
Coalitional Structure Generation in Skill Games

Yoram Bachrach† and Reshef Meir‡ and Kyomin Jung§ and Pushmeet Kohli†

† Microsoft Research, Cambridge, UK
‡ Hebrew University Jerusalem, Israel

§ KAIST, Daejeon, Korea

Abstract

We consider optimizing the coalition structure in Coalitional
Skill Games (CSGs), a succinct representation of coalitional
games (Bachrach and Rosenschein 2008). In CSGs, the value
of a coalition depends on the tasks its members can achieve.
The tasks require various skills to complete them, and agents
may have different skill sets. The optimal coalition struc-
ture is a partition of the agents to coalitions, that maximizes
the sum of utilities obtained by the coalitions. We show that
CSGs can represent any characteristic function, and consider
optimal coalition structure generation in this representation.
We provide hardness results, showing that in general CSGs,
as well as in very restricted versions of them, computing the
optimal coalition structure is hard. On the positive side, we
show that the problem can be reformulated as constraint sat-
isfaction on a hyper graph, and present an algorithm that
finds the optimal coalition structure in polynomial time for
instances with bounded tree-width and number of tasks.

Introduction

Consider a network with outposts, each with several sen-
sors covering a certain geographical area. Suppose the sys-
tem must track objects, each traveling through a different
path. By partitioning the outputs into teams, we wish to
maximize the number of tracked objects, where each team
must include an optical sensor and a motion sensor. Al-
ternatively, consider rescuers in a disaster zone with people
trapped in unknown places, which require different skills to
get to. Each rescuer has some of these skills, but can only
be in one place at a time. For example a firefighter, a medic
and a stretcher-carrier have together the set of skills required
to rescue a person from a burning room. What is the best
partition into teams that maximizes the number of people
rescued? Such problems can be modeled as optimizing the
coalition structure in skill games. Skill games (Bachrach and
Rosenschein 2008) can also model other domains, including
task allocation, grid computation and robotics.

A key issue in multi-agent systems is agent cooperation.
Such domains can be handled within the framework of coop-
erative (or coalitional) games. In such games agents form
coalitions to pursue a joint cause. Much research focused

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

on settings where only one coalition can be formed. How-
ever, many domains allow the formation of several mutu-
ally exclusive coalitions, where each coalition can secure its
profits independently. Assuming no externalities between
coalitions, an important goal is to partition the agents in a
way that maximizes the total value gained by all coalitions,
i.e. the social welfare. This problem is known as finding the
optimal coalitional structure. Representation languages for
cooperative games define the value generated by each coali-
tion. Generally any coalition may have a different value, so a
naı̈ve representation requires space exponential in the num-
ber of agents. This emphasizes the need for a succinct rep-
resentation language, with short descriptions even for many
agents. Many representations were suggested. Some guar-
antee a polynomial description, but only represent restricted
classes of games (for example (Peleg and Sudholter 2007;
Deng and Papadimitriou 1994)). Others represent any
game, but the description may be exponential in the worst
case (Ieong and Shoham 2005). One interesting model is
CSGs — Coalitional Skill Games (Bachrach and Rosen-
schein 2008). In CSGs agents cooperate to complete tasks.
Each task requires a set of skills, and a coalition accom-
plishes the task if its members have all the required skills.

Our contribution We study the problem of optimal coali-
tion structures in CSGs. We show that the general problem is
computationally hard and remains so even under severe re-
strictions on the number of tasks or the number of skills they
require. We then propose a Fixed Parameter Tractable (FPT)
algorithm, which solves in polynomial time instances whose
underlying structure has a bounded tree-width. In addition,
we show that CSGs can represent any coalitional game, so
our positive results provide a general algorithm for coali-
tional structure generation. We note however that represent-
ing and solving arbitrary games as CSGs would be ineffi-
cient, thus our method should be used in domains where the
game has a simple CSG representation.

Preliminaries

A transferable utility (TU) coalitional game is composed
of a set of n agents, I , and a characteristic function map-
ping any subset (coalition) of the agents to a rational value
v : 2I → Q, indicating the total utility these agents achieve

703

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

together. A coalitional game is monotone if for all coali-
tions C′ ⊂ C we have v(C′) ≤ v(C). In some domains,
each coalition can obtain its value, without being affected
by the formation of additional coalitions. For such domains,
we follow the Coalition Structure (CS) model introduced
in (Aumann and Dreze 1974), where agents can split into
several teams which work simultaneously. A coalition struc-
ture is simply a partition of the agents into disjoint coali-
tions. Formally, CS = (C1, . . . , Cl) is a coalition structure
over a set of agents I if ∪l

i=1C
i = I and Ci ∩ Cj = ∅ for

all i 6= j; The set CS(I) denotes all possible coalition struc-
tures on I . We overload the notation for values by denoting
v(CS) =

∑

Cj∈CS
v(Cj). Given a game 〈I, v〉, the optimal

coalition structure CS∗ ∈ CS(I) is the partition that max-
imizes social welfare, i.e. for any other CS ∈ CS(I) we
have v(CS) ≤ v(CS∗).

Skill Games We briefly review the definitions of CSGs
from (Bachrach and Rosenschein 2008). A skill domain is
composed of a set of agents, I = {a1, . . . , an}, a set of tasks
T = {t1, . . . , tm}, and a set of skills S = {s1, . . . , sk}.
Each agent ai has a set of skills Si ⊂ S, and each task tj
requires a set of skills S(tj) ⊂ S, where S(tj) 6= ∅. We de-
note the set of skills a coalition C has by S(C) = ∪ai∈CSi.
We say a coalition C ⊂ I can perform task tj if every skill
required to perform the task is owned by some agent in the
coalition (i.e. S(tj) ⊂ S(C)). We denote the set of tasks
a coalition C can perform as T (C) = {tj ∈ T |S(tj) ⊂
S(C)}. We denote the set of skills required to perform a set
of subtasks T ′ ⊂ T by S(T ′) = ∪tj∈T S(tj). A task value
function maps a subset of the tasks a coalition achieves to a
rational value: u : 2T → Q 1. We generally assume u is
monotone, so if T1 ⊂ T2 ⊆ T , then u(T1) ≤ u(T2). Con-
sider a skill domain; we define the skill game as follows:

Definition 1. A Coalitional Skill Game (CSG) is the coali-
tional game 〈I, v〉, where v(C) = u(T (C)), i.e. the value
of the tasks that coalition C can perform.

In their most general form, without restrictions on u, the
description length of a CSG is still exponential in the num-
ber of tasks. Thus we define a simpler class of games by
restricting the function u. A concise representation allows
tasks to have different weights, and the characteristic func-
tion is the weighted sum of all accomplished tasks.

Definition 2. A Weighted Task Skill Game (WTSG) is a
CSG with a weight function for tasks w : T → Q. The
characteristic function u is defined as ∀T ′ ⊆ T, u(T ′) =
w(T ′), where w(T ′) =

∑

t∈T ′ w(t). We denote by WTSG+

games where all weights are positive.

In a very restricted form of skill games, there is only one
task t. In this case, u only needs to distinguish between
coalitions that can perform t, and coalitions that cannot.
Dropping all skills that are not required to perform t, a coali-
tion C wins if it manages to cover all the skills.

Definition 3. A Single Task Skill Game (STSG) is a WTSG
where there is only one task t with unit weight, thus v(C) =
1 if S(C) = S and v(C) = 0 otherwise.

1We assume a binary encoding for numbers.

Finding the Optimal Coalitional Structure

The work of (Bachrach and Rosenschein 2008) which pro-
posed the CSG model did not discuss what characteristic
functions can be represented as CSGs. Consider WTSGs
of Definition 2. It is easy to see that instances of WTSG+

cannot express all games (e.g. non-monotonic games), but
as the following theorem shows, if arbitrary weights are al-
lowed then WTSG are highly expressive.

Theorem 1. Any game 〈I, v〉 can be expressed as a WTSG.

Proof. Consider a characteristic function u : 2I → Q.
We construct a WTSG representation as follows. For any
agent i ∈ I we create a single skill si, which only that
agent has. For any singleton coalition C = {i} we create
a single task t{i}, which requires si, and set its weight so

that u({i}) = w(t{i}) = v({i}). We now proceed from
coalitions of size x to coalitions of size x + 1. For any
coalition C we compute the sum of weights of all tasks
that can be performed by subsets of C, and add a task tC
which requires C and whose weight is exactly the differ-
ence w(tC) = v(C) −

∑

C′(C w(tC′). Thus we have by

induction that u(T (C)) = v(C) for all C ⊆ I .

Theorem 1 states the WTSGs are fully expressive (when
negative weights are possible). We later propose an algo-
rithm for computing the optimal structure in CSGs. Since
any game can be converted into such a WTSG, this algo-
rithm is a general algorithm for coalition structure genera-
tion. However, the above construction can result in a very
large CSG representation, with a number of tasks exponen-
tial in the number of the agents. Thus, our methods are tai-
lored to domains with a succinct CSG representation.

Definition 4 (OPT-CS-CSG). We are given a CSG 〈I, v〉
and a rational number r, and are asked whether the value of
the optimal coalitional structure for this game is at least r,
i.e. if there is CS ∈ CS(I) such that v(CS) ≥ r.

We use the class name as a suffix (e.g. “OPT-CS-WTSG”
is finding the optimal structure in WTSG). In WTSGs and
STSGs, the description is polynomial in the number of tasks,
skills and players. Computing the value of any structure can
be done in polynomial time, so OPT-CS-CSG is in NP .

Hardness Results

We now show that computing the optimal coalition structure
is hard, even for very restricted classes of the problem.

Single Task We show that OPT-CS is NP-hard even for
single task skill games (STSGs), using a reduction from
SET-SPLITTING, which is a known NP-complete prob-
lem (Garey and Johnson 1979): We are given a set of ele-
ments U and a family F of subsets S1, . . . , Sm, such that
each Si ⊆ U , and are asked if there is a partition of U into
CA, CB such that each Si is split between CA and CB (i.e.
for any i, CA ∩ Si 6= ∅ and CB ∩ Si 6= ∅).

Theorem 2. OPT-CS-STSG is NP-complete.

704

Proof. For any set Sj ∈ F in the original SET-SPLITTING
instance, we define a skill sj that all the agents in Sj own,
and set r = 2. A partition (CA, CB) of U splits all sets
in F iff each of CA, CB has all skills, so both CA, CB are
coalitions that can perform the task. Thus the optimal CS
has a utility of at least 2 iff there is a set-splitting.

Thus, merely testing whether there exists a structure with
utility higher than 1 is hard. Observe that CSGs has a graph-
ical interpretation as a hypergraph when replacing the term
“elements” (or agents) with “vertices” and “subsets of el-
ements” with “hyperedges”, where every hyperedge corre-
sponds to a skill. This hypergraph is the skill graph of the
CSG problem and we use it in the positive results section.

Tasks that require only two skills Theorem 2 considers
a single task requiring any number of skills. We now show
that OPT-CS is NP-complete even when tasks require at
most two skills, through a reduction from NEGATIVE-CUT,
another known NP-complete problem (Deng and Papadim-
itriou 1994). In NEGATIVE-CUT, we are given an undi-
rected weighted graph G = 〈V, E, g〉, where g : E → Q is
a weight function, and are asked if there is a cut in the graph
(i.e. a partition of V to two distinct sets (V1, V2)), such that
∑

i∈V1,j∈V2
g(i, j) ≤ 0.2

Theorem 3. OPT-CS-WTSG+ is NP-complete even if the
input is limited to tasks that require at most two skills, and
skills that are owned by at most two agents.

Proof. Let G = 〈V, E, g〉 be an undirected graph with
weight function g : E → Q. For any edge set E′ ⊆ E, de-
note by g(E′) =

∑

e∈E′ g(e) the weight of the subset. We
construct our WTSG as follows: the set of agents I is the set
of vertices V . We denote by P ⊆ E the set of all positive
edges, i.e. P = {e ∈ E : g(e) > 0}, and its complement
by N = E \ P . For every positive edge e = (i, i′) ∈ P ,
define a task te and two skills se,i, se,i′ . The task te requires
the two skills, and each of them is owned exclusively by one
agent (either i or i′). Set the value to w(te) = g(e) > 0. For
every negative edge f = (j, j′) ∈ N , define a task tf and a
single skill sf , owned by both agents j, j′. Set the value to
w(tf) = −g(f) > 0. Finally, set r =

∑

e∈E |g(e)|.
The set of coalitional structures CS(I) is the set of mul-

ticuts of G (i.e. partitions of I = V). The notation CS
is used in both contexts. For any non overlapping coali-
tions (vertex subsets C, C′ ⊆ I), denote by g(C, C′) =
∑

i∈C,j∈C′ g(i, j) the weight of the partial cut (C, C′). For

any multicut CS = (C1, . . . , Cc) of I , denote by g(CS) =
∑

C,C′∈CS g(C, C′) the weight of the multicut. This is the

total weight of all edges crossing the multicut. Figure 1

2In the original version of the problem the requirement was for
a strictly negative cut. However, the weak inequality can be proved
by replacing the term 0 with a very small ǫ > 0. The term only has
to be smaller than the difference between any two sums of edge
weights. Assuming a binary number encoding, it is sufficient to set

0 < ǫ < 2−2n·|x|, where |x| is the length of the original problem.
Note edges may not have a zero weight.

Figure 1: In the example graph r =
∑

e∈E |g(e)| = 19, and

CS = ({i, j}, {x, y}, {z}). Viewing CS as a multicut, its
weight is g(CS) = −3. Solid-line tasks need both agents,
and dashed lines tasks can be carried by each agent. Thus
the value of CS is v(CS) = 4 + 2(1 + 4 + 3) + 2 = 22,
which indeed equals r − g(CS) as lemma 2 states.

shows an example of a graph and a multicut. To complete
the reduction, we need the following two lemmas.

Lemma 1. G has a non-positive multicut iff it has a non-
positive cut.

Proof. Suppose there is a multicut CS of the vertices such
that g(CS) ≤ 0, where c = |CS| ≥ 3. Let C′, C′′ ∈ CS
be two coalitions that maximize g(C′, C′′). We merge the
C′ and C′′ and get a new structure CS′ of size c − 1, and
weight g(CS′) = g(CS) − g(C′, C′′). If all partial cuts in
CS were negative, then clearly g(CS′) < 0, since it is a
sum of negative terms. Otherwise, for the maximal partial
cut g(C′, C′′) ≥ 0, so g(CS′) ≤ g(CS) ≤ 0. In any case,
we get a new negative cut of size c−1. We repeat the process
until we have a negative cut (C1, C2). The other direction is
trivial, as every cut is a multicut.

Lemma 2. For any structure CS, v(CS) = r − g(CS).

Proof. Each positive task te is performed (once) iff its cor-
responding edge e = (i, i′) does not cross the multicut (so
both required agents are in the same coalition). Each nega-
tive task tf is performed at least once, and twice if the two
agents capable of performing it belong to different coali-
tions, i.e. the corresponding edge f = (j, j′) crosses the
multicut. We denote by E(CS) ⊆ E the set of all edges
crossing the multicut CS. Summing payments over per-
formed tasks we get:

v(CS) =
∑

e∈P\E(CS)

w(te) +
∑

f∈N

w(tf) +
∑

f∈N∩E(CS)

w(tf)

=
∑

e∈P\E(CS)

g(e) +
∑

f∈N

−g(f) −
∑

f∈N∩E(CS)

g(f)

=
∑

e∈P

g(e) −
∑

e∈P∩E(CS)

g(e) +
∑

f∈N

−g(f) −
∑

f∈N∩E(CS)

g(f)

=
∑

e∈E

|g(e)| −
∑

e∈E(CS)

g(e) = r − g(CS) .

705

Due to Lemma 2, the value of a coalition structure CS
reaches the threshold r iff the weight of CS as a multicut
is non-positive. Thus, a partition CS for which v(CS) ≥
r exists iff G contains a non-positive multicut, which by
Lemma 1 happens iff G contains a non-positive cut.

Theorems 2 and 3 indicate that OPT-CS in general CSGs
is very hard computationally, as it is hard to solve even
highly restricted classes of WTSGs.

Positive Results

Definition 5. Given a CSG, its corresponding Skill Graph is
a hypergraph G = 〈V, E〉 defined as follows. The agent
form the vertex set, i.e. V = I , and the set of skills forms the
hyperedge set. That is, each skill s defines a single hyper-
edge es ∈ E that connects all vertices corresponding to the
agents owning the skill s. We denote by d = maxs∈S |es|
the largest number of agents sharing a single skill.

A simple case: STSG We first consider STSGs, and fur-
ther assume that for each skill, there are at most two agents
having that skill (i.e. d = 2). We show that a simple algo-
rithm would work in this case.

Theorem 4. Given a STSG with d = 2, the maximal value of
a coalition structure, maxCS∈CS(I) v(CS), is 2 if and only
if G is a bipartite graph and 1 otherwise. Further, if G is
bipartite then the bi-partition of the vertices of G forms the
optimal coalition structure CS∗. If G contains singletons or
is not bipartite, then CS∗ = I .

Proof. If G contains singletons, then only the grand coali-
tion can do the task and v(CS∗) = v(I) = 1. Otherwise,
all hyperedges connect exactly two vertices (and thus are
edges), so G is a graph. Since each skill is owned by ex-
actly two agents, for any coalitional structure, at most two
coalitions in it can cover all the skills. Thus, to find the op-
timal coalitional structure, CS∗, we only need to consider
structures with two coalitions, thus v(CS) ∈ {1, 2}.

Each of the two coalitions covers all skills iff each edge
of G connects two agents from the two different coalitions,
since then each side of the partition has an agent who has the
skill that edge represents. This occurs when G is a bipartite,
and the two coalitions form the vertex bi-partition.

Bounded tree-width graph The tree-width of a hyper-
graph G generalizes of the tree-width of graphs. The fol-
lowing definitions are from (Gottlob, Leone, and Scarcello
2002), and we refer the reader there for a detailed introduc-
tion. We use V (G) to denote the vertex set of G, and E(G)
for the hyperedge set of G.

Definition 6. Let G = 〈V, E〉 be a hypergraph. A tree de-
composition of G is a tuple (R,B), where T is a tree and
B = (Bt)t∈V (R) is a family of subsets of V (G) (each such

Bt is called a bag) such that: (a) for each e ∈ E(G), there
is a node t ∈ V (R) such that e ∈ Bt; (b) for each v ∈ V (G)
the set {t ∈ V (R)|v ∈ Bt} is connected in T .

Definition 7. Let (R,B) be a tree decomposition of a hyper-
graph G. The tree-width of (R,B) is maxt∈V (R) |Bt|. The

Figure 2: A tree decomposition of a hypergraph. The tree-
width of the tree decomposition is 3.

tree-width of G is the minimum tree-width of (R,B) over all
tree decompositions (R,B) of G. We denote the tree-width
of a hypergraph G by w(G).

Figure 2 illustrates an example of tree decomposition of a
hypergraph, and the tree-width of the decomposition.

Let CSG(m, w) be the class of all CSGs with the restric-
tion that the number of tasks is at most m, and the tree-width
of the corresponding skill graph is at most w. Note that when
the number of tasks |T | is bounded by a constant, the value
function u : 2T → Q can also be described by a fixed size
table. As before, we denote the number of agents by n, and
the number of skills by k. Thus the description length of
any instance of CSG(m, w) is O(nk). We now show a fixed
parameter tractable (FPT) algorithm3 that computes the op-
timal coalitional structure for CSG(m, w), using the tree de-
composition of Definition 6.

Theorem 5. CS-OPT-CSG(m, w) is in P . Further, there is
a (m, w)-FPT algorithm that checks for a given CSG 〈I, v〉
whether it belongs to the restricted set CSG(m, w) and if so,
returns the optimal coalition structure for CSG.

Proof. Consider checking if a coalition C achieves a given
task subset T0 ⊆ T , i.e. whether T0 ⊆ T (C). By the defi-
nition of CSGs, C achieves T0 iff for any skill s required by
at least one task in T0, at least one agent in C owns s.

Denote the maximal number of agents sharing a skill as
d′ = maxs∈S |{ai ∈ I|s ∈ Si}|, and d = d′ · |T |. A
coalition structure can achieve at most d tasks, as a task that
requires skill a s which only x agents share can be achieved
at most x times.

A candidate task solution is a set T = {Ti}d
i=1, where

each Ti ⊂ T is a subset of tasks. For any coalitional
structure CS = {Ci}d

i=1, we say CS achieves T if for all
1 ≤ i ≤ d, Ci achieves Ti. If CS achieves T then the

following holds: v(CS) ≥
∑d

i=1 u(Ti) (Ci achieves Ti,
but could also achieve more tasks). Further, for the optimal

3Fixed parameter tractability with parameter α (α-FPT) means
the running time is f(α) · p(n) where f(α) may be any function
(e.g. an exponential function), and p(n) is a polynomial function
in the input length n. In our case, the parameters are the number of
tasks and the tree-width. In contrast, an algorithm that runs in time

p(n)f(α) is still polynomial when the parameter α is bounded, but
is not α-FPT (and is probably intractable in practice).

706

structure CS∗, there is a set of task subsets T
∗ = {T ∗

i }
d
i=1

for which the inequality is an equality. This occurs when
T ∗

i = T (C∗
i) for all C∗

i ∈ CS∗. We denote the set of can-
didate task solutions that are achievable by some coalition
structure of size d as T (d). The value of the optimal coali-
tion structure is the maximal value of an achievable candi-
date task solution v(CS∗) = maxT∈T (d)

∑d

i=1 u(Ti).
Similarly, if for each fixed candidate task solution T we

compute a CS that achieves it (or find that one does not
exist), then we can compute CS∗.

We first show that for a fixed candidate task solution T,
we can efficiently verify whether it can be achieved (i.e. if
T ∈ T (d)). A key observation is that CS achieves T iff the
following holds for each skill s:

(a) For each 1 ≤ i ≤ d, if s is required for at least one task
in Ti, then at least one agent in Ci owns s.

We reformulate the problem as a constraint satisfaction
problem (CSP). Consider our skill-hypergraph G, where
each vertex is an agent. A coalition structure is a coloring of
V in d colors, where all agents with the same color form a
coalition. The constraints are represented by the hyperedges
in G, where (a) is enforced separately for each skill (hyper-
edge). Since the size of each such hyperedge is at most d, a
naı̈ve representation of the domain requires dd possible as-
signments to the vertices of the hyperedge es. We can check
each such partial assignment in d2 ·k operations (if for every
Ti that requires s there is at least one vertex with color i, we
keep the assignment, and otherwise we remove it). Thus it
takes O(dd+2 · k) to compute the domain of a single con-
straint, and O(dd+2 · k2) to compute all the domains 4

This only defines the CSP – we still need to solve it. Since
the hypergraph G underlying our CSP has a bounded tree-
width w, there are known algorithms that solve it efficiently.
We briefly describe one method, which allows us to reuse
many computations. We first take G as input, check if its
tree-width is bounded by w, and if so return a tree decompo-
sition (R,B) of G (see (Gottlob, Leone, and Scarcello 2002;
Bodlaender 1993)). The algorithm is w-FPT and runs in
f(w) · p(n, k) time (for an exponential f and some low de-
gree polynomial p). The dual problem of our original CSP
is also a CSP, whose underlying graph is the tree T . The
new problem has two types of constraints: the ones induced
by (a) are enforced separately on each bag (see in figure 2
how every hyperedge in G is embedded in a bag in R). Also,
each edge of T enforces consistency, i.e. prevents an agent
from getting different colors in two neighboring bags (due to
the connectivity property of (R,B), the agent must get the
same color in all buckets). Rhe underlying graph of the new
CSP is a tree, and can be solved in O(n · k · (dd)2) (linear
in the size of the tree and quadratic in the size of the bags’
domains. See e.g. (Russell and Norvig 2003).). A solution
of either the primal or the dual CSP is a valid coloring of
the vertices of G, that is, a coalition structure of size d that
achieves T. If there is no solution, we know that T /∈ T (d).

4The concrete CSP constrains are simple restrictions of variable
domains, or constraints regarding neighbouring bags in the tree de-
composition.

To find the optimal coalition structure over all of CS(I),
we iterate over candidate task solutions T ∈ T (d), and pick
the one that maximizes the utility and return its correspond-
ing coalition structure CS∗. There are 2m·d possible T’s, so
the complexity of naı̈ve loop would be:

O(2md(f(w)p(n, k)+n·k2 ·d2d)) = f ′(w, m, d)·p′(n, k) .

Note that this is a FPT algorithm for the parameters m, w
(as d ≤ w). However, we can do better. since in all the iter-
ations we essentially use the same skill graph, the decompo-
sition can be performed once. The constraints will then be
enforced directly on the dual for each T, as we explained.

If we reuse the dual as suggested, the complexity is signif-
icantly reduced to f(w)p(n, k)+O

(

2md · n · k2 · d2d
)

.

The proposed algorithm relies on the tree decomposition
and therefore on the low tree-width of G. However, even if
we cannot bound w, we may still try other algorithms de-
signed for constraint satisfaction. These can be applied on
the primal or dual CSP based on domain specific knowledge,
graph properties other than tree-width, or heuristics.

Related Work

A key factor in designing algorithms for cooperative multi-
agent systems is representing synergies and cooperation. In-
deed, several papers describe representations based on com-
binatorial structures such as CSGs. For examples see (Deng
and Papadimitriou 1994; Ieong and Shoham 2005) and a sur-
vey in (Bilbao 2000). In particular, generation of the opti-
mal coalition structure and its applications, such as vehicle
routing (Sandhlom and Lesser 1997) and multi-sensor net-
works (Dang et al. 2006) received much attention.

An early approach by (Shehory and Kraus 1998), focused
on overlapping coalitions and gave a loose approximation
algorithm. Another early approach (Sandholm et al. 1999)
has a worst case complexity of O(nn), whereas dynamic
programming approaches have a worst case guarantee of
O(3n). Such algorithms were examined empirically in (Lar-
son and Sandholm 2000).

Arguably, the current state of the art method is presented
in (Rahwan and Jennings 2008). They suggest an algo-
rithm with a worst case runtime of O(nn) and does not pro-
vide polynomial guarantees even for restricted classes, but
in practice it is faster than the above mentioned methods.
These approaches assume a black-box that computes the
value of a coalition, whereas we rely on a specific represen-
tation. The approach of (Dang et al. 2006), which suggests
a polynomial algorithm for a restricted case of multi-sensor
networks, is more similar to our method as it is also a task
based model. However, their task model is very different
from CSGs. Other work of similar nature include (Elkind,
Chalkiadakis, and Jennings 2008), which handles Weighted
Voting Games (WVGs), and (Ohta et al. 2009) which uses
CSP techniques for Synergy Coalition Groups, MC-nets and
Multi-Issue Domains. However, WVG are an extremely lim-
ited representation, unlike CSGs which can represent any
game, and the results in (Ohta et al. 2009) are hardness re-
sults (although the problems are reduced to Mixed Integer
Programs). In contrast to the above approaches, our paper

707

provides both a general algorithm and a sufficient condition
that guarantees a polynomial running time.

Conclusion

We considered computing the optimal coalitional structure
in CSGs. We showed that this problem is NP-hard, even
in very restricted cases, but that it can be solved efficiently
when the skill hypergraph exhibits certain topological prop-
erties. Specifically, the problem is fixed parameter tractable
in the tree-width of the skill graph and the number of tasks.

CSGs are a general representation of coalitional games,
therefore our algorithm can be viewed as a general algorithm
for coalitional structure generation. However, since the CSG
representation of a game may be extremely long, our algo-
rithm is tractable only in domains which have a short CSG
representation, with relatively few tasks and a low tree-width
skill graph. We believe this is likely to be the case for many
domains, especially domains such as the examples given in
the beginning of the paper, where the tree-width is limited
due to geographical constraints. In addition, the CSP for-
mulation of the problem can be used by other algorithms
that may work better even when the tree-width is high.

Several directions remain open for future research. First,
in cases where finding an optimal solution is intractable, we
should design algorithms that find an approximately optimal
solution based on structural or other properties of the CSG.

Second, while our motivation comes from coalitional
game theory, we only addressed social welfare, and ignored
the question of coalition stability. When agents are selfish,
and only care about their own utility, further game theoretic
analysis is appropriate. It would be interesting to examine
questions relating to solution concepts such as the core, the
Shapley value and nucleolus. It is known for example, that
according to some notions of approximated core, the coali-
tion structure that is the easiest to stabilize is the one that
maximizes the social welfare (Bachrach et al. 2009).

Finally, could we find new structural properties that al-
low finding the optimal structure efficiently? Could we
find optimal coalition structures for other representation lan-
guages, such as (Bilbao 2000; Ieong and Shoham 2005;
Bachrach and Rosenschein 2007). Although there are rel-
atively few works considering coalition structures in re-
stricted forms of coalitional games, we believe many prob-
lems that arise in practice could be solved using techniques
tailored to these restricted cases. Algorithms such as the
one proposed in this paper are a step in this direction. Also,
the approximation quality of many algorithms could be im-
proved when dealing with restricted game classes.

Acknowledgement

Kyomin Jung was supported by the Engineering Research
Center of Excellence Program of Korea Ministry of Educa-
tion, Science and Technology(MEST) / National Research
Foundation of Korea(NRF) (Grant 2009-0063242).

References

Aumann, R., and Dreze, J. 1974. Cooperative games with coalition
structures. International Journal of Game Theory 3(4):217–237.

Bachrach, Y., and Rosenschein, J. S. 2007. Computing the Banzhaf
power index in network flow games. In AAMAS 2007, 323–329.

Bachrach, Y., and Rosenschein, J. S. 2008. Coalitional skill games.
In AAMAS 2008, 1023–1030.

Bachrach, Y.; Elkind, E.; Meir, R.; Pasechnik, D.; Zuckerman, M.;
Rothe, J.; and Rosenschein, J. S. 2009. The cost of stability in
coalitional games. In SAGT 2009, 122–134.

Bilbao, J. M. 2000. Cooperative Games on Combinatorial Struc-
tures. Kluwer Publishers.

Bodlaender, H. 1993. A linear time algorithm for finding tree-
decompositions of small treewidth. In Proceedings of the twenty-
fifth annual ACM symposium on Theory of computing, 226–234.
ACM New York, NY, USA.

Dang, V.; Dash, R.; Rogers, A.; and Jennings, N. 2006. Over-
lapping coalition formation for efficient data fusion in multi-sensor
networks. In AAAI-2006, volume 21, 635.

Deng, X., and Papadimitriou, C. H. 1994. On the complexity of
cooperative solution concepts. Math. Oper. Res. 19(2):257–266.

Elkind, E.; Chalkiadakis, G.; and Jennings, N. 2008. Coalition
structures in weighted voting games. In ECAI-2008, 393.

Garey, M. R., and Johnson, D. S. 1979. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W.H. Freeman and
Company.

Gottlob, G.; Leone, N.; and Scarcello, F. 2002. Hypertree decom-
positions and tractable queries. Journal of Computer and System
Sciences 64(3):579–627.

Ieong, S., and Shoham, Y. 2005. Marginal contribution nets: A
compact representation scheme for coalitional games. In Proceed-
ings of the 6th ACM Conference on Electronic Commerce, 193–
202.

Larson, K., and Sandholm, T. 2000. Anytime coalition structure
generation: average case study. J. Experimental & Theoretical Ar-
tificial Intelligence 12(1):23–42.

Ohta, N.; Conitzer, V.; Ichimura, R.; Sakurai, Y.; Iwasaki, A.; and
Yokoo, M. 2009. Coalition Structure Generation Utilizing Com-
pact Characteristic Function Representations. In CP-09. Springer.

Peleg, B., and Sudholter, P. 2007. Introduction to the theory of
cooperative games. Springer.

Rahwan, T., and Jennings, N. 2008. An improved dynamic pro-
gramming algorithm for coalition structure generation. In AAMAS-
2008, 1417–1420.

Russell, S., and Norvig. 2003. Artificial intelligence: a modern
approach. Prentice hall, Upper Saddle River, N.J.

Sandhlom, T., and Lesser, V. 1997. Coalitions among computa-
tionally bounded agents. Artificial Intelligence 94(1-2):99–137.

Sandholm, T.; Larson, K.; Andersson, M.; Shehory, O.; and
Tohmé, F. 1999. Coalition structure generation with worst case
guarantees. Artificial Intelligence 111(1):209–238.

Shehory, O., and Kraus, S. 1998. Methods for task allocation
via agent coalition formation. Artificial Intelligence 101(1–2):165–
200.

708

