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Abstract

We consider approval voting elections in which each voter
votes for a (possibly empty) set of candidates and the out-
come consists of a set of k candidates for some parameter
k, e.g., committee elections. We are interested in the min-
imax approval voting rule in which the outcome represents
a compromise among the voters, in the sense that the max-
imum distance between the preference of any voter and the
outcome is as small as possible. This voting rule has two
main drawbacks. First, computing an outcome that minimizes
the maximum distance is computationally hard. Furthermore,
any algorithm that always returns such an outcome provides
incentives to voters to misreport their true preferences.

In order to circumvent these drawbacks, we consider approx-
imation algorithms, i.e., algorithms that produce an outcome
that approximates the minimax distance for any given in-
stance. Such algorithms can be considered as alternative vot-
ing rules. We present a polynomial-time 2-approximation al-
gorithm that uses a natural linear programming relaxation for
the underlying optimization problem and deterministically
rounds the fractional solution in order to compute the out-
come; this result improves upon the previously best known al-
gorithm that has an approximation ratio of 3. We are further-
more interested in approximation algorithms that are resistant
to manipulation by (coalitions of) voters, i.e., algorithms that
do not motivate voters to misreport their true preferences in
order to improve their distance from the outcome. We com-
plement previous results in the literature with new upper and
lower bounds on strategyproof and group-strategyproof algo-
rithms.

Introduction

Approval voting is a very popular voting protocol mainly
used for committee elections (Brams & Fishburn 2007). In
such a protocol, the voters are allowed to vote for, or ap-
prove of, as many candidates as they like. In the last three
decades, many scientific societies and organizations have
adopted approval voting for their council elections. The so-
lution concept that has been used in almost all such elections
in practice is the minisum solution, i.e., output the commit-
tee which, when seen as a 0/1-vector, minimizes the sum of
the Hamming distances to the ballots. We assume through-
out the paper that the committee should be of some prede-
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fined size k. Then the minisum solution consists of the k
candidates with the highest number of approvals.

This solution however may ignore some voters’ prefer-
ences in certain instances and does not take fairness issues
into account. We demonstrate this with the following exam-
ple with four voters, five candidates, and k = 2. Each row
represents the preference of the corresponding voter. The
minisum solution contains the candidates {a, b}. The dis-
tances of the voters from this outcome are 1, 0, 2, and 5 for
voters 1, 2, 3, and 4, respectively (counting the number of
alternatives in which the voter disagrees with the outcome).
Instead, the solution {a, c} has distances 3, 2, 2, and 3, re-
spectively, and suggests a better compromise among the vot-
ers since everybody is relatively close to the outcome.

a b c d e
1 1 1 0 0 1
2 1 1 0 0 0
3 1 1 1 1 0
4 0 0 1 1 1

Recently, a new voting rule, the minimax solution, was in-
troduced as a means to achieve a compromise between the
voters’ preferences (Brams et al. 2007). The minimax solu-
tion picks the k candidates for which the maximum (Ham-
ming) distance of any voter from the outcome is minimized.
Since this rule minimizes the disagreement with the least
satisfied voter, it tends to result in outcomes that are more
widely acceptable than the minisum solution. On the nega-
tive side the minimax solution has two main drawbacks that
prevent its applicability: (i) the problem of computing the
minimax solution is NP-hard, and (ii) voters may have in-
centives to misreport their preference in order to improve
the distance of their true preference from the outcome. Our
main goal in this paper is to tackle these issues by resorting
to approximation algorithms.

Approximation algorithms tackle the computational
hardness of an optimization problem by producing (in
polynomial-time) solutions provably close to optimal ones
for any problem instance; see (Vazirani 2001) for a cover-
age of early work in the field. We refer to the optimization
problem of computing the minimax solution as k-minimax
approval. (LeGrand et al. 2007) present a 3-approximation
algorithm for the problem; given an instance, the algorithm
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produces a solution (i.e., a set of k candidates) so that its
distance from any voter’s preference is at most 3 times the
maximum distance of the voters from the minimax solution.
The algorithm is very simple to describe and we will refer
to it here as the k-completion algorithm: it arbitrarily picks
a voter and computes a set of k candidates which has min-
imum distance from this voter. An immediate question is
whether algorithms with better approximation ratios exist.
Another interesting question is whether we can have good
approximations by non-dictatorial algorithms. Note that the
k-completion algorithm is dictatorial as it is based only on
one voter’s preferences.

The issue of resistance to manipulation is the very subject
of Mechanism Design; see (Nisan 2007) for an introduc-
tion to the field. In our context, it translates to algorithms
for k-minimax approval which, given a profile, compute an
approximate solution in such a way that no single voter or
a coalition of voters have any incentive to misreport their
preferences in order to decrease their distance from the out-
come. The corresponding properties of resistance to manip-
ulation by single voters and coalitions of voters are known as
strategyproofness and group-stratefyproofness, respectively.
(LeGrand et al. 2007) prove that the minimax solution is
not resistant to manipulation while the k-completion algo-
rithm is. They also pose the question of computing the
best possible bound on the approximation ratio of algorithms
that are resistant to manipulation. This question falls within
the line of research on mechanisms without monetary trans-
fers (Schummer & Vohra 2007) and, in particular, approxi-
mate mechanism design without money (Procaccia & Ten-
nenholtz 2009).

We make progress in both directions. Concerning the ap-
proximability of k-minimax approval by polynomial-time
algorithms, we first establish a connection between the prop-
erty of Pareto-efficiency and approximability. As a corol-
lary, we obtain that Minisum (i.e., the algorithm that re-
turns a minisum solution) has approximation ratio at most
3 − 2

k+1
for k-minimax approval. Our strongest result in

this direction is an algorithm based on linear programming
that achieves an improved approximation ratio of 2; this is
a significant improvement compared to the previously best
known algorithms. The algorithm is based on rounding the
fractional solution of a natural linear programming relax-
ation for k-minimax approval. This result is the best possi-
ble that can be obtained using the particular LP relaxation
which has an integrality gap of 2.

In the direction of algorithms resistant to manipulation,
we observe that a variation of Minisum is strategyproof and
present a Pareto-efficient refinement of the k-completion al-
gorithm. Due to Pareto-efficiency, the latter algorithm has
approximation ratio 3 − 2

k+1
as well. We also present the

first inapproximability results for algorithms that are resis-
tant to manipulation, making progress on the question posed
in (LeGrand et al. 2007). In particular, we present a lower
bound of 2 − 2

k+1
on the approximation ratio of any strat-

egyproof algorithm and a negative result which states that
a slightly stronger notion of group-strategyproofness cannot
be achieved by algorithms with approximation ratio different

than 3− 2

k+1
and infinity. Our lower bounds are not based on

any computational complexity assumption and, hence, hold
for exponential-time algorithms as well.

Notation and Definitions

We fix some notation used in the following. We typically
use n to denote the number of voters and m for the number
of candidates. We denote the set of candidates by A. A
preference is simply a subset of A. A profile P is a tuple
P = (P1, ..., Pn) where Pi denotes the preference of voter
i (i.e., the set of candidates she approves). Throughout the
paper we make the reasonable assumption that n > k. When
this is not explicitly mentioned (e.g., in some lower bound
proofs), we can complete the profile by adding indifferent
voters (that approve no candidate).

We extend the notion of (Hamming) distance to subsets of
A as follows. We say that the distance of two sets Q and T
is the total number of candidates in which they differ, i.e.,

d(Q, T ) = |Q \ T |+ |T \ Q| = |Q| + |T | − 2|Q ∩ T |.

Note that this is precisely the Hamming distance of the sets,
when seen as binary vectors where the ith coordinate of each
vector equals 1 if the ith candidate belongs to the set.

Approximation Algorithms

We begin by establishing a connection between Pareto-
efficiency and low approximation ratio.

Definition 1. Given a profile P , a size-k set K ⊆ A is called
Pareto-efficient with respect to P if there is no other size-k
set K ′ ⊆ A such that d(K ′, Pi∗) < d(K, Pi∗) for some
voter i∗ and d(K ′, Pi) ≤ d(K, Pi) for any other voter i.
An algorithm for k-minimax approval is Pareto-efficient if,
on input any profile P , its outcome is Pareto-efficient with
respect to P .

The next lemma significantly extends the class of 3-
approximation algorithms for minimax-approval and will be
proved very useful later. Interestingly, Minisum is Pareto-
efficient; the proof follows by the definition of Pareto-
efficiency and the fact that Minisum minimizes the sum of
the distances of the outcome from the voters.

Lemma 2. Any Pareto-efficient algorithm for k-minimax
approval has approximation ratio at most 3 − 2

k+1
.

Proof. Let P be a profile and let O and K be the mini-
max solution and the outcome returned by a non-optimal
Pareto-efficient algorithm on input P . Let OPT =
maxi{d(O, Pi)}. We will show that d(K, Pi)/OPT ≤
3 − 2

k+1
for every voter i.

First assume that OPT ≥ k + 1. Then, by applying the
triangle inequality, we obtain

d(K, Pi)

OPT
≤

d(K, O) + d(O, Pi)

OPT

≤ 1 + 2k/OPT ≤ 3 −
2

k + 1

for each voter i. The second inequality follows since the
distance of any two size-k sets is at most 2k and d(O, Pi) ≤
OPT .
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Now, assume that OPT < k + 1. Since the solution
returned by the algorithm is non-optimal for the particu-
lar profile P , there exists a voter i∗ such that d(K, Pi∗) <
d(O, Pi∗ ). Indeed, if this was not the case, then K would not
be Pareto-efficient with respect to P . By the definition of the
distance, we observe that d(K, Pi∗) has the same parity with
d(O, Pi∗ ), and the above argument implies that

d(K, Pi∗) ≤ d(O, Pi∗ ) − 2.

Now, using this observation and by applying the triangle in-
equality twice, we have

d(K, Pi)

OPT
≤

d(K, Pi∗) + d(Pi∗ , Pi)

OPT

≤
d(K, Pi∗) + d(O, Pi∗ ) + d(O, Pi)

OPT

≤
2d(O, Pi∗) + d(O, Pi) − 2

OPT

≤ 3 −
2

OPT
≤ 3 −

2

k + 1

for any voter i. This completes the proof.

We now present an algorithm based on linear program-
ming. On input a profile P , the algorithm uses the following
equivalent integer linear program for k-minimax approval.

minimize q

subject to: ∀i ∈ N, q + 2
∑

a∈Pi

xa ≥ k + |Pi|

∑

a∈A

xa = k

∀a ∈ A, xa ∈ {0, 1}

q ≥ 0

The variable xa denotes whether candidate a is included in
the solution (xa = 1) or not (xa = 0). The first constraint
essentially lower-bounds the value of variable q by the max-
imum distance of a voter from the size-k set that consists
of the candidates included in the solution. The LP-based
algorithm solves the LP relaxation in which the integrality
constraint has been relaxed to 0 ≤ xa ≤ 1. In this way,
a fractional solution is obtained with the x-variables having
values in [0, 1]. Then, the algorithm includes the candidates
with the k largest x-variables in the final solution (by break-
ing ties arbitrarily).

Theorem 3. The LP-based algorithm has approximation ra-
tio at most 2.

Proof. Consider the application of the LP-based algorithm
on a profile P . Denote by (q∗, x∗) the optimal fractional so-
lution of the LP and let K be the outcome of the LP-based
algorithm. We will show that, for each voter i, her prefer-
ence Pi has distance at most 2q∗ from the set K . Since q∗ is
a lower bound on the cost of the optimal integral solution for
the particular instance of k-minimax approval, we will have
obtained the desired 2-approximation bound.

Denote by Yi the set of candidates in the preference of
voter i and belong in the set K , i.e., Yi = Pi ∩K . Let j be a

voter whose preference Pj has maximum distance from K .
The first constraint of the LP implies that

q∗ ≥ k + |Pj | − 2
∑

a∈Pj

xa

and, using the fact that the x-variables of the LP are upper-
bounded by 1 (due to the third LP constraint), we obtain that
q∗ ≥ |k − |Pj ||. Observe that if |Yj | = min{k, |Pj|}, then
d(K, Pj) = |k − |Pj ||, i.e., the solution of the algorithm is
optimal in this case. So, in the following, we assume that
|Yj | > min{k, Pj}.

For the sake of contradiction, assume that d(K, Pj) >
2q∗. By the definition of distance and the first LP constraint,
we obtain

k + |Pj | − 2|Yj| > 2q∗ ≥ 2



k + |Pj | − 2
∑

a∈Pj

x∗
a





and, equivalently,

0 > k + |Pj | + 2|Yj | − 4
∑

a∈Pj

x∗
a. (1)

Since none of the candidates in Pj \Yj was selected in the
solution, this means that the x-variables corresponding to
the k− |Yj | candidates in K \Yj are not smaller than any x-
variable corresponding to a candidate in Pj\Yj , i.e., for each
candidate a in K \Yj, it holds that x∗

a ≥ maxa′∈Pj\Yj
{x∗

a′}.

By summing over all candidates in K \ Yj , we have
∑

a∈K\Yj

x∗
a ≥ (k − |Yj |) max

a′∈Pj\Yj

{xa′}

≥
k − |Yj |

|Pj | − |Yj |

∑

a′∈Pj\Yj

x∗
a′ . (2)

By the definition of set Yj , we have that every candidate of
K \ Yj also belongs to A \ Pj . Hence

∑

a∈A\Pj

x∗
a ≥

∑

a∈K\Yj

x∗
a. (3)

Furthermore, using the third LP constraint, we have
∑

a∈Pj\Yj

x∗
a =

∑

a∈Pj

x∗
a −

∑

a∈Yj

x∗
a ≥

∑

a∈Pj

x∗
a − |Yj |. (4)

Putting (2), (3), and (4) together, we have

∑

a∈A\Pj

x∗
a ≥

k − |Yj |

|Pj | − |Yj |

∑

a∈Pj

x∗
a −

|Yj |(k − |Yj |)

|Pj | − |Yj |
.

Now, observe that the left hand side in the above inequality
satisfies (due to the second LP constraint)

∑

a∈A\Pj

x∗
a =

∑

a∈A

x∗
a −

∑

a∈Pj

x∗
a = k −

∑

a∈Pj

x∗
a.

Hence, the above inequality yields

k −
∑

a∈Pj

x∗
a ≥

k − |Yj |

|Pj | − |Yj |

∑

a∈Pj

x∗
a −

|Yj |(k − |Yj |)

|Pj | − |Yj |
,
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and, equivalently,

∑

a∈Pj

x∗
a ≤

k|Pj | − |Yj |
2

k + |Pj | − 2|Yj |
. (5)

Now, (1) and (5) yield to the following contradiction:

0 > k + |Pj | + 2|Yj| − 4
k|Pj | − |Yj |

2

k + |Pj | − 2|Yj |

=
(k − |Pj |)

2

k + |Pj | − 2|Yj|
≥ 0,

We conclude that d(K, Pj) ≤ 2q∗ as desired.

Given that the rounding in the LP-based algorithm is per-
formed in an extremely simple way, one might hope that a
more clever rounding could yield an improved algorithm.
Unfortunately, the particular LP relaxation has an integrality
gap of 2 and well-known arguments from the theory of ap-
proximation algorithms (Vazirani 2001) imply that this is the
best possible bound that can be obtained using the particular
LP relaxation. Consider a profile with at least 2k candidates
and denote by A′ a size-2k set of candidates. There are suf-
ficiently many voters so that each one approves a different
set of k candidates from A′. Clearly, for any k-size subset Q
of A′, there exists a voter whose preference does not include
any of the candidates in Q. Hence, the minimax solution on
the particular instance has cost at least 2k. The claim follows
by observing that the solution with the x-variables set to 1/2
and q = k satisfies the constraints of the LP relaxation.

Resistance to Manipulation

Let us first formally define strategyproofness in our setting.
Given a profile P and an algorithm R, we denote by R(P )
the outcome of the algorithm on profile P . We also denote
by P−i the preferences of all voters besides i. Hence, we can
also write P as (P−i, Pi). Strategyproofness means that no
voter i has an incentive to unilaterally change her preference
so as to reduce the distance of Pi from the outcome of the
algorithm.

Definition 4. An algorithm R is strategyproof (SP) if for
any voter i, for any profile P , and for any P ′

i ⊆ A:

d(Pi, R(P−i, Pi)) ≤ d(Pi, R(P−i, P
′
i )).

We begin with an example demonstrating that the mini-
max solution is not SP. Consider the profile at the left ta-
ble below with k = 2; a similar example is presented in
(LeGrand et al. 2007). In this profile, the sets {a, b} and

a b c
1 1 1 0
2 0 1 1
3 0 1 0

a b c
1 1 1 0
2 0 0 1
3 0 1 0

{b, c} are those with distance at most 2 from all voters. As-
sume that {a, b} is the minimax solution returned for the
particular profile (the other case is symmetric). Now, as-
sume that voter 2 has {c} as her preference (see the right

table). Now, the only set that has distance at most 2 from
each voter’s preference is {b, c}, i.e., exactly the preference
of voter 2 in the first profile. This implies that voter 2 has an
incentive to misreport her preference as {c} instead of {b, c}
and demonstrates that minimax is not SP. The same example
can show that the LP-based algorithm is not SP either.

Note that both solutions mentioned above are minisum
solutions as well. This implies that Minisum is not SP in
general. However, we can introduce a simple tie-breaking
rule which assigns distinct ids to the candidates and ties
for the last positions of the outcome are resolved by se-
lecting the candidates with the smallest id. Then, Minisum
equipped with the smallest-id-first tie-breaking rule can be
easily proved to be strategyproof; we omit the formal proof
due to lack of space. Note that the particular assumption on
the way ties are broken does not affect the Pareto-efficiency
of Minisum. We summarize the discussion on Minisum to
the following statement. Compared to the k-completion al-
gorithm, Minisum is certainly non-dictatorial.

Theorem 5. Minisum with the smallest-id tie-breaking rule
is SP and has approximation ratio at most 3 − 2

k+1
for k-

minimax approval.

Let us remark here that the fact that a variation of Min-
isum is SP indicates that k-minimax approval is sufficiently
restricted as a setting since well-known impossibility results
state that, in general, strategyproofness is only achievable by
dictatorial algorithms; see (Nisan 2007).

In the following, we present a lower bound on the ap-
proximation ratio of SP algorithms. We outline the main
argument with the following example with k = 1 (we essen-
tially adapt to our model an argument used in (Procaccia &
Tennenholtz 2009) in a slightly different context).

Consider the application of an SP algorithm on the follow-
ing profile with k = 1. Without loss of generality, let {a1}

a1 a2 a3 a4 a5 a6

1 1 1 1 0 0 0
2 0 0 0 1 1 1

be the outcome of the algorithm for this profile (the other
cases can be handled symmetrically). Now consider the pro-
file below. Again, the outcome should be the same otherwise

a1 a2 a3 a4 a5 a6

1 1 0 0 0 0 0
2 0 0 0 1 1 1

voter 1 would have an incentive to misreport her preference
from {a1} to {a1, a2, a3} and improve her distance from the
outcome returned by the algorithm; this would violate strat-
egyproofness. The maximum distance in the second profile
is 4. The minimax solution approves one of the three right-
most candidates and has maximum distance 2. Hence, the
approximation ratio is 2 in this case.

The extension of this argument for higher values of k
yields a slightly weaker lower bound.

Theorem 6. Any SP algorithm for k-minimax approval has
approximation ratio at least 2 − 2

k+1
.
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Proof. Consider a profile with m ≥ 4k candidates and two
voters 1 and 2 that approve the disjoint size-2k sets P1 and
P2, respectively. Let K be the outcome of an SP algorithm
on this particular profile. Assume that P1 ∩ K ≤ k/2 (the
other case is handled similarly). Now, consider the profile in
which voter 1 approves the set P1 and voter 2 approves the
set K . We argue that the outcome of the algorithm is again
K . Indeed, if this was not the case and the outcome was a set
K ′ 6= K , voter 2 would have an incentive to misreport her
preference as P2 instead of K in order to decrease the dis-
tance of her true preference from the outcome. The distance
of voters 1 and 2 from the outcome in the second profile is
d(K, P1) = 3k − 2|K ∩ P1| and 0, respectively.

Let t be an integer such that

3k − 2|K ∩ P1| − 2

4
≤ t ≤

3k − 2|K ∩ P1| + 2

4
.

Since |K ∩ P1| ≤ k/2 and |P1| = 2k, it holds that t ≤
|P1 \ K|. Consider the size-k set O which consists of the
alternatives in K ∩ P1, t alternatives from P1 \ K , and k −
|K ∩ P1| − t alternatives from K \ P1. We have

d(O, K) = 2t ≤
3k − 2|K ∩ P1| + 2

2

and

d(O, P1) = 3k − 2|K ∩ P1| − 2t ≤
3k − 2|K ∩ P1| + 2

2
.

Hence, the approximation ratio of the algorithm for the sec-
ond profile is at least

3k − 2|K ∩ P1|

max{d(O, K), d(O, P1)}
= 2 −

4

3k − 2|K ∩ P1| + 2

≥ 2 −
2

k + 1
.

The last inequality follows since |K ∩ P1| ≤ k/2.

We now move to stronger notions of resistance to manip-
ulation. For a set (or coalition) of voters S, we denote by
P−S the preferences of the voters not in S.

Definition 7. An algorithm R is group-strategyproof (GSP)
if for any coalition S of voters, and for any profile P , there
is no profile P ′

S of the voters in S such that:

d(Pi, R(P−S , PS)) > d(Pi, R(P−S , P ′
S)) ∀i ∈ S.

It is not hard to see that Minisum is not GSP. In contrast,
the k-completion algorithm is GSP. The reason for this is
that a coalition that does not contain the dictator cannot af-
fect the outcome and the dictator has no incentive to partic-
ipate in any coalition since her distance from the outcome
is anyway minimum. We present a refinement of the k-
completion algorithm which can be proved to be simulta-
neously GSP and Pareto-efficient. Then, Lemma 2 implies
that its approximation ratio is at most 3 − 2

k+1
. The algo-

rithm uses an ordering of the voters with the dictator being
first and an ordering of the candidates. Now, we can think of

a candidate a as a binary vector za such that the i-th coordi-
nate of the vector is 1 if voter i approves candidate a and 0
otherwise. For each candidate a, it computes its score as

sc(a) =
n

∑

i=1

za(i) · 2n−i

and picks the k candidates with highest scores by breaking
ties according to the candidate ordering.

The Pareto-efficiency and strategyproofness of this algo-
rithm become apparent by the following interpretation of its
execution (we omit the formal proof due to lack of space).
Initially, it considers all possible size-k sets as possible out-
comes. Among them, it keeps the ones that have the same
minimum distance from voter 1. Then, among them, it keeps
the ones that have the same minimum distance from voter 2,
and so on. After considering voter n, it returns as an out-
come one among the sets kept at that point.

Our last result concerns a stronger definition of group-
strategyproofness.

Definition 8. An algorithm R is strongly group-
strategyproof (strongly GSP) if for any coalition S of
voters, and for any profile P , there is no profile P ′

S of the
voters in S such that:

d(Pi, R(P−S , PS)) ≥ d(Pi, R(P−S , P ′
S)) ∀i ∈ S

with strict inequality for at least one voter of S.

The rationale behind this concept is that we demand the
algorithm to be resistant to coalitions in which some vot-
ers may change their preference profile in order to help
other members of the coalition (without necessarily gain-
ing something for themselves). We make a connection be-
tween Pareto-efficiency and strong group-strategyproofness.
We show that the former property is necessary in order to
guarantee the existence of good approximation algorithms
satisfying the latter. Of course, it is not sufficient. For ex-
ample, minisum is Pareto-efficient but not even GSP. We
also point out that this property is not necessary for group-
strategyproofness since there are implementations of the k-
completion algorithm that are not Pareto-efficient.

Lemma 9. Any strongly GSP algorithm for k-minimax ap-
proval that has finite approximation ratio is Pareto-efficient.

Proof. Consider a strongly GSP algorithm with finite ap-
proximation ratio. First observe that in each profile in which
all voters approve the same set S of k candidates, the algo-
rithm must return S as the outcome. If this is not the case
for some profile of this kind, then the approximation ratio
would be infinite.

Assume now that the algorithm returns a size-k set K on
some profile which is not Pareto-efficient. Then, there exists
another size-k set K ′ such that d(K ′, Pi∗) < d(K, Pi∗) for
some voter i∗ and d(K ′, Pi) ≤ d(K, Pi) for any other voter
i. Now, the voters have an incentive to misreport the set K ′

and improve their distance from the outcome.

Lemmas 2 and 9 imply that if a strongly GSP algorithm
with finite approximation ratio exists, then it must have ap-
proximation ratio at most 3 − 2

k+1
. We complement this

corollary with the following tight lower bound.
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Theorem 10. Any strongly GSP algorithm for k-minimax
approval has approximation ratio at least 3 − 2

k+1
.

Proof. Consider an algorithm with approximation ratio
strictly better than 3 − 2

k+1
. We will actually prove that it is

manipulable by two voters. Consider the profile with 3k + 1
candidates and 3k+1 voters in which the preference of voter
i contains only candidate i. Denote by K the the outcome of
the algorithm for the particular profile. Let i∗ be a voter that
has a candidate not in K in her preference and consider the
profile in which voter i∗ approves the 2k+1 candidates out-
side K . Now, since the algorithm has approximation ratio
strictly better than 3 − 2/(k + 1), the outcome for the new
profile should include a candidate i′ not in K . Hence, vot-
ers i∗ and i′ have an incentive to manipulate the algorithm;
voter i∗ misreports her preference and does not decrease her
distance and voter i′ strictly decrease her distance from the
outcome.

Together with the above discussion, Theorem 10 leads to
the following interesting statement.

Corollary 11. Strongly GSP algorithms for k-minimax ap-
proval have at most two possible values for their approxi-
mation ratio: it can be either exactly 3 − 2

k+1
or infinity.

Discussion

As a conclusion, let us discuss an interesting (but not ob-
vious at first glance) relation of k-minimax approval to fa-
cility location problems; see (Schummer & Vohra 2007;
Vazirani 2001) and the references therein. In facility loca-
tion, we are given agents located at the nodes of a network
and the objective is to locate a facility at a node so that the
maximum distance of any agent to the facility is minimized.
k-minimax approval can be thought of as a facility location
problem on a hypercubic network. Recall that a hypercube
of dimension m has 2m nodes each associated with a distinct
0/1 vector. An edge connects two nodes if their vectors dif-
fer in exactly one coordinate. So, k-minimax approval on a
profile with n voters and m candidates can be thought of as a
facility location instance with n agents (corresponding to the
voters) located at some nodes of a hypercube of dimension
m (the vector of such a node corresponds to the preference
of a voter) with the objective being to put a facility to a node
with exactly k 1s in its vector (corresponding to a size-k set
of candidates) so that the maximum distance of any agent
from the facility is minimized.

Besides this relation, the restriction on the type of nodes
where the facility can be placed differentiates significantly
k-minimax approval from standard facility location so that
the best known approximation algorithm (implicit in (Li
et al. 1999)) for facility location on the hypercube does
not carry over to our model. Furthermore, from the resis-
tance to manipulation viewpoint, an important property of
the standard facility location setting is single-peakedness in
the agents preferences in the sense that the location of the
agent is her mostly preferred location for the facility. This
property does not hold in our model as there may be several
among the possible locations an agent may prefer the most.
A consequence of this peculiarity is that strategyproofness

does not imply group-strategyproofness in k-minimax ap-
proval, in contrast to what is the case for single-peaked agent
preferences (Barberà et al. 2010) in facility location settings.
We have demonstrated this when we observed that (a varia-
tion of) Minisum is SP but not GSP.

Our work leaves several challenging questions open. Con-
cerning the approximability of k-minimax approval there
is no known lower bound on the approximation ratio of
polynomial-time algorithms besides the NP-hardness of the
problem. It is interesting either to find such a lower bound
or obtain a polynomial-time approximation scheme (PTAS),
i.e., an algorithm that can achieve an approximation guaran-
tee 1 + ǫ for any constant ǫ > 0 at the expense of a (pos-
sibly exponential) dependence of its running time on 1/ǫ.
Progress in either direction will significantly improve our
understanding of k-minimax approval. Experimental results
in (LeGrand et al. 2007) provide evidence that local-search
algorithms might have very low approximation ratios. In-
terestingly, we have a lower bound (very close to 3) for a
natural and broad class of local-search algorithms that in-
cludes the ones considered in that paper; details will appear
in the final version of the paper. As far as resistance to ma-
nipulation is concerned, our work leaves an intriguing gap
between the upper bound of 3 − 2

k+1
and the lower bound

of 2 − 2

k+1
on the approximation ratio of SP or GSP algo-

rithms for k-minimax approval when k ≥ 2. Furthermore,
detecting whether strongly GSP algorithms with finite ap-
proximation ratio exist or not is of interest; here, we have
made several unsuccessful attempts in both directions.
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