-
timal. We could instead define success as a victory by the
original candidate (i.e., the clone c(1)), but in many settings
this definition is too restrictive: e.g., if the voting rule is neu-
tral and we are interested in 1-successful cloning, it is essen-
tially equivalent to not allowing to clone the original candi-
date. Thus, we will use the current definition, but sometimes
comment on how our results would change if we used this
more stringent definition of victory.

Another issue that we need to address is that of the costs
associated with cloning. Indeed, the costs are an important
aspect of realistic campaign management, as the manager
is always restricted by the budget of the campaign. The
most general way to model the cloning costs for an elec-
tion with the initial set of candidates A = {c1, . . . , cm}
is via a price function p : [m] × Z+ → Z+ ∪ {0, +∞},
where p(i, j) denotes the cost of producing the j-th copy of
candidate ci. Note that p(i, 1) corresponds to not produc-
ing additional copies of i, so we require p(i, 1) = 0 for all
i ∈ [m]. We remark that it is natural to assume that all costs
are non-negative (though some of them may equal zero); the
assumption that all costs are integer-valued is made for com-
putational reasons.

Definition 3. An instance of the q-CLONING problem for
q ∈ [0, 1] is given by the initial set of candidates A =
{c1, . . . , cm}, a preference profile R over A, a manipula-
tor’s preferred candidate c ∈ A, a parameter t > 1, a price
function p : [m]× [t]→ Z+∪{0, +∞} (with the convention
that p(i, j) = p(i, t) for all i ∈ [m] and all j > t), a budget
B, and a voting rule F . We ask if there exists a q-successful
cloning with respect to F that cost at most B.

We require p(i, j) = p(i, t) for j > t to ensure that the
price function is succinctly representable. For most voting
rules that we consider, it is easy to bound the number of
clones needed for 0-successful or 1-successful cloning (if
one exists); moreover, this bound is usually polynomial in n
and m.

We focus on two natural special cases of q-CLONING:

• ZERO COST (ZC): p(i, j) = 0 for all i ∈ [m], j ∈ [t] (or,
equivalently, B = +∞). In this case we are interested if
an election is manipulable at all.

• UNIT COST (UC): p(i, j) = 1 for all i ∈ [m], j ∈
{2, . . . , t}. This model assumes that creating each new
clone has a fixed, equal cost.

We say that an election E is q-manipulable by cloning with
respect to a voting ruleF if there is a q-successful manipula-
tion by cloning with respect to F in the ZC model. Further,

we say that E is manipulable by cloning with respect to F if
it is 0-manipulable with respect to F , and strongly manipu-
lable by cloning with respect to F if it is 1-manipulable with
respect to F .

In the rest of the paper, we discuss the complexity of the
q-CLONING problem for a number of well-known voting
rules, focusing on the ZC and UC cases. Clearly, hardness
results for these special cases also imply hardness results for
the general model. Somewhat less obviously, hardness re-
sults for the ZC q-CLONING imply hardness results for UC
q-CLONING: it suffices to set B = +∞.

For poly-time computable voting rules 0-CLONING is in
NP, 1-CLONING is in Σp

2 and q-CLONING is in NPPP for
q ∈ (0, 1). However, in this paper we are interested in P-
membership and NP-hardness results only.

Plurality and Similar Rules
In this section we focus on q-CLONING for Plurality, Plural-
ity with Runoff, Veto, and Maximin. Surprisingly, these four
rules exhibit very similar behavior with respect to cloning.
Plurality We start by considering Plurality which is ar-
guably the simplest voting rule.

Theorem 4. An election is manipulable with respect to Plu-
rality if and only if the manipulator’s preferred candidate c
does not win, but is ranked first by at least one voter. More-
over, for Plurality 0-CLONING can be solved in linear time.

Briefly, the optimal algorithm replaces each candidate a

with ScP (a) > ScP (c) by
⌈

ScP (a)
ScP (c)

⌉
clones, and ensures

that each clone gets (almost) the same number of votes.
It is not too hard to strengthen Theorem 4 from 0-

manipulability to q-manipulability for any q < 1. Indeed,
if we clone each candidate from C \ {c} sufficiently many
times, then with high probability each clone is ranked first at
most ScP (c) times, and c is a winner. However, obviously
the manipulator cannot ensure that c always wins: indeed, if
all voters order the clones in the same way, the “most pop-
ular” clone of each candidate will have the same Plurality
score as the original candidate. We summarize these obser-
vations in the following proposition.

Proposition 1. For any q < 1, a Plurality election is q-
manipulable if and only if the manipulator’s preferred can-
didate c does not win, but is ranked first by at least one voter.
However, no election is strongly manipulable.

Veto and Plurality with Runoff The Veto rule exhibits
extreme vulnerability to cloning.

Theorem 5. Any election in which the manipulator’s pre-
ferred candidate c does not win is strongly manipulable with
respect to Veto. Also, for Veto both 0-CLONING and 1-
CLONING are linear time-solvable.

Note, however, that if we want the winner to be c(1)

(rather that an arbitrary clone of c), then no election is
strongly manipulable: whoever vetoed c can still veto c(1).

We now consider Plurality with Runoff. Observe first that
cloning an alternative does not change what happens in the
runoff: indeed, if ci beats cj in the runoff, ci would beat any

770

clone of cj , and if ci loses to cj in the runoff, ci would lose
to any clone of cj . Thus, if an alternative c is a Condorcet
loser, i.e., for any a ∈ A \ {c} a strict majority of voters
prefers a to c, then c cannot be made a winner by cloning.
Further, c should be able to reach the runoff. Taken together,
these two considerations lead to the following criterion.

Theorem 6. An election is manipulable with respect to Plu-
rality with Runoff if and only if (1) the manipulator’s pre-
ferred candidate c does not win, and (2) c is not a Condorcet
loser and both c and some alternative w that does not beat
c in their pairwise election are ranked first by at least one
voter. Moreover, for Plurality with Runoff 0-CLONING can
be solved in polynomial time.

In fact, we can characterize q-manipulability for q ∈ [0, 1].

Proposition 2. For any q < 1, an election is q-manipulable
with respect to Plurality with Runoff if and only if it is ma-
nipulable with respect to it. However, no election is strongly
manipulable.

Maximin Consider an election E = (A,R) with A =
{a1, . . . , ak}, R = (R1, . . . , Rk), where for i ∈ [k] the
preferences of the i-th voter are given by ai �i ai+1 �i

. . . �i ak �i a1 �i . . . �i ai−1. We will refer to any elec-
tion that can be obtained from E by renaming the candidates
as a k-cyclic election. In this election, for any i = 1, . . . , k,
there are k − 1 voters that prefer ai−1 to ai (where we as-
sume a0 = ak). Thus, the Maximin score of each candidate
in A is at most 1. Further, this remains true if we add ar-
bitrary candidates to the election, no matter how the voters
rank the additional candidates. This means that by cloning
we can reduce the Maximin score of any candidate a to 1: in
an election with n voters, we create n clones of a and con-
sider the situation where the voters’ preferences over those
clones form an n-cyclic election. Thus, a candidate c can
be made a Maximin winner as long as she is Pareto-optimal,
i.e., for any a ∈ A at least one voter prefers c to a.

Theorem 7. An election is manipulable by cloning with re-
spect to Maximin if and only if the manipulator’s preferred
candidate c does not win, but is Pareto-optimal. Further, for
Maximin 0-CLONING can be solved in linear time.

It is not clear if one can strengthen the result of Theorem 7
to q-manipulability for 0 < q < 1. However, it is easy
to see that no election is strongly manipulable with respect
to Maximin. Indeed, the only way to change a candidate’s
Maximin score is to clone her. However, after the cloning,
all voters may order all clones in the same way, in which
case the most popular clone will have the same Maximin
score as the original alternative.

Borda, k-Approval, and Copeland
We now consider Borda, k-Approval, and Copeland rules,
for which cloning issues get significantly more involved.
Borda Rule For Borda rule, just as for Maximin, Pareto-
optimality of the manipulator’s favorite alternative is neces-
sary and sufficient for the existence of successful manipula-
tion by cloning.

Theorem 8. An election is manipulable by cloning with re-
spect to Borda if and only if the manipulator’s preferred can-
didate c does not win, but is Pareto-optimal. Moreover, UC
0-CLONING for Borda can be solved in linear time.

Briefly, an optimal cloning manipulation for Borda in the
UC model is to clone c sufficiently many times and ask
all voters to order the clones in the same way. However,
for q > 0, this approach is not necessarily optimal. For
example, suppose that c is Pareto-optimal, and, moreover,
the original preference profile contains a candidate c′ that is
ranked right under c by all voters (one can think of this can-
didate as an “inferior clone” of c; however, we emphasize
that it is present in the original profile). Then one can show
that by cloning c′ sufficiently many times we can make c a
winner with probability 1. However, cloning c itself does not
have the same effect if the voters order the clones randomly
or adversarially to the manipulator. In general, we may need
to clone several candidates that are placed between c and
its “competitors” in a large number of votes, and determin-
ing the right candidates to clone might be difficult. Indeed,
it is not clear if a 1-successful manipulation can be found
in polynomial time. We thus propose determining the com-
plexity of identifying strongly manipulable profiles with re-
spect to Borda as an open problem.

A related question that is not answered by Theorem 8 is
the complexity of 0-CLONING in the general cost model.
Note that there is a certain similarity between this problem
and that of strong manipulability: in both cases, it may be
suboptimal to clone c. Indeed, for general costs, we can
prove that q-CLONING is NP-hard for any rational q.

Theorem 9. For Borda, q-CLONING in the general cost
model is NP-hard for any q ∈ [0, 1]. Moreover, this is the
case even if p(i, j) ∈ {0, 1, +∞} for all i ∈ [m], j ∈ Z+.

k-Approval Plurality, k-Approval and Borda are perhaps
the best-known representatives of a large family of voting
rules known as scoring rules, i.e., rules in which each voter
grants each candidate a certain number of points that de-
pends on that candidate’s position in the voter’s preference
order. (Formally, Plurality, k-Approval, and Borda are fam-
ilies of scoring rules.) It would be interesting to charac-
terize scoring rules vulnerable to manipulation by cloning.
However, this problem is far from trivial. The next theorem
shows that detecting manipulability and strong manipulabil-
ity is hard for k-Approval for each fixed k ≥ 2.

Theorem 10. For each fixed k, k ≥ 2, for k-Approval it is
NP-hard to decide whether an election is manipulable and
it is NP-hard to decide whether an election is strongly ma-
nipulable.

Copeland For an election E with a set of candidates A, its
pairwise majority graph is a directed graph (A, X), where
X contains an edge from a to b if more than half of the voters
prefer a to b; we say that a beats b if (a, b) ∈ X . If exactly
half of the voters prefer a to b, we say that a and b are tied
(this does not mean that their Copeland scores are equal).

For an odd number of voters, the graph (A, X) is a tour-
nament, i.e., for each pair (a, b) ∈ A2, a 6= b, we have
either (a, b) ∈ X or (b, a) ∈ X . It turns out that in

771

this case, we can characterize the set of candidates that can
be made winners by cloning in terms of of a well-known
tournament solution concept of uncovered set (Miller 1977;
Fishburn 1977; Laslier 1997), defined as follows. Given a
tournament (A, X), a candidate a is said to cover another
candidate b if a beats b as well as every candidate beaten by
b. The uncovered set of (A, X) is the set of all candidates
not covered by other candidates.

Theorem 11. For any q ∈ [0, 1], an election E with an odd
number of voters is q-manipulable with respect to Copeland
if and only if the manipulator’s preferred candidate c does
not win, but is in the uncovered set of the pairwise majority
graph of E.

Proof. Consider an election E with the set of alternatives A,
|A| = m, and an odd number of voters. Let (A, X) be its
pairwise majority graph.

Suppose that c is covered by some a ∈ A, and so
ScC(c) < ScC(a). Creating k clones of an alternative x
increases by k − 1 the score of each alternative that beats x
and decreases by k − 1 the score of the alternatives that are
beaten by x. Moreover, if we replace x with k clones, the
scores of all clones of x will be at most ScC(x)+k−1. Thus,
no matter which alternatives we clone, we cannot close the
gap between a and c (or its highest-scoring clone).

Conversely, suppose that c is in the uncovered set. Let
U(c) denote the set of all alternatives that beat c, and let
D(c) denote the set of all alternatives that are beaten by c.
First, we create 2m + 1 clones of c. This lowers the score of
each alternative in D(c) by 2m and raises the score of each
alternative in U(c) by 2m. On the other hand, by a simple
counting argument, there exists some clone of c whose score
is now greater or equal to the original score of c; denote this
clone by c′. Let Sc′C(x) denote the score of an alternative x
at this stage; we have Sc′C(c′) > Sc′C(x) for any x ∈ D(c),
Sc′C(c′) > Sc′C(x)− (4m− 2) for any x ∈ U(c).

Now create 4m + 1 clones of each alternative in D(c).
This increases c′’s score by 4m|D(c)|. Further, for any
a ∈ D(c), the score of any clone of a constructed at this
stage exceeds that of Sc′C(a) by at most 4m|D(c)|. Thus,
at this stage, c′ has a higher Copeland score than any of the
newly-generated clones. Finally, since c was not covered, no
candidate in U(c) beats all candidates in D(c). Thus, the last
step increased the scores of all candidates in U(c) by at most
4m(|D(c)|−1). It follows that c′ now has a higher Copeland
score than any candidate that is not a clone of c.

For elections with an even number of voters, the situation
is significantly more complicated. In more detail, the notion
of uncovered set can be extended to pairwise majority graphs
of arbitrary elections in a natural way (see, e.g. (Brandt and
Fischer 2007)). However, for an even number of voters, the
condition that c is in the uncovered set turns out to be neces-
sary, but not sufficient for manipulability by cloning.

On the other hand, finding an optimal-cost cloning ma-
nipulation is hard even in the UC model.

Theorem 12. For Copeland, UC q-CLONING is NP-hard
for each q ∈ [0, 1].

Detecting Clones
So far we have considered the problem of introducing clones
so that a given candidate becomes a winner. In this section
we focus on the reverse issue: Given an election, we would
like to know if it could have been obtained from a smaller
one via cloning. This is important from the point of view of
a candidate who wants to defend herself from a manipulator
performing cloning: Before she can apply any countermea-
sures, she has to determine whether clones exist.
Theorem 13. Given an election (A,R) and an integer m ≤
|A|, it is possible to detect in polynomial time if there is an
election (A′,R) such that |A′| = m, A′ ⊆ A, and (A,R)
could have been cloned from (A′,R).

Note that, in effect, the above theorem speaks of finding
a set cover of A with exactly m disjoint sets of possible
clones. Such covering problems are typically NP-hard, but
in our case we use the fact that: (a) in each election with
|A| candidates there are at most O(|A|2) easily computable
sets of candidates that can possibly be clones of each other,
and (b) each voter ranks clones in consecutive blocks, so we
can use any voter’s preference order to guide the search for
the cover. Our algorithm is based on dynamic programming
and, in fact, it can solve much more intricate problems than
given in the theorem statement. For example, we can ex-
clude some groups of candidates from consideration, or we
can attach a weight to each set of possible clones and ask for
a cover that maximizes the total weight of possible clones
used (e.g., the weights can model our beliefs on how likely
it is that candidates in a given group are indeed clones).

Theorem 13 allows us to detect elections where clones
could have been introduced. However, we may also want
to know if our favorite candidate could have been a winner
prior to the introduction of the clones.
Definition 14. Let F be a voting rule. In the DELETING-
CLONES problem for F we are given an election E =
(A,R), a designated candidate c ∈ A, and an integer t,
and we ask if there is a set A′ ⊆ A such that c ∈ A′,
|A′| ≥ |A| − t, c is an F-winner of E′ = (A′,R) and
E could have been cloned from E′.

A “yes”-instance of the DELETING-CLONES problem
corresponds to a situation where it is possible that someone
stole the election from c by introducing at most t clones.
Clearly, c’s campaign managers would like to be able to de-
tect this so as to remove the clones from the election1. In-
terestingly, DELETING-CLONES is easy for some of those
rules for which 0-CLONING is easy. We conjecture that
DELETING-CLONES is NP-complete for Copeland, Borda
and k-approval, for each fixed k > 1.
Theorem 15. DELETING-CLONES is in P for Plurality,
Maximin, and Veto.

Cloning Versus Adding Candidates
We conclude this paper by comparing cloning to the well-
studied problem of control via adding candidates.

1For example, if we detect tampering with the election then the
clones may be forced to withdraw by the center, or we could try to
discredit them in the eyes of the voters.

772

Voting rule AC control 0-Cloning 1-Cloning
Plurality NPC P —
Maximin NPC P —
Plurality w/Runoff NPC P —
Veto NPC P P
Borda NPC P ?
k-Approval, k ≥ 2 NPC NPC NP-hard
Copeland NPC NPC NP-hard

Table 1: The complexity of control via adding candidates and of
q-CLONING in the UC model for q ∈ {0, 1}. Note that for Plu-
rality, Plurality with Runoff and Maximin 1-successful cloning is
impossible. The complexity of AC control has been established
for Plurality in (Bartholdi, Tovey, and Trick 1992), for Maximin
in (Faliszewski, Hemaspaandra, and Hemaspaandra 2009), and for
Copeland in (Faliszewski et al. 2009). All cloning results and
most of the AC control results hold in both unique-winner and non-
unique winner models.

Definition 16. Let F be a voting rule. In the constructive
control by adding candidates problem we are given an elec-
tion (C ∪A, V), where A ∩ C = ∅, a designated candidate
c ∈ C, and a nonnegative integer k. We ask if there is a set
A′ ⊆ A, such that |A| ≤ k, and c is the unique winner of
election (C ∪A′, V).2

In the definition above, the set C corresponds to already reg-
istered candidates and the set A is the set of “spoiler” candi-
dates that the manipulator can introduce into the election.

While q-CLONING and AC control are similar in that both
of them deal with adding new candidates, neither of these
problems is a special case of the other. Indeed, they place
different restrictions on the candidates to be added and their
positions in the votes. Specifically, in q-CLONING the new
candidates must be clones of an existing candidate, but (es-
pecially in 0-CLONING) we have some freedom as to how
to arrange the new candidates in the votes. In contrast, in
AC control problems, the spoiler candidates need not be ad-
jacent to each other in all votes, but the order of all the can-
didates in each vote is prespecified.

Intuitively, cloning problems appear to be somewhat more
natural, as well as computationally easier than the corre-
sponding AC control problems. Indeed, we can construct
contrived instances of AC control by placing the spoiler can-
didates in any way we like, so as to facilitate computational
hardness proofs. This intuition is verified—at least to some
degree—in Table 1, where we compare the complexity of
AC control and of q-CLONING in the UC model. (The UC
model is, in essence, the exact analog of counting the num-
ber of candidates added in the AC control problems.)

To compare q-CLONING and AC control, in addition to
the results from the literature, we provide the next theorem.

Theorem 17. The constructive control by adding candi-
dates problem is NP-complete for Borda, Veto, Plurality
with runoff and, for each fixed k, for k-Approval.

See (Russel 2007) for some other results on control in Borda.
Our work is also related to that of Maudet et al. (2010)

who ask if a given candidate can become a winner after some

2Unique-winner model is standard for control problems.

new candidates are added. In contrast to our work, they do
not require the new candidates to be clones of the existing
ones; however, unlike in control by adding candidates, they
allow new candidates to be placed arbitrarily in the votes.

Conclusions
We have provided a formal model of manipulating elections
by cloning, characterized manipulable and strongly manip-
ulable profiles for many well-known voting rules, and ex-
plored the complexity of finding a minimum-cost cloning
manipulation. The grouping of voting rules according to
their susceptibility to manipulation by cloning differs from
most standard classifications of voting rules: e.g., scoring
rules behave very differently from each other, and Max-
imin is more similar to Plurality than to Copeland. Future
research directions include designing approximation algo-
rithms for the minimum-cost cloning under voting rules for
which this problem is known to be NP-hard, and extending
our results to other voting rules.

References
Bartholdi, III, J.; Tovey, C.; and Trick, M. 1992. How hard
is it to control an election? Mathematical and Computer
Modeling 16(8/9):27–40.
Brandt, F., and Fischer, F. 2007. Computational aspects of
covering in dominance graphs. In Proc. of AAAI-07.
Conitzer, V.; Rognlie, M.; and Xia, L. 2009. Preference
functions that score rankings and maximum likelihood esti-
mation. In Proc. of IJCAI-09.
Faliszewski, P.; Hemaspaandra, E.; Hemaspaandra, L.; and
Rothe, J. 2009. Llull and Copeland voting computationally
resist bribery and constructive control. JAIR 35:275–341.
Faliszewski, P.; Hemaspaandra, E.; and Hemaspaandra, L.
2009. Multimode attacks on elections. In Proc. of IJCAI-09.
Fishburn, P. 1977. Condorcet social choice functions. SIAM
Journal on Applied Mathematics 33(3):469–489.
Laffond, G.; Laine, J.; and Laslier, J. 1996. Composition
consistent tournament solutions and social choice functions.
Social Choice and Welfare 13(1):75–93.
Laslier, J.-F. 1997. Tournament Solutions and Majority Vot-
ing. Springer-Verlag.
Maudet, N.; Lang, J.; Chevaleyre, Y.; and Monnot, J. 2010.
Possible winners when new candidates are added: The case
of scoring rules. In Proc. of AAAI-10. To appear.
Miller, N. 1977. Graph theoretical approaches to the theory
of voting. Am J Polit Sci 21(4):769–803.
Russel, N. 2007. Complexity of control of Borda count elec-
tions. Master’s thesis, Rochester Institute of Technology.
Schulze, M. 2003. A new monotonic and clone-independent
single-winner election method. Voting Matters 17:9–19.
Tideman, T. 1987. Independence of clones as a criterion for
voting rules. Social Choice and Welfare 4(3):185–206.
Zavist, T., and Tideman, T. 1989. Complete independence
of clones in the ranked pairs rule. Social Choice and Welfare
64(2):167–173.

773

