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Abstract

We study the computational complexity of the counting ver-
sion of the POSSIBLE-WINNER problem for elections. In the
POSSIBLE-WINNER problem we are given a profile of voters,
each with a partial preference order, and ask if there are lin-
ear extensions of the votes such that a designated candidate
wins. We also analyze a special case of POSSIBLE-WINNER,
the MANIPULATION problem. We provide polynomial-time
algorithms for counting manipulations in a class of scoring
protocols and in several other voting rules. We show #P-
hardness of the counting variant of POSSIBLE-WINNER for
plurality and veto and give a simple yet general and practi-
cally useful randomized algorithm for a variant of POSSIBLE-
WINNER for all voting rules for which a winner can be com-
puted in polynomial time.

Introduction
Voting and elections are natural tools when a group of self-
interested agents must come up with a joint decision that
will be satisfactory to all of them, or, at least, will take each
agent’s opinion into account; see (Ephrati and Rosenschein
1997) for a classic example. A key issue is the determination
of a winner (or a set of winners) which is accomplished by
applying a voting rule. There are many different voting rules
coming with different advantages and disadvantages.

In the standard election model, one has a set of voters
and a set of candidates, and every voter provides a linear
order of all candidates according to his or her preferences.
However, in many realistic settings some of the voters may
only provide partial instead of linear orders due to various
reasons. One way to deal with such situations is to con-
sider information obtained from extensions of the partial or-
ders. For example, given a set of partial votes, it may be
important to know which candidates still have a chance of
winning or which candidate necessarily is a winner, irre-
spective of how votes will be completed. The correspond-
ing problems, called POSSIBLE-WINNER and NECESSARY-
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WINNER, were introduced by Konczak and Lang (2005)
and, e.g., studied by (Lang et al. 2007; Walsh 2007;
Xia and Conitzer 2008a; Betzler, Hemmann, and Nieder-
meier 2009).

In this work, we go one step further and propose a quan-
titative approach which instead of just investigating the ex-
istence of a “winning extension” counts all possible exten-
sions leading to a designated candidate’s victory. This al-
lows for a better comparison of the candidates. For example,
there might be situations in which all candidates are possible
winners but one candidate wins in most of the extensions.
We provide a simple model for computing the probability
with which a designated candidate wins, assuming that the
voters choose their votes’ extensions uniformly at random
(a variant of the impartial culture assumption). If we do not
have any additional knowledge, this is our best guess. An
interesting approach might be to learn a distribution of votes
from those seen so far (see (Hazon et al. 2008) for a related
piece of research). However, this is not always feasible. For
example, we might only see aggregated results (e.g., can-
didates’ scores) of those votes that have already been fully
specified. All our results hold in this limited setting.

Besides focusing on the counting version of POSSIBLE-
WINNER in general, we take a closer look at the counting
variant of a prominent special case, the MANIPULATION
problem. Herein, we have two sets of voters, one with linear
orders and one with completely unspecified orders. In con-
trast to our motivation, the MANIPULATION problem orig-
inates from the “negative” view that a group of voters, the
coalition, might have the incentive to vote differently from
their sincere orders to obtain a more desirable outcome for
the whole coalition. Such a process is undesirable but can-
not be avoided for any non-trivial voting system (Gibbard-
Satterthwaite theorem). Bartholdi, Tovey, and Trick (1989)
proposed computational hardness (focussing on worst case
analysis) as a way out. They argued that if MANIPULA-
TION for a given voting system is computationally hard, then
for practical purposes this system is resistant to manipula-
tion. In recent years, researchers have throughly expanded
this approach (see (Walsh 2007; Conitzer, Sandholm, and
Lang 2007; Faliszewski, Hemaspaandra, and Schnoor 2008;
Xia et al. 2009) for a few examples) and analyzed its lim-
its (most notably, via the approach of Friedgut, Kalai, and
Nisan (2008); see also (Xia and Conitzer 2008b)).
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Our analysis is somewhat similar to the work on vot-
ing in cooperative game theory. For example, in Weighted
Voting Games (WVGs) each agent has a weight, represent-
ing a number of votes, and a coalition (agent subset) wins
if the sum of its members’ weights exceeds a threshold.
In such games, so-called power indices measure the influ-
ence each agent has on the outcome. These indices can be
viewed as the probability of an agent to be pivotal in a ran-
dom coalition, in a way that is similar to the impartial cul-
ture assumption we use. Computing such indices in WVGs
is #P-Complete (Deng and Papadimitriou 1994), but recent
work (Bachrach et al. 2008) approximates them using algo-
rithms similar to our Theorem 6.

Our main results are as follows: (a) We provide a
polynomial-time algorithm that counts voting manipulations
for an interesting class of scoring protocols. (b) We show
that the counting variant of POSSIBLE-WINNER is #P-
hard, even for simple rules (e.g., plurality) and simple par-
tial votes (e.g., votes with only a single undetermined pair of
candidates per vote). (c) We provide a randomized, approx-
imation algorithm for the counting variant of POSSIBLE-
WINNER and thus, for the counting variant of MANIPULA-
TION as well. Several (parts of) proofs have to be omitted
due to space restrictions.

Preliminaries
Elections. An election consists of a set C = {c1, . . . , cm}
of candidates and a collection V = (v1, . . . , vn) of voters
over C. Each voter vi, 1 ≤ i ≤ n, has a linear order >
over C (often called a preference order). Intuitively, these
orders represent preferences of the voters. For example, for
C = {c1, c2, c3}, the order c3 > c2 > c1 says that c3 is
the best candidate, c1 is the worst, and c2 is ranked in be-
tween. Sometimes, when specifying a preference order we
write c > D, where c is some candidate and D is a subset
of candidates. This means that c is ranked ahead of each
member of D and members of D are ranked in an arbitrary
but fixed order. Typically, we will be interested in the per-
formance of some designated candidate, denoted p.

A voting rule R (or, a social choice correspondence R)
is a function such that given an election (C, V ), R(C, V ) =
W ⊆ C is a set of this election’s winners. A scoring pro-
tocol for elections with m candidates is a voting rule repre-
sented by a vector α of m nonnegative, nonincreasing in-
tegers (α1, . . . , αm), where each candidate c receives αj
points for each voter that ranks c on position j in his or
her preference order; the candidates with most points win.
Prominent families of scoring protocols (with one scoring
protocol per each number of candidates) include plurality
(with vectors (1, 0, . . . , 0)), veto (with vectors (1, . . . , 1, 0)),
and Borda (with vectors (m − 1,m − 2, . . . , 0), where
m is the number of candidates), k-approval (with vectors
(1k, 0m−k)), and k-veto (with vectors (1m−k, 0k)) where 1i
and 0i mean, respectively, i repetitions of 1 and i repetitions
of 0.

Possible Winners and Manipulation. Let C =
{c1, . . . , cm} be a set of candidates. A partial order
on C is a reflexive, transitive, and antisymmetric relation on

C. A linear order > extends a partial order � (> is a linear
extension of �) if for each ci, cj ∈ C it holds that ci � cj
implies ci > cj . Given a collection V = (v1, . . . , vn) of
voters with partial preference orders, a linear extension of
V is a collection V ′ = (v′1, . . . , v

′
n) of voters with linear

orders such that for each i, 1 ≤ i ≤ n, preference order of
v′i is a linear extension of the partial order of vi.

Let R be a voting rule. Given a set of candidates C, a
collection of voters V (where voters may have partial pref-
erence orders) and a designated candidate p ∈ C, the R-
POSSIBLE-WINNER problem asks, whether there is a linear
extension V ′ of V such that R(C, V ′) = {p}.1 That is, we
ask if p is a possible winner of (C, V ). In this paper we are
interested in the following generalization of the POSSIBLE-
WINNER problem.

Definition 1. Let R be a voting rule. Given a set of can-
didates C, a collection V of voters with partial preference
orders over C, and a candidate p ∈ C, the R-#POSSIBLE-
WINNER problem asks how many linear extensions V ′ of V
there are such that R(C, V ′) = {p}.

An important special case of the POSSIBLE-WINNER
problem is the coalitional manipulation problem (in short,
MANIPULATION), where the voters are divided into non-
manipulators with fully specified linear preference orders,
and manipulators whose preference orders are completely
unspecified. The counting version of the MANIPULATION
problem, #MANIPULATION, is the analogous special case
of #POSSIBLE-WINNER.
Computational Complexity. We assume familiarity with
standard notions of complexity theory such as classes P,
NP, and NP-completeness. The class #P is the counting
analog of the class NP, where instead of asking if a solution
exists, we ask how many solutions exist. Throughout this
paper we use the most typical notion of #P-hardness, intro-
duced by Valiant (1979). Basically, a counting problem A is
#P-hard if for each problem B in #P there is an algorithm
that solves B in polynomial time given oracle access to A.

Counting the Number of Manipulations
In this section, we consider the #MANIPULATION problem.
For a number of voting rules, e.g., STV (Bartholdi and Orlin
1991), Copeland (Faliszewski, Hemaspaandra, and Schnoor
2008), and maximin (Xia et al. 2009), the decision version
of MANIPULATION is NP-hard and, in consequence, so is
the counting variant. Here, we focus on rules for which the
decision version of MANIPULATION is in P. We first exam-
ine #MANIPULATION in general and then consider the case
of a single manipulator (for a wider range of voting rules).
Unbounded number of manipulators. We show that for
a practically important family of scoring protocols including
plurality, veto, and many others, #MANIPULATION is in P.

Definition 2. A scoring protocol α = (α1, . . . , αm) is k-
valued if there is a nonnegative integer β and a sequence

1That is, we assume the unique-winner model. Otherwise, in
the co-winner model, one only requires that p is one of the winners.
All our results can be easily adapted to work for the co-winner case.
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of nonincreasing integers β1, . . . , βm such that α = (β +
β1, . . . , β + βm) and all but k of β1, . . . , βm are zero.

Clearly, plurality and veto are both defined via 1-valued
scoring protocols and, for each positive integer k, k-approval
and k-veto are defined via k-valued scoring protocols. An
example of a 2-valued scoring protocol with β = 1 is
(2, 1, . . . , 1, 0).
Theorem 1. Let k be a constant positive integer. For each
voting rule R defined via a polynomial-time computable
family of k-valued scoring protocols, R-#MANIPULATION
is in P.

Proof (sketch). Let (C, V ) be an instance of #MANIP-
ULATION where C = {p, c1, . . . , cm} and V =
(v1, . . . vn′ , w1, . . . , wn) such that the voters v1, . . . , vn′

have fully specified preference orders, and the voters
w1, . . . , wn are the manipulators, having completely un-
specified preference orders.

Our algorithm first computes (by assumption, in polyno-
mial time) the scoring protocol α for m + 1 candidates.
Since α is k-valued, it is easy to convert it to the form
B = (β+β0, . . . , β+βm) fulfilling the requirements of Def-
inition 2. Due to the form of B, there are exactly k positions
in each preference order, p1, . . . , pk, that receive amounts of
points different from β. Let P = {p1, . . . , pk} and, for each
pi ∈ P , let δi be the number of points a candidate receives
for being ranked in position pi.

For each candidate c ∈ C, compute s(c), the number of
points that c receives from voters v1, . . . vn′ . For each non-
negative integer `, we define F (`) to be the number of ways
in which the voters w1, . . . , wn can choose their preference
orders such that in the resulting election (C, V ) (a) p re-
ceives exactly ` points, and (b) no other candidate receives
` points or more. Naturally, our algorithm should output∑s(p)+n·(β+β0)
`=s(p) F (`).2 It remains to show that F (`) can be

computed in polynomial time.
We show how to compute F (`), for any fixed ` ∈
{s(p), . . . , n · (β + β0)}. The “relevant part” of the votes
w1, . . . , wn is represented by an n× k table (called vote ta-
ble), where each row corresponds to a vote, and each column
corresponds to one of the positions in P . Each candidate ap-
pears at most once in each row. Intuitively, our algorithm
will place the candidates p, c1, . . . , cm, one by one in the
table in a way such that p gets exactly ` points and every
other candidate at most ` − 1 points (keeping in mind that
for each row of the table where a candidate is not placed,
this candidate gets β points). It is important to describe the
situation in the vote table after we have processed a given
subset of candidates. A vote table situation is a function g
from all subsets P from P to integers from [0, . . . , n] with∑
P⊆P g(P ) = n. For a subset P of P , g(P ) is the number

of rows in the vote table where exactly the positions from P
are unoccupied by the already processed set of candidates.
The condition

∑
P⊆P g(P ) = n is necessary since there are

2If either β or β0 are not polynomially bounded in the input
size, this summation would require a superpolynomial number of
steps. Fortunately, one can easily identify at most (n+1)k+1 values
of ` for which F (`) is nonzero. We sum over these values of ` only.

n manipulators. Clearly, there are less than (n + 1)2
k

vote
table situations, a polynomial for constant k.

We compute F (`) using dynamic programming. For each
j ∈ {0, . . . ,m}, and for each vote table situation g, we de-
fine f(j, g) to be the number of ways in which we can place
the candidates p, c1, . . . , cj in the vote table so that p has
exactly ` points, c1, . . . , cj have at most ` − 1 points each
(including the points they get from being ranked at other po-
sitions than those in P), and for each P ⊆ P the number
of rows in the vote table with exactly the positions from P
unoccupied is g(P ).

Initialization: We compute f(0, g) for each vote table
situation g as follows. Since for f(0, g) the only candi-
date that can occupy a position of P is p, all entries for a
vote table situation g with g(P ) 6= 0 for any P ( P not
of the form P − {pi}, 1 ≤ i ≤ k, are initialized with
zero. For all remaining vote table situations g, if s(p) +∑
pi∈P δig(P − {pi}) + g(P) · β 6= ` (that is, if p does not

receive exactly ` points), then set f(0, g) = 0; otherwise set
f(0, g) =

∏
pi∈P

(
(n−ti)

g(P−{pi})
)

with ti =
∑i−1
j=1 g(P−{pj})

(that is, the number of ways by which the vote table situa-
tion g can be realized by n manipulators).

Update: To complete the description of our dynamic pro-
gramming algorithm, it remains to show how to compute
f(j, g), where g is a vote table situation and 1 ≤ j ≤ m,
given the values f(j − 1, h) for each vote table situation
h. To do so, we define a candidate placement to be a func-
tion t such that for each subset P ⊆ P , and each position
pi ∈ P , t(P, pi) denotes the number of votes in which the
current candidate cj is placed at position pi and after this all
positions from P − pi are unoccupied. Clearly, for a spe-
cific vote table situation not all candidates placements are
possible; this will be checked below. Since t(P, pi) is an in-
teger between 0 and n, the number of candidate placements
is bounded from above by (n+1)k2

k

, a polynomial for con-
stant k. We initialize f(j, g) with the value 0 and for each
candidate placement t we do the following:

1. Set q = n −
∑
P⊆P

∑
pi∈P t(P, pi); q is the number of

votes in which cj does not assume any position from P .
If q < 0 then jump to the next t.

2. Compute s = s(cj)+βq+
∑
P⊆P

∑
pi∈P δit(P, pi); the

score that cj would obtain from this placement. If s ≥ `
then jump to the next t.

3. Compute a vote table situation h such that for each P ⊆
P , g(P ) = h(P ) −

∑
pi∈P t(P, pi) +

∑
pi∈P−P (P ∪

{pi}, pi). If h(P ) < 0 for some P , then jump to the
next t. Intuitively, h is the vote table situation that leads
to g via placing candidates according to t.

4. Add to f(j, g) a value K · f(j − 1, h), where K is the
number of ways in which a vote table corresponding to h
can be transformed to a vote table corresponding to g by
adding at most one candidate per vote. It is not hard to
see that K can be computed in polynomial time.

The value F (`) is equal to ((m− k)!)n
∑
g f(m, g), that

is, the sum of values f(m, g) for each vote table situation
g, times ((m− k)!)n. The ((m− k)!)n factor is necessary
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to count all ways in which the candidates in positions other
than P are placed. This finishes the proof sketch.

As an immediate corollary, we have that #MANIPULA-
TION is in P for plurality, veto, and—for each fixed k—for
k-approval and k-veto. Our algorithm is somewhat compli-
cated because we use vote table situations instead of sim-
ply keeping track of how many votes have each position
free. However, the simpler approach would not guarantee
that each candidate appears in each vote exactly once.

Now, we consider other voting rules for which MANIPU-
LATION can be decided in polynomial time.

Theorem 2. #MANIPULATION is in P for plurality with
run-off and for the cup voting rule with a fixed agenda.

We omit the proof and the definitions of the voting rules.
Briefly speking, plurality with run-off is a two-round elec-
tion system where we first pick two candidates with high-
est plurality scores, and—among them—select the one pre-
ferred by most voters. (We assume that ties in the first round
are broken lexicographically.) Our algorithm is conceptu-
ally similar to that from the proof of Theorem 1. For the cup
rule, we use the definition from (Conitzer, Sandholm, and
Lang 2007) and our counting algorithm is an extension of
the decision algorithm given there.
Single Manipulator. Bartholdi, Tovey, and Trick (1989)
investigated the computational complexity of MANIPULA-
TION for the case of a single manipulator. They gave a
natural greedy algorithm solving the decision variant of
single-manipulator MANIPULATION for many voting rules.
It seems difficult to provide such a general algorithm for the
counting version of the problem. However, we provide al-
gorithms for several interesting voting rules. Note that there
are voting rules for which single-manipulator MANIPULA-
TION is NP-complete; see, e.g., (Bartholdi and Orlin 1991).

Theorem 3. For every voting rule defined via a polynomial-
time computable family of scoring protocols, #MANIPULA-
TION for the case of a single manipulator is in P.

Proof. Let E = (C, V ) be our input election where C =
{p, c1, . . . , cm}, and V = (v1, . . . , vn, w). Our designated
candidate is p and the single manipulator is w. We define
F (k) to be the number of preference orders that w can sub-
mit such that w ranks p at position k and p is the unique
winner of the election. Our algorithm outputs

∑m+1
k=1 F (k)

and it remains to show that F (k) is computable in polyno-
mial time. We do so in the remainder of this proof.

For any k ∈ {1, . . . ,m + 1}, compute F (k) as follows.
For 1 ≤ j ≤ m, let `j = j if j < k and let `j = j + 1,
otherwise. For each j ∈ {1, . . . ,m}, define Cj to be the set
of candidates c ∈ C − {p} such that if w puts c at position
`j and p at position k, then, in the resulting election, p has
more points than c. Since the entries of a scoring vector
are nonincreasing by definition, Cj ⊆ Cj+1 for each j ∈
{1, . . . ,m}.

If p is the unique winner after being ranked at position k
by w, then each remaining position `j , 1 ≤ j ≤ m, of w’s
vote has to contain a member of Cj . Clearly, this is only
possible if for each j, 1 ≤ j ≤ m, it holds that ‖Cj‖ ≥ j.

Then, the number of ways of filling w’s vote satisfying this
constraint is exactly F (k) :=

∏m
j=1 (‖Cj‖ − (j − 1)).

Additionally, we can show that single-manipulator #MA-
NIPULATION is in P for Bucklin (see (Xia et al. 2009) for
the definition of Bucklin; proof is omitted due to space re-
strictions). In contrast, for some other voting system, such
as Copeland, for which the decision variant can be solved
in polynomial time by the greedy algorithm from Bartholdi,
Tovey, and Trick (1989), the computational complexity of
the counting variant is elusive.

Counting Version of Possible Winner
Let us now move on to the POSSIBLE-WINNER problem,
where each voter is allowed to have an arbitrary partial or-
der. For the decision variant, the only scoring rules for which
it is known that POSSIBLE-WINNER is in P are plurality
and veto while for almost all other natural scoring rules it
becomes NP-complete (Betzler and Dorn 2009). We will
see that even with modest assumptions regarding the type
of partial order required, #POSSIBLE-WINNER is #P-hard
even for plurality and veto. We complement this result
by providing a randomized, approximation algorithm for
#POSSIBLE-WINNER problem that works for polynomial-
time computable rules.
Negative Results. A direct way to show #P-hardness of
#POSSIBLE-WINNER even for plurality is based on the fact
that counting the linear extensions of a partial order is #P-
complete; see (Brightwell and Winkler 1991).

Proposition 4. Plurality-#POSSIBLE-WINNER is #P-hard
even for profiles consisting of a single partial vote, and veto-
#POSSIBLE-WINNER is #P-hard even for profiles with one
partial vote and an unbounded number of linear votes.

Proof. We give the proof for plurality and omit the similar
proof for veto. Given a partially ordered set P over a set
C, construct a plurality-#POSSIBLE-WINNER instance by
identifying the elements ofC with the candidates and adding
one new candidate, p, such that p is preferred to all other
candidates. Clearly the number of extensions in which p
wins is exactly the number of linear extensions of P .

Intuitively, the above reduction is unsatisfying. Often we
want to count the number of linear extensions to see how
frequently our designated candidate wins, but in the con-
structed profile p always wins. Also, the reduction relies
on constructing a partial vote with an unbounded number of
undetermined comparisons. The next theorem avoids these
issues.

Theorem 5. For plurality and for veto, #POSSIBLE-
WINNER is #P-hard even if there is at most one undeter-
mined pair of candidates in every partial vote.

Proof. We consider the case of plurality and omit the case
of veto which follows via a simple adaptation.

For a bipartite graph, a perfect matching is a subset of
edges such that every vertex is part of exactly one edge.
In #PERFECT-BIPARTITE-MATCHING we are given a bi-
partite graph G = (V,U ;E) with U = {u1, . . . , ut},
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V = {v1, . . . , vt}, and E ⊆ U × V and ask how many
perfect matchings this graph has. Our reduction is from
#PERFECT-BIPARTITE-MATCHING, which is well-known
to be #P-complete (Valiant 1979).

Let G = (V,U ;E) be an instance of #PERFECT-
BIPARTITE-MATCHING. For each vi ∈ V , let d(vi) be the
degree of vi and d = maxvi∈V d(vi). For each vi ∈ V , let
N(vi) = {n1(vi), . . . , nd(vi)(vi)} denote vi’s neighbors.

We construct a plurality-#POSSIBLE-WINNER instance
(C,P, p) as follows. The set of candidates is C = {p} ∪
{v1, . . . , vt} ∪ {u1, . . . , ut} where p is the designated can-
didate. The collection P of votes consists of a set of linear
votes and a set of partial votes. The linear votes are as fol-
lows: (a) There are d votes with p > C\{p}, (b) for every
vi ∈ V , there are d− d(vi) votes with vi > C\{vi}, and (c)
for every uj ∈ U , there are d− 2 votes with uj > C\{uj}.

The partial votes are as follows. For each vi ∈ V and
for 1 ≤ j ≤ d(vi), we have a voter tij with partial order
� such that vi � C\{vi, nj(vi)}, nj(vi) � C\{vi, nj(vi)}.
That is, in tij one can put either vi first and nj(vi) second
or the other way round, and the other candidates are fixed.

Claim: For each perfect matching there is a corresponding
extension in which p wins and for every extension in which
p wins there is a corresponding perfect matching.

“⇒”: Let E′ ⊆ E denote a solution for the matching-
instance. Then extend the partial votes as follows. For every
{vi, nj(vi)} ∈ E′ extend the partial vote tij to nj(vi) >
vi > C\{vi, nj(vi)} and for every {vi, nj(vi)} /∈ E′ extend
tij to vi > nj(vi) > C\{vi, nj(vi)}. This gives the follow-
ing situation. The candidate p scores d points. Each vi ∈ V
score d−d(vi) points in the linear votes and d(vi)−1 points
in the partial votes. Each uj ∈ U scores d − 2 points in the
linear votes and exactly one point in the partial votes (more
precisely, in the vote that corresponds to its matching-edge).
Thus, p is the unique winner.

“⇐”: Consider an extension in which p wins. We now show
that for every subset of partial votes that corresponds to a
vertex vi, there is exactly one vertex uj that takes a first
position and that vi and uj “match” in the bipartite graph.
We consider the partial votes in more detail. The number
of partial votes is

∑t
i=1 d(vi) and, in every partial vote, one

candidate must score one point. Every candidate uj ∈ U
can score at most one point and every candidate vi ∈ V
can score at most d(vi) − 1 points. Thus, in total all candi-
dates together can score t+

∑t
i=1(d(vi)−1) =

∑t
i=1 d(vi)

points. Hence every candidate must end up with exactly d−1
points, otherwise it or another candidate would beat-or-tie
p. In particular, for every vi ∈ V , in the set of correspond-
ing partial votes, candidate vi must score one point in all
but one of these votes. In the remaining vote one candidate
u ∈ N(vi) must score one point. Since u does not beat-or-
tie p, this is the only vote in which u takes the first position,
i.e. vertex u “matches” the vertex vi in the matching in-
stance.

The correspondence between extensions and matchings is
1-to-1, thus the number of extensions where p wins equals
the number of perfect matchings of G.

Randomized Approximation Algorithm. Despite Theo-
rem 5, in this section we give a randomized approximation
algorithm for the problem of computing a proportion of ex-
tensions of a profile where our designated candidate wins.

Theorem 6. Let R be a polynomial-time computable voting
rule. There is an algorithm that, given an instance (C, V, p)
of R-#POSSIBLE-WINNER and two positive rational num-
bers ε and δ, outputs in time polynomial in ‖C‖, ‖V ‖, 1

ε ,
and ln 1

δ a value α̃ such that the proportion α of the number
of linear extensions of V where p is the unique R-winner to
the number of all linear extensions of V is in the interval
[α̃− ε, α̃+ ε] with probability greater or equal 1− δ.

Proof. Let the notation be as in the statement of the theo-
rem. Our sampling algorithm is given below (PWP stands
for “possible-winner proportion”).

procedure R-PWP( C , V , p )
begin
r =

⌈
ln 2
δ

2 ε2

⌉
, X = 0

for i = 1 to r:
choose a random linear extension V ′ of V
if R(V ′) = {p} then X = X + 1

return X
r .

end

We claim the algorithm works in polynomial time with re-
spect to ‖C‖, ‖V ‖, 1

ε , and ln 1
δ . This is easy to see for all

steps except choosing uniformly at random the linear ex-
tension V ′ of V . Doing so seems far from trivial, but due
to Huber (2006) it is possible to uniformly sample linear
extensions of partial orders and so we can sample linear
extensions of collections of voters easily (for a short sur-
vey of early linear extensions sampling algorithms also see
(Brightwell and Winkler 1991)).

We now explain why our algorithm is correct and our rea-
son for our chosen number r of sampling iterations. Let V
be the set of all linear extensions of V and let Vp be the set
of all linear extensions of V where p is the unique winner
according to R. Let α = ‖Vp‖

‖V‖ . We seek to approximate
α. Consider the i’th iteration in the algorithm. We view the
sampling of the linear extension as a Bernoulli trial which
is successful exactly if the sampled profile is in Vp. Let Xi

be the random variable where Xi = 1 if we choose a profile
from Vp in the i’th iteration and Xi = 0 otherwise. Clearly,
E[Xi] = α. Our algorithm computes the random variable
X =

∑r
i=1Xi. It is easy to see that X has a binomial dis-

tribution of r trials with probability α of success, so X ∼
B(r, α). It is known that Xr is an unbiased, maximum like-
lihood estimator for α, and in particular E[X]

r = α. To show
that our algorithm achieves the desired accuracy and confi-
dence, we must show that the number of samples we choose
is sufficient. It holds that Pr

(∣∣∣Xr − E[X]
r

∣∣∣ ≥ ε) ≤ 2e−2rε2

(Hoeffing’s inequality (1963)). Substituting ln 2
δ

2 ε2 for r, we

get Pr
(∣∣∣Xr − E[X]

r

∣∣∣ ≥ ε) ≤ δ, which is what we want. This
completes the proof.
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The work of Huber (2006) (and some of the works ref-
erenced there) provide a fully polynomial-time randomized
approximation scheme for counting linear extensions, so the
above algorithm can approximate R-#POSSIBLE-WINNER.
However, it might give poor results due to the additive na-
ture of the approximations in Theorem 6.

On the positive side, in many situations we are more inter-
ested in proportions as produced by our algorithm than in the
exact counts of linear extensions. After all, often we want to
know which candidate is most likely to win and how big her
advantage is (assuming a variant of impartial culture).

Also, our algorithm constitutes a natural sampling-based
solution to the decision variant of the POSSIBLE-WINNER
problem. If our algorithm produces a nonzero answer, we
know that the designated candidate is a possible winner, and
if our algorithm outputs zero, we know that either our can-
didate is not a possible winner, or there are very few ex-
tensions of the votes that lead to him or her being the win-
ner. In a sense, this is an algorithmic counterpart of the re-
sults on frequency of hardness given by Friedgut, Kalai, and
Nisan (2008), and others, e.g., (Xia and Conitzer 2008b).

Conclusions and Open Problems
We provided polynomial-time algorithms for counting ma-
nipulations in various voting systems. In contrast, we
showed that #POSSIBLE-WINNER is #P-hard even for
plurality and veto for which the decision version is
in P. Nonetheless, we provided a randomized algorithm
for a practically useful variant of #POSSIBLE-WINNER.
Our algorithm is well-suited for approximately solving
non-counting variants of MANIPULATION and POSSIBLE-
WINNER.

There remain several concrete questions for future re-
search. Do there exist natural voting rules for which MA-
NIPULATION is in P whereas #MANIPULATION becomes
#P-hard? Reasonable candidates for such a voting rule
might be Bucklin (in general) or Copeland (for the case of
a single manipulator). It also is interesting to investigate the
computational complexity of Borda-#MANIPULATION for
which the NP-hardness of the decision variant is still open.
Regarding #MANIPULATION for k-valued scoring rules, we
provided a polynomial-time algorithm for constant k. Is it
possible to obtain a fixed-parameter algorithm with respect
to k, that is, is there an algorithm with running time f(k)·
poly for a computable function f? We end with a more con-
ceptual question concerning the computation of the winning
probability for a candidate under other probability distribu-
tions. Specifically, how can we obtain reasonable distribu-
tions?
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