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Abstract

In many auctions, agents bid more aggressively than self-
interest would prescribe. This can be explained by spite,
where the agent’s utility not only increases in the agent’s
surplus but also decreases as the other bidders’ surpluses in-
crease. Spite can stem from long-term benefits from making
competitors worse off and from inherent psychological ef-
fects. There have been important recent game-theoretic anal-
yses of spiteful bidding assuming all agents are equally spite-
ful. We present, to our knowledge, the first auction analysis
in the more realistic setting where bidders may be spiteful to
different extents. We show that the equilibrium bidding func-
tion can still be written in the same form—except that the
spite factor is replaced by an ‘expressed’ spite factor. This
leads to bidders expressing spites that are higher or lower than
their true spite depending on others’ spite. Perhaps surpris-
ingly, in the two-bidder case, the mapping from true spite to
expressed spite is the same across all common auction mech-
anisms. Furthermore, even with two bidders, important prop-
erties of symmetric-spite settings cease to hold: the alloca-
tion can be inefficient and the revenue ranking may reverse
between first- and second-price auctions. We also show that
in sealed-bid auctions under asymmetric valuation distribu-
tions, there can be a “bargaining problem” in selecting bids.
Finally, we study the generalization where agents can have
different extents of spite toward different other bidders.

Introduction
Auctions have emerged as effective ways of allocating re-
sources and tasks among human and software agents. Most
of the auction literature assumes that each agent only cares
about her own surplus: what goods she gets and how much
she has to pay. However, in reality agents often have other-
regarding preferences where they care about others’ sur-
pluses too. This can take the form of altruism, or more
commonly in auctions and similar settings, spite. The spite
motive, which is the preference to make others worse off,
stems from mainly two reasons. The first reason is strategic.
The agent might benefit in the long run by weakening her
competitors, for example, driving competitors’ market share
down or causing them to have to pay more for a given allo-
cation in the auction (as has been observed in spectrum auc-
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tions (Grimm, Riedel, and Wolfstetter 2001) and sponsored
search auctions (Zhou and Lukose 2006)). Furthermore, in
certain competitions such as the Trading Agents Compe-
tition, agents might give more weight to relative rankings
rather than absolute performance. The second reason is psy-
chological. There is ample evidence from experimental eco-
nomics and psychology that people behave against their self-
interest in strategic settings, and that this can be explained as
rational behavior among agents that inherently have other-
regarding preferences (Saijo and Nakamura 1995), (Levine
1998), (Loewenstein, Thompson, and Bazerman 1989).

Game-theoretic analysis of spiteful bidding in auctions
was initiated relatively recently (Brandt and Weiß 2001).
Spite can explain why people bid more aggressively in
auctions than theory would predict among self-interested
agents (Morgan, Steiglitz, and Reis 2003). (Brandt, Sand-
holm, and Shoham 2007) and (Morgan, Steiglitz, and Reis
2003) discuss the scenario where each bidder is equally
spiteful, and give the equilibrium bidding functions for the
first- and second-price one-item auctions. (Vetsikas and Jen-
nings 2007) extend the analysis of the symmetric-spite set-
ting to multi-unit auctions.

This prior literature has assumed that all bidders are
equally spiteful. A priori, however, there is no reason to
believe that each bidder would be equally spiteful (Brainov
2000). Different bidders can care to a different extent about
the surplus of other bidders. Moreover, a bidder might care
more for the surplus of a particular bidder than for the sur-
plus of some other bidder. In this paper we present, to our
knowledge, the first auction analysis of the broader setting
where bidders can be asymmetrically spiteful.

Model
In this paper we study 1-item auctions. Making the standard
assumptions of quasilinear utility functions and that losers
in the auction pay nothing, we have that in the absence of
spite, the utility function of bidder X is

uX =
{
vX − pX if X wins the auction

0 if X loses the auction

where vX is the bidder’s valuation of the item and pX is the
amount the bidder has to pay.
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In presence of spite, the utility function is

uX =
{

vX − pX if X wins the auction
−αtX · (vY − pY ) if Y 6= X wins the auction

(0 ≤ αtX ≤ 1)

whereαtX is a measure of the spite of agentX . The subscript
X in αtX is to emphasize that the spite factor depends on
the bidder X . The superscript t, where t stands for ‘true’,
is there to distinguish αtX from symbol αeX which we will
introduce later in the paper. Higher αtX means greater spite.
In the symmetric model of spite, which has been considered
in the prior work, all agents are equally spiteful (∀X,αtX =
αt).

The utility can also be expressed in terms of surplus:

uX =
{

surplus(X) if X wins the auction
−αtX · (surplus(Y )) if Y 6= X wins the auction

So, conditional on losing the auction, the bidder would like
to minimize the surplus of the winning bidder. We assume
0 ≤ αtX ≤ 1, that is, bidders care at least as much for their
own surplus as the negation of anyone else’s surplus.

Among self-interested agents, it is weakly dominant for
each bidder to bid her true valuation in a second-price
sealed-bid auction (Vickrey 1961). The following example
shows that this ceases to be the case among (even symmet-
rically) spiteful bidders. Let there be two bidders, A and B.
Let vA = 5 and vB = 10, and αtA = αtB = 0.1. If both
bid truthfully, B wins and pays 5 (second highest bid). B’s
surplus is 10 − 5 = 5, so uA = −0.1 · 5 = −0.5. But, for
example, A can get higher utility uA = −0.1 · 2 = −0.2 by
bidding 8, thus causing B to pay 8.

We consider the four common auction mechanisms:
first-price sealed-bid, second-price sealed-bid, English, and
Dutch. In the first-price (second-price) sealed-bid auction,
all bidders submit their bid in a sealed envelope and the
bidder with the highest bid wins the auction and pays her
bid price (second-highest bid price). The English auction
is modeled with a clock displaying the current bid price.
The clock price increases continuously and each bidder has
a button which she releases when she wants to drop out.
When the second-to-last bidder releases her button, the auc-
tion ends and the remaining bidder wins at the current price.
The Dutch auction is modeled with a clock where the price
decreases continuously. The first bidder to release her button
wins and pays the price on the clock at that point.

Spite in the discrete valuations setting
Before discussing spiteful bidding in the case where the bid-
ders draw their valuation from a continuous distribution, we
first discuss the discrete case which has some characteris-
tics worth noting and which gives insight into the issues that
arise in spiteful bidding.

Complete information setting
Consider the example above, but now in a first-price sealed-
bid auction. If A were to bid too low, say 3, then B could
bid 4 and win the item with surplus 10 − 4 = 6. A’s utility

would be −0.1 · 6 = −0.6. So A must bid higher in order
to force B to bid higher, thereby reducing B’s surplus. How
high canA go? OnceA’s bid overshoots his true valuation of
5, there is the risk that B does not bid higher which means
A wins the item at a price greater than his own valuation
thereby ending up with a negative utility. So, let us try to
calculate the bid price at which even if A wins the item, he
would get the same utility as in the case he loses.

Let the winning price be ρ. If A wins, his utility would be
(5−ρ) and if he loses, it would be−0.1 · (10−ρ). Equating
these two yields ρ ≈ 5.5. Hence, A is indifferent between
winning and losing at that bid price. At any bid price above
that, A would prefer to lose. At any bid price below that, A
would prefer to win. We call 5.5 the crossover point for A.

Similarly, we can calculate the crossover point for B,
which is approximately 9.5. Above that price B would pre-
fer to lose, and below that price, B would prefer to win.

There is a range of bid prices from 5.5 to 9.5 wherein A
prefers to lose and B prefers to win. Each bid price between
these two values constitutes an equilibrium. If A is adamant
to bid at least 8, it is in B’s best interest to bid at least 8 + ε
and win. Similarly, if B is adamant not to bid above 6, it is
in A’s best interest to lose by bidding 6− ε. Conditioned on
B winning, the closer the winning bid is to 5.5, the higher
is the B’s utility and the lower is A’s utility. Similarly, the
closer the winning bid is to 9.5, the higher is A’s utility and
the lower is B’s utility. Hence, there is a ‘bargaining prob-
lem’ in equilibrium selection here in the case of asymmetric
valuations where the two agents bargain for the equilibrium
bidding price.

In the English and Dutch auction there is no such bar-
gaining problem. In the English auction the equilibrium is at
the higher crossover point (9.5), because the lower-valuation
bidder can safely bid up to that point because the higher-
valuation bidder would not want to drop out before then.
Analogously, in the Dutch auction the equilibrium is at the
lower crossover point (5.5).

Incomplete information setting
We now discuss the more realistic setting where bidders
have incomplete information about each others’ valuations.
Let bidders A and B have the joint distribution of their val-
uations given in Table 1. If A has valuation M , we say that
A is of type M . In this example, we intentionally set the

Table 1: Joint probability distribution over valuations.
A’s
type

B’s
type

Probability A’s
type

B’s
type

Probability

50 100 1/6 100 50 1/6
50 200 1/6 100 200 1/6
200 50 1/6 200 100 1/6

probability that both bidders have same type to zero because
tied bids make the analysis more involved. Let the bidders
have spite αtA = αtB = 0.1.

Clearly A and B are symmetric so we can look for sym-
metric bidding strategies that will constitute an equilibrium.
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Furthermore, we make the natural assumption that the equi-
librium bids at type 50, 100, and 200 are in increasing order
so a bidder of type 50 (if one exists) always loses and a bid-
der of type 200 (if one exists) always wins.

Let Q be the bid made by bidder of type 100 in equilib-
rium. Now a type-50 bidder can bid anywhere up to Q since
she knows that the other bidder (regardless of whether he is
of type 100 or 200) will bid at least Q. Similarly, a type-200
bidder would like to bid as close to (but higher than) Q as
possible since that would maximize her utility. So, in equi-
librium all types bid basically the same amount (but they
prefer ties to be broken in favor of higher types).
Q clearly has to be such that a bidder of type 50 prefers

to lose at that bid and a bidder of type 200 prefers to win at
that bid. Let T be the crossover point of the type-50 bidder.
Then, 50− T = −0.1 · (100− T + 200− T )/2 , where the
left hand side is her utility if she wins at T and the right hand
side is her expected utility if she loses. Solving this yields
T=59.1. So, Q must be at least 59.1. Similarly, denoting
by W the crossover point of the type-200 bidder, we must
have 200 − W = −0.1 · (50 − T + 100 − T )/2. This
yields W = 188.6, so Q must be at most 188.6. If Q is the
bidding price, then the expected utility of a type-100 bidder
is ((100 − Q) − 0.1 · (200 − Q))/2. (Here we have used
the fact that a type-50 other bidder always loses and a type-
200 other bidder always wins.) If Q is above 88.9, then
the expected utility is negative. Hence, Q must be below
88.9. Q can therefore lie between 59.1 and 88.9. So again,
like in the complete information setting, there is a range of
bid values Q that constitute an equilibrium. Thus there is a
bargaining problem in this setting as well.

Prior results
Prior work has provided equilibrium analysis for settings
where bidders draw their valuations from the same distri-
bution and have equal spite values αt (∀X,αtX = αt) (Mor-
gan, Steiglitz, and Reis 2003; Brandt, Sandholm, and
Shoham 2007). We now summarize some of those prior re-
sults in order to provide a comparison point to the results
we will derive. Table 2 summarizes the symmetric equilib-
rium bidding strategies for the settings where the bidder’s
valuation are drawn uniformly from [0, 1].

Table 2: Bidding functions under symmetric spite.
Auction 2-bidders n-bidders
First-price
sealed-bid
and Dutch

(
1+αt

2+αt

)
v

(
n−1

n− αt

1+αt

)
v

Second-
price
sealed-bid

(
1+αt

1+2αt

)
v+ αt

1+2αt

(
1+αt

1+2αt

)
v+ αt

1+2αt

English
(

1+αt

1+2αt

)
v+ αt

1+2αt text explains strategy

So, in the first-price sealed-bid 2-bidder case , agents bid
higher under spite than under self-interest: 2v

3 when αt = 1
and v

2 when αt = 0. This is also the case in the second-

price 2-bidder auction: as αt varies from 0 to 1, the bid of
the spiteful bidder varies from v to 2

3v + 1
3 . Incidentally, in

the first-price auction, the bidding function of the 2-bidder
case can be transformed to the n-bidder case by replacing
(1 + αt) by (n − 1)(1 + αt). Furthermore, for the second-
price sealed-bid auction, the bidding function is the same in
2-bidder and n-bidder settings.

In the English auction with n bidders, the bidding strategy
differs from the 2-bidder case and is the following (Morgan,
Steiglitz, and Reis 2003).
• If three or more bidders are present, each bidder drops out

as the price reaches her valuation.
• If only two bidders remain, each bidder drops out when

the price reaches b(v), where b(v) is the bid she would
have submitted in a 2-bidder second-price sealed-bid auc-
tion.

Asymmetric spite results
We now move to the setting where bidders can be spiteful to
different extents. Throughout the rest of the paper we will
assume that the bidder’s valuations are drawn uniformly and
independently from [0, 1]. Further, as in prior research, we
assume that for a given set of spite factors of the bidders,
the equilibrium bidding function is strictly increasing in the
agent’s valuation. As in prior research, we will focus on
studying symmetric equilibria, that is, equilibria where the
form of the bidding function is the same for every agent.
That, of course, does not mean that the agents’ bids are the
same because they have different valuations and different
spite factors.

The 2-bidder case
We first analyze the setting with two bidders, A and B. De-
note by bB(·) the equilibrium bidding function of bidder B,
that is, if B has valuation vB , she bids bB(vB) in equilib-
rium. Similarly, denote by bA the bid of bidder A when she
has valuation vA.

First-price sealed-bid auction and Dutch auction In the
first-price sealed-bid auction (and its strategic equivalent,
the Dutch auction), the expected utility of bidder A is

∫ b−1
B (bA)

0

[vA − bA]dvB − αtA
∫ 1

b−1
B (bA)

[vB − bB(vB)]dvB

(1)
The first term above is for the case where A wins and the
second term is for the case where she loses. To solve this
forA’s bid bA, our high-level approach is to differentiate the
above equation with respect to bA and solve for bA by equat-
ing the differential to 0. We will now present the derivation
in detail. We guess that the bidding function in symmetric
equilibrium is a linear functions of the bidder’s valuation (as
it was in the symmetric-spite setting). Hence we can write
bB(vB) = rB(αtA, α

t
B)·vB and differentiate (1) with respect

to bA. Equating the differential to 0, we get

bA =
(

1
2 + αtA(1− 1/rB)

)
vA
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We observe that this bidding function for A is of the linear
form we guessed. This confirms the guess that these bidding
functions constitute a symmetric equilibrium.

This can be written as bA = rA · vA, where

rA =
(

1
2 + αtA(1− 1/rB)

)
We have an exactly analogous equation for rB . Here, rA and
rB are written as functions of each other, while we would
like to express them as functions of the spite coefficients
only. Hence we solve the equations for rA and rB simul-
taneously to get

rA =
1− αtAαtB

2− αtA − αtAαtB
This can be put in a better-looking form by introducing

symbols αeA and αeB , so bA becomes

bA(v) =
(

1 + αeA
2 + αeA

)
v (2)

where

αeA =
αtA

1 + αeB − αtA
= αtA

(
1− αtB
1− αtA

)
(3)

We get analogous equations for αeB .
With the above transformation, we can observe that the

bidding function in this asymmetric-spite settings looks like
the bidding function in the symmetric-spite setting (Ta-
ble 2)—except that there is now the symbol αeA in place
of αt. Because of their close connection, we call αt (t)rue
α and αe (e)xpressed α, though no semantics behind these
names are intended here.

Note that the first expression for αeA in Equation 3 is in
terms of αeB and αtA, while the second expression is in terms
of αtB and αtA. Depending on the situation, either of these
forms can be useful.

Second-price sealed-bid auction In the second-price
sealed-bid auction, the expected utility of bidder A is∫ b−1

B (bA)

0

[vA − bB(vB)]dvB − αtA
∫ 1

b−1
B (bA)

[vB − bA]dvB

(4)
We guess that bB is of the form rB(αtA, α

t
B) · vB +

sB(αtA, α
t
B) just as it was in the symmetric-spite second-

price sealed-bid setting. Note that the guess here also in-
cludes an additive term sB(αtA, α

t
B) unlike in the first-price

sealed-bid setting. Using this form of bB , we differentiate
(4) with respect to bA. We then equate the differential to 0
to get

bA =
(

rB
rB − αtA(1− 2rB)

)
vA +

αtA(r2B + (rB − 1)sB)
rB − αtA(1− 2rB)

This bidding function is of the form we had guessed with

rA =
rB

rB − αtA(1− 2rB)
, sA =

αtA(r2B + (rB − 1)sB)
rB − αtA(1− 2rB)

We have analogous equations for bidder B. This proves that
the guess is correct, that is, these functions indeed constitute
a symmetric equilibrium.

Solving the above equations for rA and sA simultaneously
with the analogous ones for rB and sB , we get

rA =
1− αtAαtB

1 + αtA − 2αtAα
t
B

, sA =
αtA − αtAαtB

1 + αtA − 2αtAα
t
B

These equations can be again put in a nice form by intro-
ducing symbols αeA and αeB . We get the equilibrium bidding
function for A as

bA(v) =
(

1 + αeA
1 + 2αeA

)
v +

αeA
1 + 2αeA

(5)

where

αeA =
αtA

1 + αeB − αtA
= αtA

(
1− αtB
1− αtA

)
(6)

We get analogous equations for bidder B.
We observe that the bidding function is exactly of the

form as in the symmetric-spite case—except that αe has re-
placed αt. Furthermore, the expression of αe is the same as
in the asymmetric-spite first-price sealed-bid auction.

English Auction In the English auction, when the clock
price is z, the expected utility of bidder A as a function of
her bid bA is

1

1− z

( b−1
B

(bA)

b−1
B

(z)

[vA−bB(vB)]dvB−αt
A

1

b−1
B

(bA)

[vB−bA]dvB

)
(7)

The methodology to solve for the equilibrium bid func-
tion remains the same. We guess that bB is of the form
rB(αtA, α

t
B) · vB + sB(αtA, α

t
B) just as it was in the

symmetric-spite case, and it turns out that we get the same
bidding function as in the second-price sealed-bid auction.

We summarize the results in Table 3. We observe that
in all cases, the bidding functions in is of the same form
as in the symmetric-spite setting (Table 2)—except with αe
occupying the place of αt.

Table 3: Equilibrium in the 2-bidder asymmetric-spite set-
ting.

Auction type Bidding function for
bidder A

Expression
for αeA

First-price
sealed-bid and
Dutch

(
1+αeA
2+αeA

)
v αtA

1+αeB−αtA
Second-price
sealed-bid and
English

(
1+αeA
1+2αeA

)
v+ αeA

1+2αeA

Furthermore, these are the only linear (in case of first-
price sealed-bid and Dutch auctions) and affine (in case of
second-price sealed-bid and English auctions) equilibrium
bidding functions. This is because guessing these forms
for one bidder yielded unique bidding functions of the same
form for the other bidder.
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Comparison of αt and αe In this section we discuss αe
as compared to αt. Although αt always lies between 0 and
1 (by assumption), αe is bounded below by 0 and is un-
bounded from above. Table 4 lists values of αeA for some
combinations of αtA and αtB .

Table 4: The values in the table are bidder A’s αe. The
rows correspond to various values of bidder A’s αt and the
columns correspond to values of bidder B’s αt.

0 0.1 0.3 0.5 0.7 0.9
0 0 0 0 0 0 0
0.1 0.11 0.1 0.08 0.06 0.03 0.01
0.3 0.43 0.39 0.3 0.21 0.13 0.04
0.5 1 0.9 0.7 0.5 0.3 0.1
0.7 2.33 2.1 1.63 1.17 0.7 0.23
0.9 9 8.1 6.3 4.5 2.7 0.9

From Equation 3 and Table 4 we see the following.
1. In the symmetric case, αe = αt as we should expect from

comparing the equations of the symmetric and asymmet-
ric case.

2. In the asymmetric case,
• For a given αtA, the value of αeA decreases linearly with

increasing αtB .
• For a given αtB , the value of αeA increases with increas-

ing αtA.
This implies that for a fixed αtA, bidder A might bid
higher or lower in the asymmetric-spite case than in the
symmetric-spite case depending on αtB . In fact, the map-
ping between true and expressed spite factors is such that
if αtA 6= αtB , then the difference between αeA and αeB is
greater than the difference between αtA and αtB . So, in
equilibrium, the more spiteful bidder expresses an over-
exaggerated spite and the less spiteful bidder expresses
an under-exaggerated spite.

Revenue (Brandt, Sandholm, and Shoham 2007) show
that in symmetric-spite settings, second-price auctions yield
higher expected revenue than first-price auctions. In con-
trast, we show that in asymmetric-spite settings there is
no revenue-dominant auction. For a given set of αe’s, we
give in Table 5 the expected revenue for a first-price sealed-
bid/Dutch auction and a second-price sealed-bid/English
auction.

Table 5: Expected revenue for given αe’s in 2-bidder setting.
Auction type Expected revenue Notation
First-price
sealed-bid and
Dutch

1
3 ( p

2
A

pB
+ p2B

pA
) pX = 1+αeX

2+αeX

Second-price
sealed-bid and
English

1
2 ( qBqA + qA

qB
) −

1
3 ( q

2
B

qA
+ q2A

qB
)

qX = 1+αeX
1+2αeX

For αeA = 8.1 and αeB = 0.01, corresponding to αtA =
0.9 and αtB = 0.1, the first-price auction yields expected

revenue 0.63 while the second-price auction yields expected
revenue 0.49. For αeA = 0.39 and αeB = 0.08, correspond-
ing to αtA = 0.3 and αtB = 0.1, the first-price auction yields
expected revenue 0.37 while the second-price auction yields
expected revenue 0.42. So here, neither auction mechanism
beats the other in expected revenue in general. By substi-
tuting various values of spite into the formulas of Table 5,
we found that when bidders have comparable true spite, the
second-price auction yields higher expected revenue while
if the true spite values differ largely, the first-price auction
yields higher revenue, as can be seen in Figure 1.

Figure 1: The circles denote the points where the second-
price auction yields higher expected revenue than the first-
price auction. The pluses denote the points where the re-
verse occurs.

Allocation In symmetric-spite settings, the bidder with the
highest valuation wins the item. In asymmetric-spite set-
tings, this is no longer true in general. For example, in a
first-price sealed-bid auction, consider the case where bid-
der A has valuation 0.9 and αtA = 0.1 while bidder B has
valuation 0.7 and αtB = 0.7. For this pair of αt’s, we get
αeA = 0.03 and αeB = 2.1, so A bids 0.46 and B bids 0.53.
Hence, the lower-valuation bidder (B) wins.

Figures 2 and 3 plot a bidder’s bid against her αe for var-
ious valuations she may have in first-price and second-price
auctions. For low valuations, v = 0.1 or 0.2, the curve
is nearly flat in the first-price auction. This means that as
αe increases, her bid does not increase much. However,
in the second-price auction, for the same set of low valua-
tions, the bid increases steeply as αe increases from 0 to 2,
and keeps increasing after that. In contrast, consider high
valuations. For v = 0.9 or 0.8, in the first-price auction,
the bid increases rapidly as αe increases from 0 to 2, and
keeps increasing steadily after that. In the second-price auc-
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tion, however, for valuations 0.9 and 0.8, there is not much
change in the bid as αe increases from 0 to 10.

Figure 2: The bid in a first-price auction varies with the
expressed spite αe. The curves are for different valuations
v, with the lowest curve corresponding to v = 0.1 and the
highest to v = 1.

These observation imply that if A has a high valuation in
the second-price auction, it is unlikely that B can win if B
has a slightly lower valuation, say 0.8, no matter how high
αeB is. In the first-price auction however, if A has a high
valuation, say 0.9, but low αeA (< 1), then bidder B can win
even with valuation 0.7 but with a high αeB , say 5. Similar
statements can be made for the low valuation case, but with
the first-price and second-price auction switching roles.

The n-bidder setting with directed spite

We now extend our analysis of asymmetric-spite auctions to
n bidders. With more than two bidders, there is the possibil-
ity that some bidder(s) have different extents of spite toward
different other bidders. We call this directed spite. For ex-
ample, bidder A can have spite factor αtAB toward bidder B
and spite factor αtAC toward bidder C, so her utility would
be

uA =

 vA − pA if A wins
−αtAB · (vB − pB) if B wins
−αtAC · (vC − pC) if C wins

Figure 3: The bid in a second-price auction varies with the
expressed spite αe. The curves are for different valuations
v, with the lowest curve corresponding to v = 0.1 and the
highest to v = 0.9. For v = 1, the bidder always bids 1.

First-price sealed-bid and Dutch auction The expected
utility of A is∫ b−1

C (bA)

0

∫ b−1
B (bA)

0

[vA − bA]dvBdvC

− αtAB
∫ 1

b−1
B (bA)

∫ b−1
C (bB(vB))

0

[vB − bB(vB)]dvCdvB

− αtAC
∫ 1

b−1
C (bA)

∫ b−1
B (bC(vC))

0

[vC − bC(vC)]dvBdvC

(8)

where bB is the bidding function of B and bC is the bidding
function of C. The same formula extends to any number of
agents in the obvious way. We again guess that bA, bB and
bC are linear functions of the valuation, and we indeed find
an equilibrium, verifying the guess. The results for the n-
agent case are stated in the last row of Table 6. In the row
before that, we also show how these results specialize to the
case of undirected spite, that is, where each agent X has a
spite factor αX toward each other bidder.

English auction The analysis of the English auction is a
bit more intricate. We analyze directed spite; the undirected-
spite setting is a special case.
Proposition 1 In the English auction, an equilibrium strat-
egy for any bidder A is to stay in if the clock price is lower
than max{vA,maxX∈S B(A,X)} and to drop out other-
wise. Here S is the set of other bidders who are still in, and
B(A,X) is the bidding function for A if X were the only
other bidder (and we know this form from our analysis of
the two-bidder case, Table 3).
Proof: Any n-bidder auction would in the end reduce to a
2-bidder setting. Until what clock price should A stay in?
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Table 6: Bidding function for n-bidder asymmetric-spite
first-price sealed-bid and Dutch auctions.

Case
Bidding func-
tion for bidder
A

Expression for αeA
1+αeA

Undirected
spite

(
n−1

n−
αe
A

1+αe
A

)
v

αtA
n−1

( ∑
X:X 6=A

1
1+αeX

)

Directed
spite

(
n−1

n−
αe
A

1+αe
A

)
v 1

n−1

( ∑
X:X 6=A

αtAX
1+αeX

)

As long as there is at least one bidder, Z, still in to whom A
would bid higher in a 2-bidder setting than the current clock
price, A should stay in. This is because if A leaves before
the clock reaches that price and all other bidders except Z
also exit before the clock reaches that price, then Z will win
at a price lower than if A had stayed in. So, A would end up
with a lower utility due to leaving early.

What if there is no such person Z still in? If the clock
price has exceededA’s valuation vA, thenA no longer wants
to win, so it is best for her to exit. If, on the other hand, the
clock price has not yet reached vA, then A should stay in
until she wins or the price exceeds vA. �

Conclusions and future research
We game-theoretically analyzed the four common auction
mechanisms when bidders have asymmetric spite. A note-
worthy feature is that the symmetric equilibrium bidding
function continues to be the same as with symmetric spite—
except that the true spite is replaced by ‘expressed’ spite.
Unlike in the symmetric-spite setting, bidders express spites
that are higher or lower than their true spite depending on
others’ spites. Moreover, the equation for expressed spite
does not depend on the auction mechanism in the 2-bidder
case. Furthermore, we found that the allocation can be in-
efficient and that the revenue ranking may reverse between
first- and second-price auctions. We also studied the gen-
eralization in the n-bidders setting where agents can have
different extents of spite toward different other bidders. We
also showed that in sealed-bid auctions under asymmetric
valuation distributions, there can be a “bargaining problem”
in selecting bids.

Future work includes solving for the equilibrium of the
second-price auction in the n-bidder case. We also plan to
study valuation priors that are not uniform.

We assumed the bidders know each others’ true spite. In
settings where they do not know, we have to understand
whether the equilibrium will be reached, and how. We con-
ducted experiments that indicate that in a repeated-game set-
ting the equilibrium can be learned as long as the bidders are
able to infer each others’ expressed spites. In our simulation,
each bidder adjusts her own expressed spite given the others’
expressed spites (using the expression for αe in Table 3 or
8). The bidders rapidly converged to the equilibrium values
of αe’s regardless of the initial values of the αe’s. Future
work includes proving bounds on this convergence. Another

interesting direction would be to solve for the equilibrium in
settings where bidders do not know each others’ true spite
coefficients but have a joint prior over them.
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