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Abstract

We develop an efficient algorithm for computing pure strat-
egy Nash equilibria that satisfy various criteria (such as
the utilitarian or Nash—-Bernoulli social welfare functions) in
games with sparse interaction structure. Our algorithm, called
Valued Nash Propagation (VNP), integrates the optimisation
problem of maximising a criterion with the constraint satis-
faction problem of finding a game’s equilibria to construct a
criterion that defines a c—semiring. Given a suitably compact
game structure, this criterion can be efficiently optimised us-
ing message—passing. To this end, we first show that VNP
is complete in games whose interaction structure forms a hy-
pertree. Then, we go on to provide theoretic and empirical
results justifying its use on games with arbitrary structure; in
particular, we show that it computes the optimum >82% of
the time and otherwise selects an equilibrium that is always
within 2% of the optimum on average.

1 Introduction

Game theory is increasingly being used as a modelling and
design framework in artificial intelligence, particularly in
the main field of multi—agent systems. Now, such systems
are starting to contain large numbers of agents, producing
three computational problems. The first is to find compact
representations of games. In this work, we consider two
compact graphical representations known as graphical nor-
mal form and hypergraphical normal form (Kearns, Littman,
and Singh 2001; Gottlob, Greco, and Scarcello 2005; Pa-
padimitriou and Roughgarden 2008), which can be expo-
nentially more compact than the standard normal form if the
agents’ interaction structure is sufficiently sparse.

The second problem is to derive efficient methods for
solving such games, typically in the form of a Nash equi-
librium. In many multi—agent settings, a system designer
particularly wants solutions that are pure strategy Nash equi-
libria (PSNE), because they imply a stable action profile and
do not rely on utilities representing a cardinal ordering over
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outcomes, unlike mixed strategy equilibria. Consequently,
we concentrate on computing such PSNE. To date, several
methods have been suggested that exploit the compact rep-
resentations described above, including the NashProp al-
gorithm for graphical games (Kearns, Littman, and Singh
2001; Ortiz and Kearns 2003), Daskalakis and Papadim-
itriou’s (2006) adaptation of the max—product algorithm
that reduces a game to a Markov random field, and three
algorithms that work by mapping the Nash equilibrium com-
putation problem to a constraint satisfaction problem (CSP)
— PureProp (Soni, Singh, and Wellman 2007), an algo-
rithm by Vickrey and Koller (2002) and one by Gottlob,
Greco and Scarcello (2005) (GGS in the remainder). !

The third challenge, in the presence of multiple equilibria,
is to choose between them according to some criterion. This
challenge is particularly relevant in design and/or control
settings in which equilibrium is a necessary, but insufficient,
condition for a solution, and yet, this problem has received
the least attention in the algorithmic game theory literature.
Kearns, Littman, and Singh (2001) note that NashProp can
be modified to incorporate values ranking equilibria, and
give some examples of permissible criteria. Elkind, Gold-
berg, and Goldberg (2007) derive a dynamic programming
algorithm for selecting “good” equilibria according to simi-
lar criteria. Gottlob, Greco, and Scarcello (2005) show that
finding a Pareto—dominant PSNE is computationally equiv-
alent to finding an arbitrary PSNE. Finally, Greco and Scar-
cello (2004) characterise the complexity of the problem of
optimising over the set of PSNE, and provide a centralised
algorithm for the task. However, from the perspective of
an agent systems designer looking for a control / optimisa-
tion method for real applications, what is missing from these
investigations is the specification of a general—purpose dis-
tributed algorithm for these problems.

To address this shortcoming, we develop a general—
purpose algorithm, called Valued Nash Propagation (VNP),
for efficiently computing a PSNE that optimises many crite-
ria (including the most commonly used ones) in games with
bounded hypertree structure, whether they be in graphical

"Note that, because we consider only PSNE, we can focus on
the topological and algebraic structure of the optimisation prob-
lems at hand, and not concern ourselves with techniques for find-
ing mixed equilibria (c.f. (Kearns, Littman, and Singh 2001;
Vickrey and Koller 2002; Soni, Singh, and Wellman 2007)).



or hypergraphical normal form. Specifically, we develop
two versions of VNP, a complete algorithm for games with
acyclic interaction structure, and an approximate algorithm
for games with loopy topologies. These algorithms can op-
timise over PSNE using any equilibrium selection criterion
that defines a valuation algebra on a commutative (c-) semir-
ing. One of VNP’s strengths is the diversity of selection
criteria that it can optimise, which makes it suitable for var-
ious scenarios in which different criteria might be applied.
Examples include the utilitarian, Nash—Bernoulli and egali-
tarian social welfare functions, threshold constraints on util-
ity values, (e.g. minimum utility to a set of players), and
the Pareto dominance and p—dominance equilibrium refine-
ments (a generalisation of risk dominance). By so doing,
this work generalises and unifies many of the above strands
of research on computing and ranking equilibria in games
with graphical interaction structure. Our work is inspired
by general results regarding the generalised distributive
law (GDL) family of algorithms (Aji and McEliece 2000;
Kohlas and Wilson 2008), which includes max—product
mentioned earlier, max—sum for distributed constraint opti-
misation and sum—product for graphical probability mod-
els (Farinelli et al. 2008; Wainwright, Jaakkola, and Willsky
2004). The GDL algorithms have been successfully applied
to optimisation problems in agent systems with both tree
and loopy topologies. They are complete for any problem
that has an acyclic structure (either naturally or by gener-
ating a tree decomposition) and, furthermore, they run effi-
ciently on problems with bounded tree—width. However, the
GDL algorithms themselves cannot be used for equilibrium
selection in games because they do not compute equilibria.
In contrast, VNP explicitly considers best responses along-
side an ordering over outcomes, and in so doing, interleaves
equilibrium computation with the optimisation problem of
ranking equilibria.

Like the GDL algorithms, VNP uses a two—phase mes-
sage passing scheme. In the first phase, tables are ex-
changed between neighbouring agents indicating the value
of each local joint strategy. This data structure is similar
to that of NashProp and Elkind et al.’s algorithm, which
are themselves closely related to max—sum (due to their
common origins in dynamic programming), however, VNP
deals explicitly with hyperedges, and, uniquely, can operate
on games in graphical or hypergraphical normal form. In
the second phase of VNP, strategy assignments are passed
through a spanning tree, ensuring all agents agree on a par-
ticular solution, in a manner reminiscent of value propaga-
tion in dynamic programming. Specifically, we derive two
versions of VNP; a complete algorithm for hypertree games,
and an approximate algorithm for games with loopy interac-
tion structure. Furthermore, in the absence of theoretic guar-
antees, we empirically validate the use of the second version
on games with loopy interaction structure.

The paper progresses as follows: In the next section
we review relevant background material on noncooperative
games, introduce the graphical and hypergraphical normal
form representations, and in Section 3 we discuss the crite-
ria computable by VNP. Then, in Section 4, we describe the
operation of VNP on games with sparse interaction struc-
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ture, and prove forms of convergence for the cases of acyclic
and loopy topologies. Following this, in the absence of the-
oretic guarantees, in Section 5 we empirically evaluate VNP
in games with loopy topologies. Section 6 concludes.

2 Noncooperative Games

A noncooperative game in standard normal form is a tu-
ple, I' = (N,{A4;,u;}icn), consisting of a set of agents
N = {1,...,n}, and for each agent i € N, a set of
(pure) strategies or actions, A;, with joint strategy space
A = xN | A;, and a utility function u; : A — R. We use
the notation @ = {a;, a,, }, where v; is the set of i’s neigh-
bours, which in this representation is IV \ i. An agent’s goal
is to maximise its payoff, and its best response, B;(ay,),
is the set of ¢’s best strategies given its neighbours’ strate-
gies: Bj(a,,) = argmaxgea, wi(a;,a,,). Stable points
are characterised by the set of Nash equilibria, which are
defined as those joint strategy profiles, a*, in which no indi-
vidual has an incentive to change its strategy:

)—ui(ai,a*)ZO VaieAi, Vie N.

u;(al,al o

[ Rt 7]
As such, the Nash equilibrium condition can be expressed
as the sum of a set of indicator functions, I{a; € B;(a,,)},
each equal to O when an agent plays a best response and —oo
otherwise:

acA |“
i€EN

max|V (a)] = max lz I{a; € Bi(ayi)}] (1)

This criterion is equal to 0 if a is a PSNE and —oo elsewhere.

2.1 Compact Graphical Forms of Games

We begin with the requisite graph theory, before mov-
ing on to the graphical and hypergraphical normal form
game representations. In more detail, an undirected graph
G = (N, E) is composed of a set of nodes (agents), N =
{1,...,n}, connected by a set of edges, F. Building on this,
ahypergraph H = (N, F) is composed of a set of nodes, IV,
and a set of hyperedges, F, in which E C P(N), i.e. a hy-
peredge e € E is a subset of the nodes. A graph is a hyper-
graph in which all hyperedges contain two nodes. Here we
only consider simple (i.e. no duplicate edges or self—loops)
connected hypergraphs.

Because of their algorithmic benefits, we are particularly
interested in acyclic graphs and hypergraphs, or trees and
hypertrees. Trees are oriented around a root, and have the
property that each node (except for the root) has one par-
ent. A node can have any number of descendants, and those
without descendent are called leaves. Regarding hypertrees,
we rely on classical acyclicity (c.f. a—acyclicity (Beeri et al.
1983; Gottlob, Greco, and Scarcello 2005)). This is defined
in reference to a hypergraph’s vertex—hyperedge incidence
graph: a bipartite graph with one set of nodes containing
the nodes of the hypergraph and the second containing the
hyperedges. A hypergraph is acyclic if its vertex—hyperedge
incidence graph is a tree (as in Fig 1), and the leaves of this
graph are called the leaves of the hypergraph.
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Figure 1: (a) An acyclic hypergraph and (b) its bipartite vertex—
hyperedge incidence tree. Circles are agents, A to F', and hyper-
edges and squares are dependency hyperedges (graphical form)
or local games (hypergraphical form), 1 to ~ya.

Graphical Normal Form Games in graphical normal
form are represented by a graph on which each agent : is lo-
cated at a node. An agent is connected to those with which
it shares an undirected utility dependency, which make up
its set of neighbours v; C N. Its utility function is given
by an array indexed by tuples from the set X jc; ,,1|A;]. If
the game—graph is sufficiently sparse, this representation is
exponentially more compact than the standard normal form
(Kearns, Littman, and Singh 2001). We can extend this
model to one in which cliques and loops are modelled by
hyperedges. Specifically, we say that a hyperedge of a game
in graphical form contains a subset of the agents, v € P(N),
and the set of agents in -~y is written N7. We denote the set
of hyperedges containing 7 by I';, the neighbours of ¢ by
v; = Uyer, N7 \ 4, and 4’s neighbours in a particular hyper-
edge, 7, by vJ = N7\ i. Finally, we say that a game in
graphical form is tree—structured if its game graph forms a
tree, and is hypertree—structured if the game hypergraph is
acyclic (see Fig 1).

Hypergraphical Normal Form Hypergraphical normal
form is used to represent noncooperative games that
can be decomposed into several local games: I
{71,72, -, ¥m }.> In this representation, nodes of a hyper-
graph correspond to the set of agents, while the hyperedges
directly represent local games played between them (see
Fig 1). Specifically, each hyperedge is a game in standard
normal form: v = (N9, {A;, u! };,cns), where N9 C N are
the set of agents playing v, and uf : A9 — R is the pay-
off to ¢ from its involvement in 7y, where A9 = X ;cnsA;.
Agents are usually involved in more than one local game,
with the set of local games in which ¢ is involved denoted
I';. For each agent, a; represents ¢’s global strategy, which
is the same in each local game. Agent i’s neighbours are
the agents that it shares at least one local game with, de-
fined as v; = U, er, N7 \ ¢, and ¢’s neighbours in -, are
vy = N9\ i. Agent i’s payoff for an outcome is an aggre-
gation of its payoffs from each vy, € I';, typically the sum
of payoffs from each: wi(ai,a,) = 3, cp, ui(ai, a,9).
If the agents’ utilities from different interactions separate
into many local games, then the entire representation can
be exponentially smaller than the standard normal form (Pa-

“We use the same notation for hyperedges in both the graphical
and hypergraphical forms because, from an algorithmic perspec-
tive, the two types of hyperedges are treated the same way, even
though they do not necessarily represent identical relationships be-
tween the agents.
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padimitriou and Roughgarden 2008). Many computational
situations arising in control settings naturally possess hyper-
graphical structure, particularly those in which neighbours
are specified with reference to a physical domain in which
interactions are dependent on some degree of physical prox-
imity (e.g. mobile sensors, UAVs, or job scheduling prob-
lems). As for the graphical normal form, an acyclic hyper-
graphical form game is one whose local game hypergraph is
acyclic (as shown in Fig 1).

3 Equilibrium Selection Criteria

In general, any criterion that defines a c—semiring can be
computed by VNP, and many selection criteria have this
form. In more detail, a commutative semiring (c—semiring)
is a tuple (K, @, ®) defining a carrier, K, and two binary
operations ¢ and ®. These operations possess identities in
K and satisfy the following two rules: (i) ® distributes over
@ (e z® (yd 2) TRy ®dxrQ z)and (ii) both are
commutative (e.g. * ® y = y ® x) for any z,y, z € K.

One commonly—employed equilibrium selection criterion
is the utilitarian social welfare function (SWF), which se-
lects the PSNE that maximises the sum of the agents’ util-
ities. We can construct a criterion for this problem by aug-
menting the PSNE criterion (Eq 1) with the utilitarian SWF:

> (H{ai € Biay,)} + ui(ai, a,,))

iEN

(2)
This criterion returns —oo if a profile that is not a PSNE
is played, and the sum of the agents’ utilities when one is
played. Consequently, it defines a valuation algebra on the
tropical semiring, ({R U —oo}, max, +). Furthermore, the
image set of the indicator functions, {0, —oc}, are the idem-
potent elements of {RU—o0}, and the value returned if a; is
not a best response is absorbing under addition. In general,
in terms of the abstract operators defined earlier, max and +
correspond to ¢ and ®, and the indicator function returns a
value that either annihilates (and absorbs under ®) the value
in that element of the table if it is not a best response, or
leaves the value unchanged if it is a best response. Any se-
lection criteria with this form can be optimised using VNP;
two further examples are the egalitarian SWF and Nash—
Bernoulli product (Elkind et al., 2007, give more examples
of criteria fitting this form). The former ranks equilibria ac-
cording to the minimum utility received by any agent, and
employs an indicator function that returns oo if a; is a best
response and —oo if it is not. The latter aggregates indi-
vidual utilities by multiplication, with an indicator function
returning 1 for a best response and zero otherwise.

4 The VNP Algorithm

VNP operates using a two—phase message—passing se-
quence, called table—passing and assignment—passing. As
message—passing on loopy topologies is inherently more
complicated, in what follows we distinguish between the
tree and loopy hypergraph cases. Specifically, in Section 4.1
we describe the table—passing phase, which is the key com-
ponent of VNP, and prove a form of convergence for each

weglVl =g



case. Then, in Section 4.2 we describe the assignment pass-
ing phase, and prove that a single criterion—maximising out-
come is selected by the agents on hypertrees, and that if
the table—passing phase converges, a high value PSNE is se-
lected on loopy hypergraphs. For reference, pseudocode of
VNP’s phases on hypertrees is given in Fig 2, and an exam-
ple of its operation is given in Chapman et al. (2010).

4.1 The Table-Passing Phase

In this phase, agents exchange tables with their neighbours
in each hyperedge. These tables contain values which suc-
cinctly represent the value of the ranking of each joint strat-
egy of the hyperedge’s agents. Although VNP’s message—
passing schedule and termination condition for games on
hypertrees differ from that for loopy hypergraphs, the data
structures and the operations used to construct the values in
the messages are common to both. As such, we now de-
tail the common elements, and then discuss the respective
message—passing schedules and forms of convergence for
hypertrees and loopy hypergraphs independently.

The messages exchanged in the table—passing phase are
an array, indexed by the joint strategy space of the agents in
the hyperedge common to both sender and recipient. Specif-
ically, 4 passes to its neighbour j in hyperedge 7, an array
T;—.j with [ [, c vo | Ax| entries, indexed by an ordered | N'9|—
tuple representing a joint strategy of the agents in v,. Anel-
ement of a message is denoted 7;_, ;(a;, auf). Agents store
the messages they receive for use in the second phase.

Using the notation of Eq 2, elements of the message ¢
sends to j are computed by:

7;—>j (aia auf) = gnax I{al S Bi (auf s a/l/_’g)}
v !

+ui(ai7aufaay;9) Z Z Eﬂei(aiaakaaulg\i)

Y€ \vg kevl

3
g9

where v; ¥ = v; \ v/. The operations above perform two
processes. First, for a fixed joint strategy (a;,a,s) in 7y,
the summations combine the value of the joint strategy of
the agents in all of the hyperedges containing i except v,
(i.e. T'; \ 74) to give rankings to each joint strategy of i’s
neighbours outside of «y,. In this combination, the indicator
function sets the entries to the annihilating element of the
semiring if the joint strategy is not in equilibrium with a;.
Second, the maximisation then summarises the information
regarding a,,—, and projects the information onto the fixed

joint strateg§ in 4. If there is no equilibrium associated
with a;, then the output is the annihilating element. Now,
to complete the maximisation component, an agent needs
to sum messages regarding strategies of different agents. To
do this, the agent extends each incoming message to the joint
strategy space of all incoming messages, by combining the
relevant message entries to give a value for the respective
joint strategy. As an example, consider Fig 1, in which C'
would extend messages it received from A and B to |A 4| X
|Ag| x |Ac| and then perform the maximisation.
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When the termination condition for the table—passing
phase is met, agent ¢ uses the messages it received from its
neighbours to construct the following function:

Vi(ai, ar,) =I{a; € Bi(ay,)} + ui(ai, ay,)

Z Z 7Tj—>i(a/i7 auf)

ve€ls jev!

“

Next, we show that the above result is equal to the equi-
librium selection criterion (Eq 2) in games with hypertree
interaction structure (Theorem 1), while with loopy struc-
ture, the values of non-PSNE local profiles converge to the
annihilating element of the semiring (Theorem 2).

On Hypertrees Table—passing begins with messages sent
from the leaves of the hypergraph. Each internal node then
computes and sends messages to its neighbours in a par-
ticular local game ~, once it has received messages from
all of its neighbours outside 7,. After it receives messages
from all of its neighbours, ¢ constructs the function given in
Eq 4. By computing the maximum value of Eq 4 (i.e. over
{a;,a,,}), i finds a local configuration that maximises Eq 2.

Theorem 1 The table—passing phase of VNP produces the
value of the relevant c—semiring criterion for each local pure
strategy profile in a hypertree—structured game.

The proof is by induction, and is available in Chapman
et al. (2010). If the solution is unique or doesn’t exist,
then the table’s values show this unambiguously, and each
agent selects its strategy without requiring an assignment—
passing phase. However, if more than one solution ex-
ists, the agents coordinate on a solution using assignment—
passing (discussed in Section 4.2).

On Loopy Hypergraphs Even though the table—passing
phase of VNP is only provably optimal on acyclic hyper-
graphs, we may, want to deploy it on loopy hypergraphs.
Fortunately, max—sum and NashProp perform well on
such topologies (Farinelli et al. 2008; Ortiz and Kearns
2003), and because of its similarity to these algorithms, we
conjecture that VNP will also perform well on loopy hy-
pergraphs (see Section 5 for more details). However, this
necessitates changes to the message schedule and termina-
tion condition of the table—passing phase as described for
hypertrees.

The message—passing schedule used on arbitrary topolo-
gies is a “flood” schedule, whereby every agent sends a mes-
sage at each time step (this is not the only option, but has
been used to good effect in Farinelli et al. (2008) and Or-
tiz and Kearns (2003)). The agents begin by initialising all
elements of their “stored” messages to O (or the identity of
®@ in the relevant semiring). Then, at each time step ¢, they
simultaneously compute messages according to Eq 3, and
send them to their neighbours.

Now, loops in the hypergraphs prevent us from explicitly
calculating the value of the criterion. Nonetheless, we can
put a weaker guarantee on the values in the messages passed
by VNP in loopy graphs, and consequently the value of each
agent’s local version of the criterion (Eq 4). Let 7;t ; be the

message passed from 7 to j at time ¢. Call a message entry



Function vnpTablePassing(I";)
for each hyperedge g : T';,
if values Tjai have been received from all neighbours outside g, j € u;g,
compute 7; _, ; for neighbours in g, j € uf;
send 7;_, j to neighbours in g, j € uf;
end if
end for

Function vnpAssignmentPassing(I';, 7, ; Vj € v; )
if an assignment S;_,; has been received from any neighbour, j € v{ Vg € T'y,
for each hyperedge g : I';,
if no neighbour k& € g has sent a message Sk, ;,
compute S;_,, for neighbours in g, k € l/f;
send S;_, i to neighbours in g, k € Vf;
end if
end for
end if

Figure 2: Pseudocode of each phase of VNP on a hypertree.

eliminated if it equals —oo (or the annihilating element of
the semiring in use) and valued otherwise.

Theorem 2 For VNP on a game with arbitrary topology,
ast — oo, a message entry is valued if and only if it corre-
sponds to local strategy profile that is a PSNE.

The proof is sketched as follows:? First, for sufficiency,
let a* be a PSNE profile. Then for all ¢ > 0, all mes-
sage elements corresponding to the subset of a* in 7,
Ti’;j(aj, a’y), are valued. This can be shown to be true
by induction: For ¢t = 0 it is true by the initialisation of
the stored messages, and then for any ¢ > 0, any entry of
a message sent to j corresponding to a* is valued, and j it-
self will never eliminate that entry, so it is true for all ¢, and
therefore true for the limit messages. Thus we have proved
the sufficient condition. Second, to prove necessity, note
that once an entry in a stored message is eliminated, it can-
not become valued again. Consequently, because any global
profile that contains at least one action that is not a best re-
sponse is eliminated at some ¢ < oo, any valued entry in a
stored message that does not correspond to a PSNE profile
is also eliminated.

In other words, in the limit, Eq 4 is only valued for lo-
cal profiles corresponding to a PSNE, and, therefore, when
the assignment—passing phase selects an outcome based on
Eq 4, it is always a PSNE. Furthermore, if no PSNE solu-
tion exists, then the algorithm will report this fact because
all the entries in all the messages will converge to the anni-
hilating element. However, because the values of the (non—
eliminated) entries in the tables do not necessarily converge
to the true values of Eq 2, the equilibrium selected by the
agent may not maximise the criterion. Nonetheless, we ex-
pect that the equilibrium selected should still do very well
by the criterion, and test this hypothesis in Section 5, where
we run VNP on a batch of loopy hypergraphical games.

30ur proof follows a similar argument to that of Ortiz and
Kearns (2003) for the convergence of messages in the NashProp
algorithm in loopy graphical games.
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Although we have proven a form of convergence for
table—passing on loopy graphs, it is not possible to precisely
define a termination condition for this phase. A partial con-
dition is that table—passing should terminate if all of the
messages being passed converge. However, this cannot be
known beforehand, so, in its absence, this phase should al-
low sufficient time for the values in the messages passed by
the agents to converge, if indeed they are going to converge
(details of our implementation are presented in Section 5).

4.2 The Assignment—Passing Phase

Once the termination condition for the table—passing phase
has been satisfied, the function in Eq 4 is computed and each
agent uses it to decide on a strategy. If a unique solution (or
the non—existence of one) is not evident at the end of the
table—passing phase, then the agents coordinate on a single
solution using an assignment—passing phase. As before, we
need to use different approaches on hypertrees and loopy hy-
pergraphs, and the two cases are discussed separately below.

On Hypertrees To begin, a spanning tree is constructed,
emanating from an arbitrarily selected root node, down
which parents pass messages containing local strategy pro-
files to their descendent This tree is built by first connecting
the root to all of its neighbours. A particular agent, ¢, which
interacts with the root through ~,, is either a leaf or an in-
ternal node involved in other hyperedges. If it is an internal
node, then it is the only agent that appears in both ~, and
any of its other hyperedges (by the definition of acyclicity).
As such, the spanning tree is extended by connecting ¢ to all
of its neighbours except those in 7,4, and so on.

Given this spanning tree, the root randomly selects a lo-
cal strategy profile corresponding to one maximum of its
version of Eq 4. For the root node, the action is given by
argmax,, , [Vi(ai,any,)]. Tt then sends messages, S,
to its neighbzours in each hyperedge, 7 € N79, containing
the local strategy, ans, for 4. In other words, the root se-
lects a complete strategy profile for each of its hyperedges
and directs each neighbour to play its element of this pro-
file. As for the table—passing computations, this operation
is polynomial in the size of the local joint action space of
a player in both the graphical and hypergraphical represen-
tations of the game. For an internal ¢, a; and some of the
actions in a,, will be assigned by the agent’s parent node,
so the argmax operation is carried out over only the unas-
signed variables In hyperedges with three or more agents,
this is necessary to avoid mis—coordination between two of
the root’s neighbours, because more than one optimal joint
strategy could be associated with the root’s strategy. Then ¢
selects a joint strategy for all of its hyperedges except vy, that
both maximises its version of Eq 4 and contains the strategy
assigned to it by the root, choosing randomly between equiv-
alent strategies. It sends S;_.; strategy assignments to all of
its unassigned neighbours j. This process continues until
each leaf of the spanning tree is assigned a strategy by its
parent. At this point, all agents have been assigned a strat-
egy and the algorithm terminates. Conceivably, the span-
ning tree could be constructed and the strategies propagated
as part of one process.



Lemma 1 The assignment—passing phase of VNP for hy-
pertrees assigns each agent a strategy corresponding
to a single criterion—-maximising PSNE in a hypertree—
structured game.

The proof is omitted for brevity, but follows the same ar-
gument for the max—product algorithm presented in Wain-
wright, Jaakkola, and Willsky (2004). However it should
be clear from the above that, by induction, the root’s choice
propagates through the width—first spanning tree without any
mis—coordination of agents’ strategies. Combining Theo-
rem | and Lemma 1 gives us the following result.

Theorem 3 In acyclic graphical and hypergraphical
games, for any selection criterion that defines a valuation
algebra on a c—semiring, VNP computes an optimal PSNE.

Additionally, if the number of neighbours and the number
of hyperedges each agent has is bounded, VNP is polyno-
mial in the total number of agents, because each local com-
putation is polynomially bound.* Finally, on a hypertree, the
number of messages exchanged in order to carry out both
phases of computation in VNP is at most  + s steps, where
r is the diameter of the game hypertree and s is the length of
the longest path from root to leaf in the assignment spanning
tree (if an assignment—passing phase is required).

On Loopy Hypergraphs On loopy hypergraphs, if more
than one solution exists and/or table—passing does not con-
verge, then the agents must use a more sophisticated strategy
assignment procedure than on acyclic hypergraphs. Again,
the first step is to build a spanning tree, in the same manner
as for acyclic topologies, with the additional condition that
an agent only links to its unconnected neighbours.
However, the presence of loops may mean that neigh-
bours in the game may have different parents in the span-
ning tree. Then, in the case of multiple optimal solutions,
if the procedure for hypertrees described earlier is followed,
these agents may be assigned conflicting strategies by dif-
ferent branches of the spanning tree. To avoid this, we use
a backtracking search over the spanning tree. By this ap-
proach, a partial solution is constructed as described earlier,
beginning with the root node optimising its version of Eq 4
and sending its neighbours the corresponding local strategy.
This process continues until any agent identifies a conflict
in the strategies assigned to it or one of its neighbours (i.e.
a non—equilibrium profile is identified). If this occurs, the
search backtracks to a point where the conflict can be re-
solved, and then begins propagating a solution again. How-
ever, the search process can take an exponentially long time
to complete in the case of hypergraphs with many cycles.
Overall, the VNP algorithm on games with arbitrary
structure will never return a solution that is not a PSNE, and
we expect it to provide solutions that approximately opti-
mise the criterion in question. To justify this claim, we now
provide an empirical evaluation of VNP on loopy games.

4Gottlob, Greco, and Scarcello (2005) prove this for arbitrary
and Pareto PSNE computation on a—acyclic hypergraphs. In con-
trast, when ranking equilibria by a c—semiring criterion, the cor-
rectness of the computation only holds for classical acyclicity.
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Figure 3: Example of the chordal
topology used in the experiments.

5 Evaluation of VNP on Loopy Hypergraphs

The purpose of this section is to demonstrate, in the absence
of theoretic guarantees, the efficacy of VNP on games with
sparse but cyclic topologies. Specifically, we use a set of hy-
pergraphical games with chordal topology, following Ortiz
and Kearns (2003). These games have sparse—enough topol-
ogy to demonstrate how VNP exploits structure (because
each agent has a limited number of neighbours), but at the
same time are sufficiently cyclic to make the exact computa-
tion of a criterion infeasible for large problems. The games
are constructed using a generic topology, shown in Fig 3,
comprising (i) a ring of 3—player, 2—action local games, such
that every second agent is contained on two hyperedges and
the games form a single cycle, and (ii) chord games, linking
pairs of agents that are only in one ring game (which lim-
its the number of hyperedges any one agent is on to two).
The payoffs in the local games are constructed such that
they possess several pure equilibria, however, the ranking
over these equilibria varies according to randomly chosen
payoffs in the chord games. More details of the experiment
generating process are available in Chapman et al. (2010).

We compared VNP for loopy topologies to an optimal
‘brute force’ version of VNP that does not exploit any graph-
ical structure, in which each agent constructs a joint message
to every other in the system and so maximise Eq 2 directly.
We did not benchmark against existing approaches because
ours is the only algorithm that optimises over any c—semiring
criterion; indeed we could have cast VNP as an extension
to either NashProp or GGS for the purpose of optimising
over equilibria in games with sparse hypergraphical interac-
tion structure. As such, our experiments only aim to prove
the efficacy of VNP.

We ran 100 iterations for each size game. We say an al-
gorithm has converged when the optimal strategies of the
agents have not changed for 10 time steps, and recorded the
convergence time as the last of these steps. We also recorded
the average processing time the algorithm took to converge”,
the proportion of runs that converge to an optimum and, for
the remaining suboptimal solutions, the average ratio of the
optimal solution’s value over the suboptimal solution.

The results of these experiments are reported in Fig 1.
Regarding the quality of the solutions generated, they show
that VNP computes the optimal solution with a very high
frequency (always greater than 82% of runs). Furthermore,
when a sub—optimal equilibrium is selected, its value is typ-
ically very close to that of the optimum (always within 2%).
In terms of the computation time required to generate a solu-

SExperiments were carried out on a 3.2GHz desktop PC running
Java, with all processes run in sequence. As such, processing times
were recorded as a relative measure only.



Agents  Conv Steps  Time (ms) % Optimal Opt/Subopt
4 15.4 (0.32) 64 (5.8) 94% (4.8) 1.021 (0.0033)
8 17.6 (0.52) 163 (7.2) 91% (5.8) 1.010 (0.0025)
12 19.1(0.69) 273 (10.7) 87% (6.8) 1.014 (0.0014)
16 20.1(0.83) 428 (17.1) 84% (7.4) 1.011 (0.0018)
20 21.1(0.83) 554 (21.6) 82% (7.8) 1.007 (0.0012)
24 21.9(1.30) 623 (29.9) 87% (6.8) 1.013 (0.0017)

Table 1: Message steps to converge, time to converge, propor-
tion converging to an optimal solution and the average ratio of
the optimum over the value of suboptimal solutions (standard
errors in brackets).

tion, the number of message—passing steps to find an equilib-
rium increases linearly with the number of agents. Further-
more, the actual computation time grows at a polynomial
rate, which is in an artefact of the chordal topology with
bounded number of neighbours we run the experiments on.°
In order to better demonstrate the scalability of VNP if each
agent’s number of neighbours is bounded, in Fig 4 we plot
VNP’s computing time as the number of agents increases,
compared to the brute force version. It shows that VNP’s
processing time increases at a rate that is orders of magni-
tude less than the brute force algorithm. Indeed, the pro-
cessing time of the brute force approach follows an almost
perfect exponential relationship with the number of agents
in the problem, while VNP follows a polynomial relation-
ship. Based on the theoretical properties of VNP discussed
earlier (at the end of Section 4.2), we expect that these scal-
ing results will genearlise in a similar fashion to problems
with greater local neighbourhood size (i.e. the polynomial
degree of the computation time should grow linearly with
increases in the local neighbourhood size), and should also
be invariant to the number or size of loops in the problem.

6 Conclusions

We have developed the VNP algorithm for computing PSNE
that optimise various social welfare criteria in games with
bounded hypergraphical structure. We have shown how to
integrate the optimisation problem of finding the maximal
element of a valuation algebra with the constraint satis-
faction problem of finding a game’s PSNE. We have also
demonstrated that if the agents in a hypergraphical game
each have a bounded number of neighbours and the game
hypergraph has bounded hypertree—width, then the problem
can be solved efficiently by VNP. In so doing, we have com-
pletely characterised the types of problems that can be ad-
dressed by algorithms of VNP’s form, and provided two
variants of VNP for different topologies. To round out re-
search on VNP, future work will focus on developing a
complete version for loopy graphs that operates without first
forming a junction tree and deriving analogous convergence
results for VNP to those regarding specific topologies and
attenuated messages for the GDL algorithms.

®Note that NashProp would compute an arbitrary PSNE in
a similar number of steps, however, the computation time would
likely be less because it does not use floating point operations.
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Figure 4: Convergence time (ms) versus number of agents,
comparing VNP for loopy topologies to a brute force version
of VNP that does not exploit interaction structure.
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