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Abstract

We explore the relationship between two approaches to ra-
tionalizing voting rules: the maximum likelihood estimation
(MLE) framework originally suggested by Condorcet and re-
cently studied in (Conitzer and Sandholm 2005; Conitzer,
Rognlie, and Xia 2009) and the distance rationalizability
(DR) framework (Meskanen and Nurmi 2008; Elkind, Fal-
iszewski, and Slinko 2009). The former views voting as an
attempt to reconstruct the correct ordering of the candidates
given noisy estimates (i.e., votes), while the latter explains
voting as search for the nearest consensus outcome. We pro-
vide conditions under which an MLE interpretation of a vot-
ing rule coincides with its DR interpretation, and classify a
number of classic voting rules, such as Kemeny, Plurality,
Borda and Single Transferable Vote (STV), according to how
well they fit each of these frameworks. The classification we
obtain is more precise than the ones that result from using
MLE or DR alone: indeed, we show that the MLE approach
can be used to guide our search for a more refined notion of
distance rationalizability and vice versa.

Introduction
Various aspects of voting, and, more generally, preference
aggregation, are an active research topic in the artificial in-
telligence community. Indeed, voting can be used in a vari-
ety of applications that range from decision-making in mul-
tiagent planning (Ephrati and Rosenschein 1997) to ranking
movies (Ghosh et al. 1999) to aggregating the outputs of
web search engines (Dwork et al. 2001).

Voting has a rich history going back to ancient times, and,
unsurprisingly, the human societies explored many different
approaches to joint decision making, resulting in a number
of voting rules, or algorithms for determining the best alter-
native or the optimal ordering of the alternatives. A natural
question, then, is which voting rule is most appropriate for
a given scenario. One can try to answer this question by
choosing a rule that satisfies the voting axioms that are most

∗Supported by NRF Research Fellowship (NRF-RF2009-08).
†Supported by AGH University of Technology Grant

no. 11.11.120.865, by Polish Ministry of Science and Higher
Education grant N-N206-378637, and by Foundation for Polish
Science’s program Homing/Powroty.
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

pertinent to the problem in hand, such as monotonicity or
Pareto-optimality. However, if the voters are seen as cooper-
ative entities that aim to aggregate information about the al-
ternatives in the presence of errors—a viewpoint advocated
by Condorcet and appropriate for many of the AI applica-
tions of voting—an attractive approach to choose a voting
rule that has a natural interpretation within the Maximum
Likelihood Estimation (MLE) framework, or its younger
cousin, the distance rationalizability framework (DR).

The MLE framework is based on the idea that there is
some objective ordering of the candidates from best to worst,
and each vote is a noisy estimate of this ordering. Thus,
the role of the voting rule is to find a ranking that is most
likely to be the objectively correct one. Formally, in the
MLE framework we assume that there exists a probability
distribution of votes that is conditioned on the correct rank-
ing, and that each voter draws her vote randomly and inde-
pendently from this distribution. If a voting rule outputs a
ranking that is most likely to be the correct one given the
distribution, then we say that this rule is MLE.

The first voting rule that has been shown to fit the MLE
framework is the Kemeny rule (Young and Levenglick 1978;
Young 1988; 1995). Subsequently, Conitzer and Sand-
holm (2005) have proved that all scoring rules (a large
class of voting rules that includes Plurality, Borda and Veto,
among others) are MLE, while many other voting rules, such
as Bucklin, Copeland or Maximin are not (the case of Single
Transferable Vote (STV) is more complicated and has been
fully analyzed in (Conitzer, Rognlie, and Xia 2009)).

A related, but different approach is to interpret voting as
search for a consensus. This is the main idea behind the
distance rationalizability framework introduced in (Meska-
nen and Nurmi 2008; Elkind, Faliszewski, and Slinko 2009).
In this framework, we define a distance between elections,
and seek the closest consensus election (an election with a
single, clear winner) to the given election. A voting rule is
said to be distance-rationalizable if it elects the winner of
the nearest consensus, for some distance and some class of
consensus elections (such as, e.g., elections where all vot-
ers agree on the ranking of candidates, or elections where
all voters rank the same candidate first). Meskanen and
Nurmi (2008), and Elkind, Faliszewski and Slinko (2009)
show that almost all voting rules are distance-rationalizable,
including some rules that are provably not MLE.
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However, not all existing MLE and distance-
rationalizability results are equally appealing. For example,
the noise model in the MLE interpretation of the Kemeny
rule is extremely natural (a voter provides a correct ranking
of each pair of candidates with a fixed probability p > 0.5),
while for the scoring rules the noise model of Conitzer and
Sandholm (2005) does not seem to have a simple inter-
pretation. Nevertheless, the MLE framework alone does
not provide us with a principled way of formalizing this
intuition. For distance rationalizability, the need to refine
the original framework of (Meskanen and Nurmi 2008;
Elkind, Faliszewski, and Slinko 2009) is even more
striking. Indeed, Elkind, Faliszewski, and Slinko (2010)
show that unless we place additional restrictions on the
type of distances used, essentially any voting rule can be
distance-rationalized, rendering distance-rationalizability
results meaningless. To remedy this, they propose to
focus on rationalizing voting rules via so-called votewise
distances, which first measure by how much each voter has
to modify its vote to reach a consensus, and then aggregate
these measurements in a uniform manner. Some, but not all
distance rationalizability results can be shown to hold with
respect to such distances.

An interesting property of the votewise distances is that
their definition is syntactically very similar to that of simple
ranking scoring functions (SRSFs) introduced by Conitzer,
Rognlie and Xia (2009) in the context of the MLE frame-
work. Specifically, Conitzer, Rognlie and Xia (2009) show
that SRSFs are, in fact, equivalent to MLE rules. Thus, our
first goal in this paper is to better understand the connec-
tion between SRSFs and distance rationalizability. It turns
out that, while in general these notions are incomparable, we
can identify additional constraints under which they become
almost identical. Interestingly, the SRSF for the Kemeny
rule satisfies these constraints, which means that Kemeny
can be shown to be both MLE and DR via the same under-
lying function. On the other hand, for scoring rules, this is
not the case: while they have an interpretation within both
frameworks, this interpretation is substantially different. In
other words, if we simply ask which rules are both MLE and
DR, scoring rules are indistinguishable from Kemeny, but if
we ask which rules can be represented as MLE and DR in
a consistent manner, the Kemeny rule emerges as a better
choice. Thus, the DR framework can be used to refine the
MLE framework, i.e., to explain why some rules are better
maximum likelihood estimators than others. The converse is
also true: the very connection between SRSFs and DR is an
additional argument in favor of votewise distances, as only
such distances can be interpreted as SRSFs.

To illustrate this idea, in the second part of the paper, we
consider four rules—Kemeny, Plurality, Borda, and STV—
and rank them according to how well they can be represented
as DR, MLE, or both. Our approach places all these rules in
different categories, with Kemeny being the best, Plurality
a close second, and STV failing the test completely. This
allows us to conclude that combining MLE and DR leads
to a better understanding of voting rules than either of these
approaches on its own.

Preliminaries
Elections. An election is modelled as a pair E = (C, V ),
where C = {c1, . . . , cm} is a set of candidates and V =
(v1, . . . , vn) is a list of voters. Each voter vi is described
by a linear order �i over C, called her preference order. A
collection of preference orders is called a preference profile.
When the set of candidates is fixed, we will sometimes iden-
tify E with V . We interpret �i as the ranking of candidates
according to the i-th voter. Thus, a �1 b �1 c means that
the first voter prefers a to b to c. For brevity, we will often
write abc in place of a �i b �i c. For a set of candidates C,
we denote by L(C) the set of all possible preference orders
over C. Given a linear order v over a candidate set C and a
permutation π : C → C, let π(v) denote the order obtained
from v by replacing each candidate c ∈ C with π(c). We
say that a function φ defined on L(C)k for k ≥ 1 is neutral
if for any π : C → C and any u1, . . . , uk ∈ L(C) we have
φ(u1, . . . , uk) = φ(π(u1), . . . , π(uk)). Neutrality is a very
natural requirement in the context of voting, so from now
on we assume that all functions on L(C)k that we consider
(voting rules, distances, noise models, etc.) are neutral.

Preference functions and voting rules. In this paper, we
distinguish voting rules, i.e., mappings from elections to
subsets of candidates, and preference functions, i.e., map-
pings from elections to subsets or candidate rankings. For-
mally, a voting rule is a mapping F that given an election
E = (C, V ) outputs a set W ⊆ C of election winners,
and a preference function is a mapping f that given an elec-
tion E = (C, V ) outputs a set R = {r1, . . . , rt} of rank-
ings from L(C). The interpretation here is that f views
each of r1, . . . , rt as an equally good ranking of the can-
didates from C given votes V . Given a preference function
f , we can construct a voting rule Ff : E → 2C by setting
Ff (E) = {c ∈ C | c is ranked first in some r ∈ f(E)}.

A number of prominent preference functions are defined
via families of so-called scoring protocols. A scoring pro-
tocol for m candidates can be identified with a vector
(α1, . . . , αm) that satisfies α1 ≥ · · · ≥ αm ≥ 0. Under this
protocol, a candidate c receives αj points from each voter
that puts c in the j-th position in her ranking. Given an elec-
tion (C, V ) with |C| = m, the corresponding preference
function fα outputs a set of linear orders that rank members
of C in the order of decreasing number of points (there may
be many rankings satisfying this condition if some candi-
dates have the same number of points). We will focus on
two most prominent families of scoring protocols: Plurality
and Borda. Plurality is defined via scoring protocols of the
form (1, 0, . . . , 0), i.e., under Plurality candidates get points
for being ranked first only. For elections with m candidates,
Borda is defined via vector (m− 1,m− 2, . . . , 0).

In Single Transferable Vote (STV) preference function the
rankings are created as follows: We find a candidate with the
lowest Plurality score, remove him from the votes, place him
on the last available position in the output ranking, and re-
peat the process with the modified votes until all candidates
are processed. For STV the issue of handling ties—that is,
the issue of the order in which candidates with equal Plural-
ity scores are handled—is quite important, and is discussed
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in detail by Conitzer, Rognlie and Xia (2009); however, our
results are independent of the choice of a tie-breaking rule.

Finally, given an election E = (C, V ) with |V | = n,
Kemeny’s preference function outputs the rankings � that
minimize the expression

∑n
i=1 ds(�i,�), where ds(�i,�)

is the number of swaps of adjacent candidates needed to
transform� into�i. (Equivalently, ds(�i,�) is the number
of inversions between � and �i.)

MLEs, SRSFs and DR
We will now formally define the two approaches to think-
ing about voting rules that are discussed in this paper, i.e.,
the maximum likelihood estimation (MLE) framework and
the distance rationalizability (DR) framework, as well as the
notion of simple ranking scoring functions (SRSFs) that pro-
vides a bridge between them. Let us fix a candidate set C
throughout this section.
MLEs and SRSFs. The following overview is based
on (Conitzer, Rognlie, and Xia 2009). For each v, r ∈ L(C),
a noise model ν specifies a conditional probability Pν(v|r),
that is, the probability that a voter submits a ranking v given
that the “correct” ranking is r. We say that a preference
function f can be interpreted as a maximum likelihood es-
timator (MLE) if there exists a noise model ν such that for
each preference profile V = (v1, . . . , vn) over C, it holds
that f(C, V ) = arg maxr∈L(C)

∏n
i=1 Pν(vi|r). Intuitively,

this definition assumes that the votes are distributed accord-
ing to ν in an i.i.d. fashion.

A preference function f is a simple ranking scoring func-
tion if there exists a function sf : L(C)×L(C)→ R+∪{0}
such that for each collection V = (v1, . . . , vn) of voters
overC we have f(C, V ) = arg minr∈L(C)

∑n
i=1 sf (vi, r).

1

Via a slight abuse of notation, we will often refer to the
function sf itself as the simple ranking scoring function.
Each preference function f that can be interpreted as an
MLE is an SRSF: if f is MLE via a noise model ν, we let
sf (v, u) = − ln(Pν(v|u)) for any u, v ∈ L(C); the con-
verse is also true.

Preference functions that can be interpreted as MLE in-
clude the Kemeny rule and all scoring rules.
Distance rationalizability. The definition of distance ra-
tionalizability has two main ingredients: a notion of dis-
tance and a notion of consensus. A distance d (or, metric
d) over some set X is a function d : X × X → R such
that for each x, y, z ∈ X it holds that (a) d(x, y) ≥ 0, (b)
d(x, y) = 0 if and only if x = y, (c) d(x, y) = d(y, x), and
(d) d(x, y) + d(y, z) ≥ d(x, z). The last condition is called
the triangle inequality. If d satisfies all conditions except
(b), then d is called a pseudodistance.

A consensus is a set of elections with a clear winner. The
three most standard consensus classes are the strong una-
nimity consensus S, which consists of all elections in which
all voters rank the candidates in the same way, the weak una-
nimity consensus U , which consists of all elections in which

1Note that Conitzer, Rognlie and Xia (2009) use arg max in-
stead of arg min in their definition of SRFSs; our definition is
equivalent and more natural in our setting.

all voters rank the same candidate first, and the Condorcet
consensus C, which consists of all elections that have a Con-
dorcet winner, i.e., a candidate that would beat any other
candidate in a pairwise election. Additionally, the majority
consensusM consists of all elections in which a majority of
voters ranks the same candidate first.

The following definition is adapted from (Elkind, Fal-
iszewski, and Slinko 2009). A voting rule F is said to
be distance-rationalizable (DR) with respect to a consen-
sus class X ∈ {S,U ,M, C} if for any n ≥ 1 there is a
distance d over Ln(C) such that for each collection V =
(v1, . . . , vn) of voters, a candidate is a winner in (C, V ) un-
der F if and only if he is a winner in a nearest (with respect
to d) election in X . The definition above differs from the
one given in (Elkind, Faliszewski, and Slinko 2009) in that
it requires the distance to be defined on profiles of the same
length; for our purposes, this distinction is irrelevant.

Recall that a norm on a vector space S over R is a map-
ping N : S → R that satisfies (a) N(αu) = |α|N(u)
for any α ∈ R, u ∈ S, (b) N(u + v) ≤ N(u) + N(v)
for any u, v ∈ S, and (c) N(u) = 0 if and only if u
is the zero vector. The class of votewise distances intro-
duced in (Elkind, Faliszewski, and Slinko 2010) consists
of all product metrics obtained by composing a distance
d : L(C) × L(C) → R+ ∪ {0} over individual votes and a
normN on Rn. Formally, a distance d̂ : Ln(C)×Ln(C)→
R+ ∪ {0} is said to be votewise if there exist a distance d :
L(C)×L(C)→ R+∪{0} and a normN : Rn → R+∪{0}
such that for any u = (u1, . . . , un), v = (v1, . . . , vn) we
have d̂(u,v) = N(d(u1, v1), . . . , d(un, vn)). It is said to
be additively votewise if N is the `1-norm, i.e., d̂(u,v) =
d(u1, v1)+ · · ·+d(un, vn). Note that we can define d̂ in the
same manner for an arbitrary function d : L(C)× L(C)→
R+ ∪ {0}, i.e., d need not to be a metric.

Elkind, Faliszewski and Slinko (2010) show that essen-
tially any voting rule is DR with respect to S. However,
the distance used in their construction is not votewise. The
rules that are known to be DR via votewise distances in-
clude a variant of the Bucklin rule, the Dodgson rule, the
Kemeny rule, Plurality, and all “good” scoring rules, i.e.,
those with αi 6= αj for any i 6= j; for all of these rules
except for Bucklin, the corresponding distance is additively
votewise. These DR results make use of all four consen-
sus classes listed above: Bucklin is DR with respect toM,
Dodgson is DR with respect to C, Kemeny is DR with re-
spect to S, and Plurality and the “good” scoring rules are
DR with respect to U .
SRSF vs DR. There is a remarkable similarity between the
definition of a simple ranking scoring function and that of a
distance-rationalizable voting rule. However, in general the
two notions are incomparable.

First, in the definition of SRSF, the score of a profile is ob-
tained as a sum of individual scores, while the definition of
distance-rationalizability allows arbitrary distances. Thus,
for the purposes of the comparison, we need to focus on
rules that are DR via additively votewise distances. Note that
Elkind, Faliszewski and Slinko (2010) argue that we should
restrict ourselves to votewise distances when proving DR
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results; the comparison with SRSFs provides another argu-
ment in favor of that position. Second, in the definition of an
SRSF, we try to minimize the sum of scores with respect to a
single ranking, while in the definition of a DR rule we com-
pute the distance to a consensus, i.e., a profile of rankings.
This leads us to another refinement of the notion of distance-
rationalizability: namely, rationalizability with respect to the
consensus class S . Indeed, a strong unanimity consensus
can be represented by a single vote, so finding a vote u that
minimizes the expression

∑n
i=1 sf (vi, u) is equivalent to

finding a profile u ∈ S that minimizes ŝf ((v1, . . . , vn),u),
where ŝf is the additively votewise function that corre-
sponds to sf . With these constraints in place, given a vot-
ing rule that is rationalized with respect to S via some dis-
tance d on votes, we can form a noise model so that for each
u, v ∈ L(C), Pd(u|v) = ce−d(u,v), where c is a normal-
ization constant. This noise model almost proves that f is
an MLE: It leads to rankings with correct candidate ranked
first, but makes no guarantees as to how further candidates
are ranked (recall that the definition of DR applies to voting
rules, not to preference functions).

Conversely, consider a preference function Ff that corre-
sponds to an SRSF function sf . For the voting rule Ff to be
distance-rationalizable via ŝf , the function sf needs to be a
metric. However, the definition of an SRSF imposes no re-
strictions on sf : in particular, it can be asymmetric, or fail
the triangle inequality.

Nevertheless, there exists a voting rule for which we can
show that it is both SRSF and additively votewise DR by us-
ing the same function, namely, the Kemeny rule! Indeed, it
is not hard to see that the function ds in the definition of Ke-
meny rule is a metric. Thus, the Kemeny rule can be consis-
tently explained in both frameworks. It is interesting to ask
if other voting rules also have this property; arguably, such
rules provide the most principled approach to preference ag-
gregation. Thus, in the next section, we subject three classic
voting rules—Plurality, Borda, and STV—to this test.

Main Results
In this section we implement the program outlined in the
introduction and in the preceding section. Specifically, we
show that (a) Plurality is additively votewise DR with re-
spect to S, but not via any of its SRSFs, (b) Borda is not
additively votewise DR with respect to S, and (c) STV is
not votewise DR with respect to S, U or C, even if we allow
a very general class of norms instead of `1.

Our proofs proceed by constructing counterexamples for
the special case of three candidates. Unless stated otherwise,
we assume that the candidate set is C = {a, b, c}.

Consider a distance d over C. By symmetry and neu-
trality, d is completely described by its values on the pairs
(abc, abc), (abc, acb), (abc, bac), (abc, bca), (abc, cab), and
(abc, cba). Further, we have d(abc, abc) = 0, and by neu-
trality and symmetry we have d(abc, bca) = d(abc, cab) (to
see this, note that the permutation π given by π(a) = c,
π(b) = a, π(c) = b transforms abc into cab and bca into
abc). Set d(abc, acb) = T , d(abc, bac) = B, d(abc, cba) =
C, d(abc, bca) = d(abc, cab) = S. Table 1 gives the values

abc acb bac bca cab cba
abc 0 T B S S C
acb T 0 S C B S
bac B S 0 T C S
bca S C T 0 S B
cab S B C S 0 T
cba C S S B T 0

Table 1: The values of d for each pair of votes over C.

of d for each pair of preference orders.2 Since d is a distance,
we have T,C,B, S > 0. For a collection V = (v1, . . . , vn)
of voters and a ranking r, by d̂(V, r) we mean

∑n
i=1 d(vi, r).

Plurality. Meskanen and Nurmi (2008) show that Plural-
ity is DR with respect to U . The distance employed in their
construction is additively votewise. Further, Plurality is ra-
tionalizable with respect to S via an additively votewise
pseudodistance: for any two votes u, v ∈ L(C), u 6= v,
we can set d(u, v) = 0 if u and v rank the same candidate
first and d(u, v) = 1 otherwise. We can strengthen the latter
result to additively votewise distance-rationalizability.

Theorem 1. Plurality is additively votewise DR with respect
to S .

Proof. We start with the construction for three candidates.
Let d be the distance given by S = T = 1, B = C = 2. We
claim that d̂ rationalizes Plurality with respect to S.

To see this, consider an election E = (C, V ) with C =
{a, b, c} that has a1 voters with preferences abc, a2 voters
with preferences acb, b1 voters with preferences bca, b2 vot-
ers with preferences bac, c1 voters with preferences cab, and
c2 voters with preferences cba.

We have d̂(V, abc) = a2+b1+c1+2b2+2c2, d̂(V, acb) =
a1 + b2 + c2 + 2b1 + 2c1. Thus, the distance from V to
the nearest profile in S with winner a is min{a2 + b2 +
c2, a1 + b1 + c1}+ (b1 + c1 + b2 + c2). Symmetrically, the
distance from V to the nearest profile in S with winner b is
min{a2 + b2 + c2, a1 + b1 + c1}+ (a1 + c1 + a2 + c2), and
the distance from V to the nearest profile in S with winner c
is min{a2 + b2 + c2, a1 + b1 + c1}+ (a1 + b1 + a2 + b2).
We observe that the first component of these expressions is
identical, and the second component counts the number of
voters that do not rank a (respectively, b, c) first. Thus, the
set of Plurality winners coincides with the set of winners in
the nearest strong consensus profiles with respect to d̂.

We will now extend this construction to any number
of candidates. Fix C = {c1, . . . , cm}. For two votes
u, v ∈ L(C), we say that v can be obtained from u by
a cyclic shift if there exists an i ∈ [m] and a permuta-

2If a vote u is obtained from a vote v by permuting the second
and the third candidate (and leaving the top candidate in place),
we have d(u, v) = T , if u is obtained from v by permuting the
first and the second candidate (and leaving the bottom candidate in
place), we have d(u, v) = B, if u is obtained from v by permuting
the first and the third candidate (and leaving the center in place),
we have d(u, v) = C, and if u is obtained from v by a cyclic shift,
we have d(u, v) = S.
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tion π : C → C such that v = π(c1)� . . .�π(cm),
u = π(ci)� . . .�π(cm)�π(c1)� . . .�π(ci−1).

Partition L(C) intom groups L1, . . . , Lm, where the vot-
ers in Li rank ci on top. Set s = (m − 1)! and, for each
i ∈ [m], number the votes in Li as v1

i , . . . , v
s
i so that for any

i, j ∈ [m] the vote vtj can be obtained from the vote vti by
a cyclic shift. This is possible, since for each uti, i ∈ [m],
t ∈ [s] and each j ∈ [m], there is exactly one vote in Lj
that can be obtained from vti by a cyclic shift. Now, set
d(vti , v

r
j ) = 1 if either i = j or t = r, but (i, t) 6= (j, r),

and set d(vti , v
r
j ) = 2 if i 6= j, t 6= r. Observe that since

d(u, v) ∈ {1, 2} for u 6= v, the mapping d satisfies the tri-
angle inequality; it is also symmetric and neutral.

Consider a preference profile V . For any i ∈ [m], t ∈ [s],
let ati denote the number of voters in V with preferences vti .

We have d̂(V, vti) =
∑
r∈[s]\{t} a

r
i +

∑
j∈[m]\{i} a

t
j +

2
∑
j∈[m]\{i}

∑
r∈[s]\{t} a

r
j =

∑
j∈[m]\{i}

∑
r∈[s] a

r
j +∑

j∈[m]

∑
r∈[s]\{t} a

r
j . Consequently, the distance from

V to the nearest profile in S with winner ci is given
by

∑
j∈[m]\{i}

∑
r∈[s] a

r
j + mint∈[s]

∑
j∈[m]

∑
r∈[s]\{t} a

r
j .

The second component of this expression does not depend
on i, while its first component counts the number of voters
that do not rank ci first. Thus, the nearest strong unanimity
consensus to V has ci as a winner if and only if i minimizes
the sum

∑
j∈[m]\{i}

∑
r∈[s] a

r
j over all i ∈ [m], i.e., ci has

the largest number of first-place votes. Thus, Plurality is
distance-rationalizable with respect to S via d̂.

Yet, it is impossible to set the values B, C, S, T so that d
rationalizes Plurality with respect to S in such a way that the
nearest S-consensus orders the candidates by their Plurality
scores: If d is a distance that additively rationalizes Plurality
with respect to S, then d is not an SRSF for Plurality.

Indeed, let k ≥ 2 be an integer, and consider a collec-
tion V of 2k − 1 voters where k voters have preference or-
der acb and k − 1 voters have preference order bca. The
Plurality scores of a, b, and c are, respectively, k, k − 1,
and 0. Thus, the nearest ranking should be abc. How-
ever, it is impossible to set B, C, S, and T to ensure this,
while keeping d a metric. To see this, note that d(V, abc) =
kT + (k − 1)S and d(V, acb) = (k − 1)C. We would
have to have T + (k − 1)T + (k − 1)S < (k − 1)C. Yet,
this is impossible, because by triangle inequality we have
d(acb, abc)+d(abc, bca) ≥ d(acb, bca), that is, T +S ≥ C.
Borda. Like all scoring rules, the Borda rule is an SRSF.
Further, it is known to be DR with respect to unanimity con-
sensus U via an additively votewise distance (Meskanen and
Nurmi 2008). In fact, the distance used in this construction
is just the distance ds that rationalizes the Kemeny rule with
respect to S , i.e., Borda and Kemeny are rationalized via
the same distance, but with respect to different consensus
classes. However, the SRSF for Borda is not a distance. Our
next result explains why this is the case.

Theorem 2. For three candidates, Borda is not DR with re-
spect to S via a neutral additively votewise distance.

Proof. Suppose that Borda is additively votewise DR with

respect to S via a distance d on votes given by T , C, B, and
S, and consider two families of preference profiles, V1(k)
and V2(k), where k > 0. V1(k) and V2(k) both contain
k voters with preference order acb, k voters with preference
order bca, and one extra voter. In the case of V1(k) this extra
voter has preference order cab, and in the case of V2(k), the
extra voter has preference acb. We have

d1 = d̂(V1(k), cab) = kB + kS,

d2 = d̂(V1(k), cba) = kS + kB + T,

d3 = d̂(V1(k), acb) = kC +B,

d4 = d̂(V1(k), bca) = kC + S.

Naturally, d1 < d2. Further, for each k > 0, the unique
winner of V1(k) is c, and the unique winner of V2(k) is a.
Therefore, for any k > 0 it holds that d1 < d3, and d1 < d4,
that is, in particular, for each k we have kB+kS−B < kC.
On the other hand, for V2(k) we have:

d′1 = d̂(V2(k), cab) = (k + 1)B + kS,

d′2 = d̂(V2(k), cba) = (k + 1)S + kB,

d′3 = d̂(V2(k), acb) = kC,

d′4 = d̂(V2(k), abc) = (k + 1)T + kS.

By triangle inequality, T+S ≥ C, so d′3 ≤ d′4. Since awins
in V2(k), we have d′3 < d′1 and d′3 < d′2. In particular, for
each k > 0 it holds that kC < kB+kS+B. By combining
this inequality with the previous one, we get that for each
k > 0 it holds that B + S − B

k < C < B + S + B
k . Since k

can be arbitrarily large k, we have C = B + S.
Now, consider a preference profile V3 = (abc, acb).

Clearly, a is the unique Borda winner for V3. We have
d′′1 = d̂(V3, âbc) = T , d′′2 = d̂(V3, âcb) = T , and
d′′3 = d̂(V3, ĉab) = S + B. Since a is the unique winner, it
holds that T < S + B. In particular, T < B. However, by
triangle inequality we know that T + S ≥ C. We also know
that C = B+S, so we have T +S ≥ B+S, that is, T ≥ B.
This is a contradiction.

Single Transferable Vote. Conitzer, Rognlie, and
Xia (2009) have shown that STV is not MLE. By our
observations regarding the relationship between MLE and
DR, this implies that STV cannot be rationalized with
respect to S via an additively votewise distance. We will
now strengthen this result to (almost) arbitrary votewise
distances. We need the following definition.
Definition 1 (Bauer, Stoer, and Witzgall 1961).
A norm N in Rn is monotonic in the positive or-
thant, or Rn+-monotonic, if for any two vectors
(x1, . . . , xn), (y1, . . . , yn) ∈ Rn+ such that xi ≤ yi for all
i = 1, . . . , n we have N(x1, . . . , xn) ≤ N(y1, . . . , yn).

Bauer, Stoer, and Witzgall (1961) provide a discussion of
norms that are monotonic in the positive orthant. We re-
mark that this is a fairly weak notion of monotonicity: the
class of Rn+-monotonic norms strictly contains the class of
all monotonic norms (as defined in (Bauer, Stoer, and Witz-
gall 1961)). The requirement of Rn+-monotonicity is very
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natural when the norm in question is to be used to construct
a product metric, as in our case.

We say that a votewise distance is monotonic if the re-
spective norm is monotonic in the positive orthant.
Theorem 3. For three candidates, STV (together with
any intermediate tie-breaking rule) is not distance-
rationalizable with respect to the strong unanimity and any
neutral anonymous monotonic votewise distance.

Proof. For the sake of contradiction, suppose that STV can
be rationalized with respect to S via a neutral anonymous
monotonic votewise distance d̂, and let N denote the corre-
sponding norm. Consider a profile V with 2k + 1 voters,
k ≥ 2, where the voters’ preferences are as follows: k vot-
ers have preferences given by abc, k voters have preferences
given by bca, one voter has preferences given by cab. We
have

d1 = d̂(V, abc) = N(0, . . . , 0, S, . . . , S, S),

d2 = d̂(V, acb) = N(T, . . . , T, C, . . . , C,B),

d3 = d̂(V, bca) = N(S, . . . , S, 0, . . . , 0, S),

d4 = d̂(V, bac) = N(B, . . . , B, T, . . . , T, C).
Clearly, under STV candidate a is the unique winner in V .
Thus, it must be the case that min{d1, d2} < min{d3, d4}.
By symmetry we have d1 = d3, and hence d2 < d4.
Also, by symmetry we get d4 = N(T, . . . , T, C,B, . . . , B).
Hence, by monotonicity C < B.

Now, consider the profileW obtained by replacing the last
voter in V by a voter whose preferences are cba. We have

d′1 = d̂(W,abc) = N(0, . . . , 0, S, . . . , S, C),

d′2 = d̂(W,acb) = N(T, . . . , T, C, . . . , C, S),

d′3 = d̂(W, bca) = N(S, . . . , S, 0, . . . , 0, B),

d′4 = d̂(W, bac) = N(B, . . . , B, T, . . . , T, S).
In W , the STV-winner is b, so we have min{d′1, d′2} >
min{d′3, d′4}. Furthermore, by symmetry, we have d′3 =
N(0, . . . , 0, S, . . . , S,B). As C < B, by monotonicity we
conclude that d′1 ≤ d′3. This implies that d′2 > d′4. However,
by symmetry we have d′4 = N(T, . . . , T,B, . . . , B, S), so
by monotonicity d′2 ≤ d′4, a contradiction.

We can use similar ideas to show that STV is not distance-
rationalizable with respect to U and a neutral anonymous
monotonic votewise distance.
Theorem 4. For three candidates, STV (together with
any intermediate tie-breaking rule) is not distance-
rationalizable with respect to weak unanimity and any neu-
tral anonymous monotonic votewise distance.

Finally, we remark that STV is not DR with respect to C
since it is not Condorcet-consistent. Note that Meskanen and
Nurmi (2008) show that STV can be distance-rationalized
with respect to U . Their distance is neutral, but not votewise
(note that the notions of anonymity and monotonicity are
only defined for votewise distances, so they are not applica-
ble here). Further, it is not immediately clear if this distance
is polynomial-time computable. Thus, of all rules we have
considered, STV is DR in the weakest possible sense.

Conclusions
Maximum likelihood estimation and distance rationalizabil-
ity provide two related, but distinct approaches to under-
standing voting rules. In this paper, we have classified sev-
eral prominent voting rules according to how well they can
be explained in each of these frameworks. According to this
criterion, the best voting rule is Kemeny rule, which can be
shown to fit both the MLE framework and the DR frame-
work via the same underlying function. Plurality is a close
second: it is both an SRSF and DR via a “good” distance
with respect to our strongest consensus class S (as well as
a weaker consensus U); however, we show that one cannot
use the same function to prove both of these results. Borda
rule, too, is both an SRSF and additively votewise DR, but
only with respect to a weaker consensus class U . Finally,
STV fails this test completely: we show that it cannot be ra-
tionalized via a votewise distance with respect to any of the
standard consensus classes. Thus, our approach provides a
more refined classification of voting rules than either MLE
or DR alone.
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