
Fixing a Tournament

Virginia Vassilevska Williams
Computer Science Division

UC Berkeley
Berkeley, California 94720

Abstract

We consider a very natural problem concerned with
game manipulation. Let G be a directed graph where
the nodes represent players of a game, and an edge from
u to v means that u can beat v in the game. (If an
edge (u, v) is not present, one cannot match u and v.)
Given G and a “favorite” node A, is it possible to set
up the bracket of a balanced single-elimination tourna-
ment so that A is guaranteed to win, if matches occur
as predicted by G? We show that the problem is NP-
complete for general graphs. For the case when G is
a tournament graph we give several interesting condi-
tions on the desired winner A for which there exists a
balanced single-elimination tournament which A wins,
and it can be found in polynomial time.

Introduction

Many championships use a single-elimination (also called
knockout) format: the tournament proceeds in rounds; in
each round players are paired up to play a game; the round
winners move on to the next round, whereas the losers leave
the tournament. This format is very common in sports. It
also appears in the area of voting protocols where it is stud-
ied as the (binary) cup voting rule (Chevaleyre et al. 2007).

How far a particular player can go in a single-elimination
tournament can vary vastly depending on the initial tourna-
ment bracket set-up. This work investigates the extent to
which a tournament designer can influence the final tour-
nament outcome by manipulating the initial brackets. We
focus on the following set-up. Suppose we are to design a
single-elimination tournament for some set of players. For
each pair of players we have some information (obtained
from history or by some other means) about which player
is more likely to win in a match-up between the two. We
have a favorite player A in mind, and we want to set the
bracket for the tournament so that A has a very high chance
of winning. We call this problem tournament fixing.

In this paper we consider two versions of the tournament
fixing problem. In both versions we assume knowledge of
the exact outcome of all match-ups between players.

1. In the first version only certain matches between players
are allowed.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2. In the second version we can match any two players
against each other. This is a well known formulation
of the problem also known as agenda control (Bartholdi,
Tovey, and Trick 1992).

In the first, more general version we show that tournament
fixing is NP-hard; i.e., if P6=NP even if we have perfect in-
formation about the match outcomes, if some players cannot
be matched with each other, it is infeasible to find a winning
bracket layout for a given player.

This problem version is a special case of the following
problem: we are given complete match outcome informa-
tion and in addition, for every pair of players we are given
an integer weight, corresponding to the revenue that would
be generated if the two players are matched in the tourna-
ment. The problem is to find a single-elimination tourna-
ment which maximizes the total tournament revenue. If the
weights capture “interestingness”, the problem is to find the
most interesting single-elimination tournament. This rev-
enue maximization problem has been shown by (Lang et al.
2007) to be NP-hard, and the NP-hardness of general tour-
nament fixing provides an alternative proof of this.

The second version of the problem allows us to relate
single-elimination tournaments to round-robin tournaments:
tournaments in which every pair of players has played and
we know the outcome for each pair. Round-robin tourna-
ments are widely studied. A significant body of work con-
cerns the problem of optimally ranking players: finding a
linear order of the players, a ranking, which minimizes the
number of pairs (u, v) such that u beat v but v is before u in
the ranking. This objective dates back to Slater (Slater 1961)
and has only recently been proven NP-hard (Alon 2006;
Charbit, Thomassé, and Yeo 2007). Nevertheless, it has
been shown (Coppersmith, Fleischer, and Rudra 2006) that
the simple heuristic of ranking the players by the number
of matches they have won approximates the optimal ranking
within a factor of 5.

Our study uncovers interesting relationships between
round-robin and single-elimination tournaments. For in-
stance, we show that any player that beats a maximal number
of players in a round-robin tournament (and is hence highly
ranked), can win a single-elimination tournament, given the
same match outcomes. We focus on the special case of the
tournament fixing problem in which the favorite node is a
king: for any player b that it cannot beat, there is some player

895

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

that it can beat that beats b. We give several sufficient con-
ditions for which a king is a single-elimination tournament
winner. One of our results is for the case when A is a very
strong king: for any player b that A cannot beat, there are at
least log n players that A can beat who beat b. We show that
such super-kings can win a single-elimination tournament,
even though they may only be able to beat very few players
head-to-head. An interesting consequence of this is that any
tournament graph generated using the noisy sampling model
of (Braverman and Mossel 2008) with error rate as low as

Ω(
√

log n
n) has all its players as potential single-elimination

tournament winners, with high probability. All of our ar-
guments are constructive and allow us to design tournament
brackets efficiently.

Prior and Related Work. There is considerable prior re-
search on manipulating the outcome of a single-elimination
tournament. Typically, the input to the studied problem is a
tournament graph with probabilities on the edges. One then
seeks to find a single-elimination tournament which maxi-
mizes the probability that a particular node will win. A ma-
jor focus in such research is to maximize the winning proba-
bility of the best player under some assumptions (e.g., (Ap-
pleton 1995; Horen and Riezman 1985)). A common as-
sumption is that the probability of a player beating another
depends on the intrinsic abilities of the players which are
hidden values. Moreover, the probability is monotone in the
sense that every player has a higher probability of beating a
weaker player than a stronger one. With these assumptions
some positive results are possible, especially for small tour-
naments (Appleton 1995; Horen and Riezman 1985). On the
other hand, if the given tournament graph has arbitrary prob-
abilities and one wishes to determine whether a given node
can win a single-elimination tournament with high proba-
bility, then the known results are mostly negative: this gen-
eral problem is known to be NP-hard (Lang et al. 2007;
Hazon et al. 2008). Even in the case when the probabili-
ties are in {0, 1, 1/2}, the problem is NP-hard, as shown by
Vu et al. (Vu, Altman, and Shoham 2008; 2009). The major
open problem is whether tournament fixing for unweighted
tournament graphs is NP-hard.

Tournament manipulation is also studied under the con-
text of voting (Brams and Fishburn 2002; Hemaspaandra,
Hemaspaandra, and Rothe 2007; Lang et al. 2007). In this
context, the candidates are competing in an election based
on majority comparisons along a binary voting tree. In each
comparison, the candidate with fewer votes is eliminated,
and the winner moves on to the next comparison. This set-
ting is essentially a single-elimination tournament, the re-
sult of each match of which is known in advance: the corre-
sponding tournament graph is unweighted. It is known that
if the voting tree has no prescribed structure, then there is
a polynomial time algorithm to decide whether there exists
a voting tree for which a given candidate wins the election.
Finding a balanced voting tree in polynomial time is a major
open problem and is known in this area as the agenda con-
trol problem (Bartholdi, Tovey, and Trick 1992). (Fischer,
Procaccia, and Samorodnitsky 2009) consider whether (po-

tentially unbalanced) voting trees can be used to always elect
a candidate preferred by close to the majority of voters; i.e.
how well binary tree protocols approximate the Copeland
winner. Fischer et al. give hardness results for deterministic
trees, and show that by randomizing over voting trees one
can obtain much better approximations.

Preliminaries For any graph G = (V, E), n = |V | and
m = |E|, unless otherwise noted. For any node v ∈ V , let
Nin(v) = {x ∈ V | (x, v) ∈ E} and Nout(v) = {x ∈
V | (v, x) ∈ E}. If v ∈ V and S ⊆ V , let Nin,S(v) = {x ∈
S | (x, v) ∈ E} and Nout,S(v) = {x ∈ S | (v, x) ∈ E}.
The length of a path in a graph is the number of edges on the
path. An arborescence is a rooted tree such that all edges are
directed away from the root. The height of an arborescence
is the length of the longest path from the root to a leaf. For
integer n ≥ 1, let [n] = {1, . . . , n}. A tournament graph is
a directed graph G = (V, E) such that for every pair u, v ∈
V , exactly one of (u, v) or (v, u) is in E. A node a in a
directed graph G = (V, E) is a king if for any node b ∈
V \ {a}, either (a, b) ∈ E, or there exists a node c ∈ V with
(a, c) ∈ E and (c, b) ∈ E.

A binomial arborescence T = (V (T), E(T)) rooted at
a ∈ V (T) is defined recursively as follows:

• a single node a is a binomial arborescence rooted at a;

• if |V (T)| = 2i for some i > 0, then T is a binomial ar-
borescence if a has a child b, (i.e., (a, b) ∈ E(T)) such
that if Tb is the subarborescence of T rooted at b and
Ta = T \ Tb, then Ta and Tb are |V (T)|/2 = 2i−1–node
binomial arborescences rooted at a and b respectively.

T = (V (T), E(T)) is a binomial spanning arborescence for
a graph G = (V, E) if V (T) = V, E(T) ⊆ E and T is a
binomial arborescence.

Binomial Arborescences and Hardness
Tournament graphs are widely used in the study of round-
robin tournaments. The nodes of a tournament graph typi-
cally represent players, and an edge from u to v in the graph
states that u beats v. We use the same representation. How-
ever, since in our more general formulation of tournament
fixing some match outcomes are not needed, we do not need
an edge between each pair of vertices. Our abstraction of
the tournament fixing problem (TFP) can be formalized as
follows: Let G = (V, E) be a directed graph on n nodes
such that if (u, v) ∈ E then (v, u) /∈ E. We are given a
node A ∈ V and we are asked whether in G there exists a
spanning binomial arborescence rooted at A. If this is the
case, we call A a binomial winner in G.

Binomial arborescences on n nodes represent single-
elimination tournaments in the following sense: the node
at which the arborescence is rooted is the winner of the tour-
nament and its log n children are the players the root beats
in the log n rounds; for i = 1, . . . , log n the ith child of the
root has n/2log n−i+1 descendents, and the subarborescence
rooted at that child inductively represents the subtournament
which that child had to win to get to round i in which it lost
to the root player. The edge between the root and the log n-
th child represents the final of the tournament.

896

TFP is a spanning arborescence isomorphism problem for
directed graphs. A spanning tree isomorphism problem in an
undirected graph has the following form: given a fixed prop-
erty P of trees checkable in polynomial time and a graph
G, find a spanning tree of G satisfying P . (Papadimitriou
and Yannakakis 1982) gave necessary and sufficient condi-
tions under which a spanning tree isomorphism problem in
an undirected graph is NP-complete. Their result implies
that finding a binomial spanning tree in an undirected graph
is NP-hard. The Papadimitriou and Yannakakis construction
does not immediately imply that TFP is NP-complete, as
TFP is a problem on directed graphs. It is possible that their
proofs can be modified to work for rooted arborescences, al-
though we do not know of such a result for directed graphs.
We include a simple NP-completeness proof for TFP below.

Theorem 1. TFP is NP-complete.

Proof. TFP is clearly in NP. To show NP-hardness, we give
a reduction from Exact Cover by 4-Sets which is well known
to be NP-complete (Karp 1972; Garey and Johnson 1979).
A pictorial representation of the reduction appears in Fig-
ure 1. Let (U, {S1, . . . , Sk}) be an instance of Exact Cover
by 4-sets, where |U | = 4n and |Si| = 4 for all i ∈ [k]. The
problem is to determine whether there is a way to pick n
sets from S which are disjoint and cover all elements of U .
W.l.o.g. k is a power of 2: we can always add copies of the
same set Si to the instance. We will construct an instance
of TFP: a digraph G on 16k nodes, and a node x1 of G for
which one would need to fix the tournament.

First, create a node u for each u ∈ U , slightly abus-
ing notation. For every set Si = {u1, u2, u3, u4} create
4 nodes, si

1, . . . , s
i
4. Add edges (si

1, s
i
2), (s

i
1, s

i
3), (s

i
2, s

i
4).

This creates a binomial arborescence S̄i of size 4 rooted
at si

1. Further, add edges (si
2, u1), (si

3, u2), (si
4, u3),

si
1, u4). This makes (si

1, s
i
2, s

i
3, s

i
4, u1, u2, u3, u4) a bino-

mial arborescence of size 8 rooted at si
1.

Create k − n disjoint binomial arborescences of size 4,
T1, . . . , Tk−n, rooted at v1, . . . , vk−n respectively. Add

edges (vi, s
j
1) for all i = 1, . . . , k − n and j = 1, . . . , k.

Then create k disjoint binomial arborescences of size 8,
X1, . . . , Xk, with roots x1, . . . , xk, respectively. Add edges
(xi, vi) for i = 1, . . . , k − n, and (xj , s

t
1) for j = (k −

n + 1), . . . , k and t = 1, . . . , k. Finally, create a binomial
arborescence Bk on {x1, . . . , xk} rooted at x1. This com-
pletes the construction of graph G. The number of nodes in
G is 4n + 4k + 4(k − n) + 8k = 16k, a power of 2.

The construction ensures that for any binomial arbores-
cence B spanning G:

• for i = 1, . . . , k, S̄i is a subarborescence of B,

• for i = 1, . . . , k − n, Ti is a subarborescence of B,

• for i = 1, . . . , k, Xi is a subarborescence of B,

• Bk is a subarborescence of B, and B is rooted at x1,

• in B, the elements of U are partitioned into groups of 4
each of which is attached to some S̄i forming a binomial
arborescence of size 8,

• in B, each subarborescence S̄i which does not have ele-
ments of U attached to it, is linked to some Tj to form a
binomial arborescence of size 8,

Figure 1: This is a pictorial description of the reduction from
Exact Cover by 4-Sets to TFP.

• each Tj is linked to some arborescence S̄i to form a bino-
mial arborescence of size 8,

• each Xj with j ≤ k−n is linked to Tj forming a binomial
arborescence of size 16 rooted at xj ,

• each Xj with j > k − n is linked to some arborescence

S̄i which itself is linked to 4 elements of U , so that this
forms a binomial arborescence of size 16 rooted at xj .

The above points state that if there is a binomial spanning
arborescence B in G rooted at x1, then there is an exact
cover of U using the sets Si for which the arborescences
(si

1, s
i
2, s

i
3, s

i
4) are linked to 4 elements of U in B. Vice

versa, if there is an exact cover C = {Si1 , . . . , Sin
}, we

can create a binomial arborescence as follows: for each
Sij

= {u1, u2, u3, u4}, attach the 4 nodes u1, u2, u3, u4 to

S̄ij
. Match the k − n sets Si /∈ C to distinct arborescences

Tj and attach S̄i to its corresponding Ti. We have a col-
lection of k size 8 binomial arborescences. We can attach
each of them to some Xt to form k binomial arborescences
of size 16. By adding the edges of Bk we obtain a full size
16k binomial arborescence rooted at x1.

It is unclear whether it is possible to modify this proof to
show that TFP is NP-complete for tournament graphs. How-
ever, we can modify it to show such a result for complete
binary arborescences (the proof appears in the full version
of the paper). Binomial arborescences are similar to binary
arborescences in that their height is logarithmic; perhaps
this is an indication that tournament-TFP is NP-complete.
However, binomial spanning arborescences are also similar
to Hamiltonian paths, in that both structures always exist in
a tournament graph. A Hamiltonian path rooted at a given
node in a tournament can be found in polynomial time; per-
haps this is an indication that tournament-TFP is in P.

Theorem 2. Given a tournament graph G and a node A,
deciding whether there is a complete binary arborescence
spanning G rooted at A is NP-complete.

897

When All Matches Are Allowed

In this section we consider the problem of fixing a tourna-
ment when we are allowed to match any pair of players. In
the graph representation we are given a tournament graph
and a node A and we need to find a binomial spanning ar-
borescence rooted at A. Here we consider some conditions
under which a king in a tournament graph is a binomial win-
ner. We focus on kings because they are strong players in the
sense that they either have a very high winning record, or can
beat some very highly ranked players. Moreover, for any
graph G, if G contains a binomial spanning arborescence
rooted at a node A, then any breadth first search arbores-
cence starting from A must span G and must have height
at most log n. The simplest nontrivial case for which this
necessary condition is satisfied is when A is a king.

Tournament graphs are typically used to represent the out-
comes of round-robin tournaments, and the nodes/players
are often ranked by their outdegree, also called score. As
mentioned in the introduction, the outdegree ranking is a
good approximation to the optimal tournament ranking in
the sense that it minimizes (within a constant factor) the
number of matches in which a lower ranked player beat a
higher ranked player. A node which has maximal outdegree,
i.e., outdegree at least as high as that of any other vertex, is
among the top players in the round-robin ranking. We show
that we can design a single-elimination tournament for any
maximal degree node so that it would win given the same
match outcomes. This gives an interesting and intuitive re-
lation between round-robin and single-elimination tourna-
ments – a very strong player should be able to win either.
We give proofs of two more general statements which both
imply the result for maximal degree nodes.

When a node has maximal outdegree, it is also a king in
the tournament graph (this is the usual proof that a king al-
ways exists). Yet a node A is also a king if it does not nec-
essarily have maximal outdegree, but for every node b that
A cannot beat, the outdegree of A is at least as large as that
of b. The first statement we prove states that any such node
A is a binomial winner. We note that the above outdegree
condition allows for the outdegree of A to be as low as n/3.
In contrast, a node with maximal outdegree has outdegree at
least n/2.

In the second part of this section we show that any king
with outdegree at least n/2 is a binomial winner. Further-
more, we show that this condition is tight in the sense that
for any n power of 2 there exists a tournament graph and
a king A with outdegree n/2 − 1 such that A cannot win
any single-elimination tournament. Finally, we turn our at-
tention to very strong kings, called super-kings, and show
that such nodes are binomial winners even if they have low
outdegree (as low as log n).

Nodes Stronger than the Nodes that Beat Them.

Theorem 3. Let G = (V, E) be a tournament graph. Let
A ∈ V such that for all v ∈ Nin(A), degout(v) ≤
degout(A). Then one can construct in polynomial time a
binomial spanning arborescence of G rooted at A.

Proof. Suppose we have partitioned the vertices of B into
binomial arborescences (of possibly different sizes) rooted
at nodes of A. Lemma 1 below allows us to do that. Con-
sider the vertices of A which were not used in creating these
arborescences by the Lemma. Partition these vertices (arbi-
trarily) into sets of sizes powers of 2, creating corresponding
binomial arborescences (arbitrarily). Doing this, we parti-
tion A∪B into disjoint binomial arborescences {S1, S2, . . .}
rooted at nodes of A, each of a size power of 2. Now, if
there are two arborescences of the same size 2k, link them
by adding the edge between their roots to create a bino-
mial arborescence of size 2k+1. Continue doing this until
there is at most one arborescence of each size. Because
|A ∪ B| = 2log n − 1 =

∑log n−1
i=0 2i, there will be a bino-

mial arborescence of size 2i for every i from 0 to log n − 1.
Link the root of each of these arborescences to A. Since the
arborescences are rooted at vertices from A this will form a
binomial arborescence of size n rooted at A.

Now it remains to prove Lemma 1. We begin by showing
the claim below.

Claim 1. Let A = Nout(A) and B = Nin(A) in a tourna-
ment graph. Suppose for all b ∈ B, degout(b) ≤ degout(A).
Then ∀b ∈ B, degout,B(b) < degin,A(b).

Proof of Claim 1: For any b ∈ B, degout(b) ≤
degout(A). Also, degout(b) = degout,B(b)+ degout,A(b)+
1, degout(A) = |A|, and degout,A(b) = |A| − degin,A(b).
Hence, 1 + degout,B(b) + |A| − degin,A(b) ≤ |A|, and
degout,B(b) < degin,A(b).

Lemma 1. Given nonempty sets A′ ⊆ A and B′ ⊆ B such
that for all b ∈ B′, degout,B′(b) < degin,A′(b), one can
pick a node a′ ∈ A′ and a subset S ⊆ Nout,B′(a′) so that

1. |S ∪ {a′}| = 2k for some integer k ≥ 1, and

2. ∀b′ ∈ B′ \ S, degout,B′\S(b′) < degin,A′\{a′}(b
′).

Proof. Since B′ is nonempty and for all b ∈ B′,
degout,B′(b) < degin,A′(b), there exists some a′ ∈ A′

which has an out-neighbor in B′. Pick one such a′ and let
N = Nout,B′(a′). For some integers k ≥ 1 and r we have

0 ≤ r ≤ 2k − 1 and |N | = 2k − 1 + r ≥ 2r. We can
find a matching in N of size at least r. Pick a submatch-
ing of size r, consisting of a set R of r vertices uniquely
pointing to some other r vertices in N . Let S = N \ R.
Clearly, |S| = 2k − 1 + r − r = 2k − 1, and hence
|S ∪ {a′}| = 2k. We will show that for all b′ ∈ B′ \ S,
degout,B′\S(b′) < degin,A′\{a′}(b

′). Let b′ ∈ B′ \ S. If

b′ /∈ N , then degout,B′\S(b′) < degin,A′\{a′}(b
′) since

degout,B′\S(b′) ≤ degout,B′(b′) < degin,A′(b′). If b′ ∈
N , then degin,A′\{a′}(b

′) = degin,A′(b′) − 1. Yet, since

b′ ∈ N ∩ {B′ \ S}, we must have b′ ∈ R, and b′ must
have at least one outneighbor in S. Hence degout,B′\S(b′) ≤
degout,B′(b′) − 1, and since degout,B′(b′) < degin,A′(b′),
degout,B′\S(b′) < degin,A′\{a′}(b

′).

Kings who Beat Half the Players. Suppose now that we
have a king who is not necessarily the strongest player but is

898

still relatively strong – he can beat at least half of the players.
It is not immediately clear that this king is binomial winner.
In fact, if the king can only beat n

2 − 1 players, there are
tournament graphs for which such a king may not be able to
win at all:

Claim 2. For any n, power of 2, there exists a tournament
graph on n nodes with a king A with outdegree n/2−1 such
that there is no binomial spanning arborescence rooted atA.

Proof. Consider the following graph G and king node A:
let A be the out-neighborhood of A and let B be the in-
neighborhood of A, so that |A| = n

2 − 1 and |B| = n
2 . Let

a′ ∈ A be a node so that a′ beats every node in B. This
makes A a king. If x ∈ A \ {a′}, then every node b ∈ B
beats x. The edges within A and B are arbitrary.

Then the only way for a binomial spanning arborescence
T to be rooted at A is if all nodes of B are in the subarbores-
cence rooted at a′: an element b ∈ B can only be beaten by
another element of B, or by a′. However, |B ∪ {a′}| > n/2
and hence the height of the subarborescence of T rooted at
a′ is at least log n. This means that this subarborescence is
the entire T and T cannot be rooted at A.

We now show that if a king can beat at least half of the
players then he is a binomial winner. This result is tight by
Claim 2.

Theorem 4. Let A be a king in an n-node tournament graph
G so that outdeg(A) ≥ n/2. Then A is a binomial winner,
and a binomial spanning arborescence rooted at A can be
found in polynomial time.

Proof. The proof will proceed by induction on n. The base
case is n = 2 and then it is trivially true. We will keep the
invariant I that if N players are left in the tournament, A
is one of these players and A is a king with outdegree at
least N/2 in the induced tournament graph. The induction
hypothesis for n is that if I holds for a node A in a tourna-
ment graph G′ on n/2 nodes, then A is a binomial winner
in G′. The proof will proceed by fixing a match-up for the
first round of the tournament and showing that I holds for
the first round winners and A.

Let A = Nout(A) and B = Nin(A). If B is empty, we
are done: A will win any tournament. Otherwise, in Round
1 create a maximal matching M̄ from A to B, and let K
be all elements of A in M̄ ; k = |M̄ | = |K| ≤ |B|. The
matching M̄ ensures that all elements of K survive round 1.

For the rest of the |B| − k elements of B, pick any max-

imum matching M of them; |M | = ⌊ |B|−k
2 ⌋. We will show

that A \K is nonempty and we can pick an element a′ from
it and match it with A, so that A survives round 1. For this
it suffices to show that |A| − k ≥ 1.

If |B| − k is odd, there is one element b′ of B which
remains unmatched. We will show that A \ (K ∪ {a′}) is
nonempty if |B| − k is odd, and hence there is at least one
element a′′ which we can match with b′. For this it suffices
to show that |A| − k − 1 ≥ 1 if |B| − k is odd.

There is an even number of remaining unmatched ele-
ments of A as n is even. Pick any matching on them. This
completes round 1. Note that A and all elements of K are

winners in this round, and hence A remains a king. We must
show two things:

1. |A| − k ≥ 1, and if |B| − k is odd, |A| − k − 1 ≥ 1,

2. the number of elements in A which survive round 1 is at
least n/4.

First, |A| + |B| = n − 1 is odd, and hence |B| is even
iff |A| is odd. Hence, |B| − k is odd iff |A| − k − 1 is odd.
Moreover, k ≤ |B| ≤ |A| − 1 as |A| ≥ n/2, and hence
|A| − k − 1 ≥ 0 and |A| − k ≥ 1. If |B| − k is odd, then
|A| − k − 1 ≥ 1 since |A| − k − 1 is odd. We are done with
part 1 above.

The number of elements in A which survive round 1 is at
least k+ |A|−k−1

2 if |B|−k is even and k+ |A|−k−2
2 if |B|−k

is odd. This number is always ⌊ |A|+k−1
2 ⌋. Since k ≥ 1, at

least ⌊ |A|
2 ⌋ ≥ ⌊n

4 ⌋ = n
4 elements of A survive round 1.

After this round we have a tournament on n/2 elements in
which A is a king with outdegree at least n/4. By induction,
A is a binomial winner.

Super-Kings. We now define a super-king in a tourna-
ment graph as a node A with the constraint that for any
b ∈ Nin(A), |Nin,Nout(A)(b)| ≥ log n.

Theorem 5. Let G be a tournament graph and let A be a
super-king in G. Then A is a binomial winner in G.

Proof. Let A = Nout(A) and let B = Nin(A). We will
proceed by induction. If n = 1 we are done. Otherwise if
n ≥ 2, notice that |A| ≥ log n ≥ 1. Pick any node a′ ∈ A
and match it with A. Now, create a maximum matching M
from A \ {a′} to B. The number of remaining unmatched
nodes is n − 2 − 2|M |, which is even, hence we can pick
some perfect matching M ′. Call the final matching N =
{(A, a′)} ∪ M ∪ M ′.

Consider the set S of n/2 nodes which are sources in N .
If b ∈ S ∩ B, then |Nin,A(b) \ S| ≤ 1. This is since if
a′′ ∈ (Nin,A(b) \ S) and a′′ 6= a′, then after the creation of
M , a′′ was unmatched. Furthermore, since b ∈ S, b must
have been unmatched after the creation of M . This is a con-
tradiction to the maximality of M . Thus, every b in the new
inneighborhood of A has at least log n − 1 = log(n/2) in-
neighbors in A. The theorem follows by induction on n.

The Braverman–Mossel Noisy Sampling Model. The
following model was proposed in (Braverman and Mossel
2008). We are given a parameter q < 1/2 and an ordered
list of n players, v1, . . . , vn which represents a sorted order
of the players by their intrinsic abilities. The parameter q
represents a noise rate. A tournament graph Tq is generated
as follows: for every pair of nodes vi, vj with j > i indepen-
dently at random one places an edge (vi, vj) with probability
1 − q, and with probability q the reverse edge (vj , vi). The
smaller q is, the closer Tq is to a transitive tournament; the
larger q is, the closer Tq is to a completely random tourna-
ment. Here we show that q can be very small and still every
player in Tq is a binomial winner, with high probability. In

899

other words, almost all tournaments generated in this model
(for slightly large q) can be fixed for any player.1

Theorem 6. Let q > 4
√

log n
n . Then with high probability,

all nodes in a random tournament Tq generated using the

Braverman–Mossel model are binomial winners.2

Proof. Let q = c ·
√

log n
n−1 for some c > 4. We show that

with high probability all nodes in Tq are super-kings. Let
V = {v1, . . . , vn}. Call a node v “bad” if either

• degout(v) ≤ (c log n)/q, or

• degout(v) > (c log n)/q and there exists some node b 6= v
such that |Nin,Nout(v)(b)| < log n.

Let U = V \ {v}. Let ui be the ith node of U . Let
Zi be an indicator variable which is 1 if (v, ui) is an edge
and 0 otherwise. Then Pr[Zi = 1] ≥ q. Let Z =

∑

i Zi;
Z = degout(v). Then E[Z] =

∑

i E[Zi] ≥ q(n − 1) =

c
√

(n − 1) logn. By a Chernoff bound:

Pr[Z ≤ (c log n)/q] ≤ e−E[Z](1−(c log n)/(qE[Z]))2/2 ≤

e−(c(1−1/c)2/2)
√

(n−1) log n = 1/2Ω(
√

n log n).

Now fix some b. We are interested in the probability
that b has < log n inneighbors from Nout(v), given that
degout(v) > (c log n)/q. Consider the random variable
Y = degin,Nout(v)(b) =

∑

u∈Nout(v) Yu, where Yu is 1

iff (u, b) is an edge. Pr[Yu = 1] ≥ q and so E[Y] =
q degout(v) > c log n. Again by a Chernoff bound:

Pr[Y < log n] ≤ Pr[Y < (1/c)E[Y]] ≤

e−(1−1/c)2/2E[Y] ≤ 1/nc(1−1/c)2/(2 ln 2).

Let C = −2+c(1−1/c)2/(2 ln 2). By a union bound, the

probability that v is bad is at most 1/2Ω(
√

n log n) +1/nC+1.
The probability that there exists a bad v is at most

1/2Ω(
√

n log n) + 1/nC ≤ O(1/nC).

Hence with probability at least 1 − O(1/nC) all nodes are
super-kings. C is at least (c − 4)/(2 ln 2), and so C > 0 for
any c > 4.

Acknowledgments. The author would like to thank David
Abraham, Ryan Williams, Guy Blelloch, Maverick Woo,
Anupam Gupta, Noga Alon and Piotr Faliszewski for some
helpful discussions, and the anonymous reviewers for their
valuable feedback.

This material is based upon work supported by the Na-
tional Science Foundation under Grant CCF-0832797 at
Princeton University/IAS and Award #0937060 to the Com-
puting Research Association for the CIFellows Project.

1This result crucially relies on knowing the match outcomes
beforehand: for any tournament bracket that we pick before the
coin flips, vn has only a qlog n chance of winning the tournament
which is at most 1/poly(n) even when q = Θ(1).

2The statement of this theorem was suggested to the author by
an anonymous reviewer.

References

Alon, N. 2006. Ranking tournaments. SIAM J. Discret.
Math. 20(1):137–142.

Appleton, D. R. 1995. May the best man win? The Statisti-
cian 44(4):529–538.

Bartholdi, J.; Tovey, C.; and Trick, M. 1992. How hard
is it to control an election? Mathematical and Computer
Modeling 16(8/9):27–40.

Brams, S. J., and Fishburn, P. C. 2002. Voting procedures.
K. J. Arrow, A. K. Sen, and K. Suzumura, editors, Handbook
of Social Choice and Welfare.

Braverman, M., and Mossel, E. 2008. Noisy sorting without
resampling. In Proc. SODA, 268–276.

Charbit, P.; Thomassé, S.; and Yeo, A. 2007. The mini-
mum feedback arc set problem is NP-hard for tournaments.
Combinatorics, Probability & Computing 16(1):1–4.

Chevaleyre, Y.; Endriss, U.; Lang, J.; and Maudet, N.
2007. A short introduction to computational social choice.
SOFSEM 2007: Theory and Practice of Computer Science
4362:51–69.

Coppersmith, D.; Fleischer, L.; and Rudra, A. 2006. Order-
ing by weighted number of wins gives a good ranking for
weighted tournaments. In Proc. SODA, 776–782.

Fischer, F.; Procaccia, A.; and Samorodnitsky, A. 2009. A
new perspective on implementation by voting trees. In Proc.
EC, 31–40.

Garey, M., and Johnson, D. 1979. Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman and Company.

Hazon, N.; Dunne, P.; Kraus, S.; and Wooldridge, M. 2008.
How to rig elections and competitions. In Proc. COMSOC.

Hemaspaandra, E.; Hemaspaandra, L. A.; and Rothe, J.
2007. Anyone but him: The complexity of precluding an
alternative. Artif. Intell. 171(5/6):255–285.

Horen, J., and Riezman, R. 1985. Comparing draws
for single elimination tournaments. Operations Research
33(2):249–262.

Karp, R. M. 1972. Reducibility among combinatorial prob-
lems. In Complexity of Computer Computations, R.E. Miller
and J.W. Thatcher (eds.), Plenum Press, New York, 85–104.

Lang, J.; Pini, M. S.; Rossi, F.; Venable, K. B.; and Walsh, T.
2007. Winner determination in sequential majority voting.
In Proc. IJCAI, 1372–1377.

Papadimitriou, C. H., and Yannakakis, M. 1982. The
complexity of restricted spanning tree problems. J. ACM
29(2):285–309.

Slater, P. 1961. Inconsistencies in a schedule of paired com-
parisons. Biometrika 48(3/4):303–312.

Vu, T.; Altman, A.; and Shoham, Y. 2008. On the agenda
control problem in knockout tournaments. In Proc. COM-
SOC.

Vu, T.; Altman, A.; and Shoham, Y. 2009. On the complex-
ity of schedule control problems for knockout tournaments.
In Proc. AAMAS, 225–232.

900

