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Superman: “I’m here to fight for truth, justice, and the
American way.”
Lois Lane: “You’re gonna wind up fighting every
elected official in this country!”

Superman (1978)

Abstract

Cake cutting is a common metaphor for the division of a het-
erogeneous divisible good. There are numerous papers that
study the problem of fairly dividing a cake; a small number
of them also take into account self-interested agents and con-
sequent strategic issues, but these papers focus on fairness
and consider a strikingly weak notion of truthfulness. In this
paper we investigate the problem of cutting a cake in a way
that is truthful and fair, where for the first time our notion of
dominant strategy truthfulness is the ubiquitous one in social
choice and computer science. We design both deterministic
and randomized cake cutting algorithms that are truthful and
fair under different assumptions with respect to the valuation
functions of the agents.

Introduction
The need for resource allocation arises in many AI domains,
and in particular in multiagent systems. This has led to a
wide interest in the field known as Multiagent Resource Al-
location, and to various applications of resource allocation
techniques (see the survey by Chevalyere et al. (2006)). Re-
source allocation problems deal with either divisible or indi-
visible resources, where the distinction is based on whether
any fraction of a resource can be given to an agent.

Cutting a cake is often used as a metaphor for allocating
a divisible good. The difficulty is not cutting the cake into
pieces of equal size, but rather that the cake is not uniformly
tasty: different agents prefer different parts of the cake, de-
pending, e.g., on whether the toppings are strawberries or
cookies. The goal is to divide the cake in a way that is “fair”;
the definition of fairness is a nontrivial issue in itself, which
we discuss in the sequel. The cake cutting problem dates
back to the 1940s, and for over sixty years has attracted the
attention of mathematicians, economists, and political sci-
entists. While most of the work in artificial intelligence, and
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computer science in general, has focused on the allocation
of indivisible resources, recent years have seen an increasing
interest among computer scientists in the allocation of divis-
ible resources (see, e.g, (Edmonds and Pruhs 2006a; 2006b;
Procaccia 2009)).

Slightly more formally, the cake is represented by the in-
terval [0, 1]. Each of n agents has a valuation function over
the cake, which assigns a value to every given piece of cake
and is additive. The goal is to find a partition of the cake
among the agents (while possibly throwing a piece away)
that satisfies one or several fairness criteria. In this paper we
consider the two most prominent criteria. A proportional al-
location is one where the value each agent has for its own
piece of cake is at least 1/n of the value it assigns to the
entire cake. An envy-free (EF) allocation is one where the
value each agent assigns to its own piece of cake is at least as
high as the value it assigns to any other agent’s piece of cake.
There is a rather large body of literature on fairly cutting a
cake according to these two criteria (see, e.g., the books by
Robertson and Webb (1998) and Brams and Taylor (1996)).

So far we have briefly discussed “justice”, but have not
yet mentioned “truth.” Taking the game-theoretic point of
view, an agent’s valuation function is its private informa-
tion, which is reported to a cake cutting algorithm. We
would like an algorithm to be truthful, in the sense that
agents are motivated to report their true valuation func-
tions. Like fairness, this idea of truthfulness also lends it-
self to many interpretations. One variation, referred to as
strategy-proofness in previous papers by Brams et al. (2006;
2008), assumes that an agent would report its truthful val-
uation rather than lie if there exist valuations of the other
agents such that reporting truthfully yields at least as much
value as lying. In the words of Brams et al., “...the players
are risk-averse and never strategically announce false mea-
sures if it does not guarantee them more-valued pieces. ...
Hence, a procedure is strategy-proof if no player has a strat-
egy that dominates his true value function.” (Brams, Jones,
and Klamler 2008, page 362).

The foregoing notion is strikingly weak compared to the
notion of truthfulness that is common in the social choice lit-
erature. Indeed, strategy-proofness is usually taken to mean
that an agent can never benefit by lying, that is, for all valua-
tions of the other agents reporting truthfully yields at least as
much value as lying. Put another way, truth-telling is a dom-
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inant strategy. This notion is worst-case, in the sense that an
agent cannot benefit by lying even if it is fully knowledge-
able of the valuations of the other agents. It is also the pre-
dominant one in the computer science literature, and in par-
ticular in the algorithmic mechanism design literature (Nisan
and Ronen 2001). In order to prevent confusion we will
avoid using the term “strategy-proof,” and instead refer to
the former notion of Brams et al. as “weak truthfulness” and
to the latter standard notion as “truthfulness.”

To illustrate the difference between the two notions, con-
sider the most basic cake cutting algorithm for the case of
two agents, the Cut and Choose algorithm.1 Agent 1 cuts
the cake into two pieces that are of equal value according to
its valuation; agent 2 then chooses the piece that it prefers,
giving the other piece to agent 1. This algorithm is trivially
proportional and EF.2 It is also weakly truthful, as if agent
1 divides the cake into two pieces that are unequal accord-
ing to its valuation then agent 2 may prefer the piece that is
worth more to agent 1. Agent 2 clearly cannot benefit by ly-
ing. However, the algorithm is not truthful. Indeed, consider
the case where agent 1 would simply like to receive as much
cake as possible, whereas the single-minded agent 2 is only
interested in the interval [0, ε] where ε is small (for example,
it may only be interested in the cherry). If agent 1 follows
the protocol it would only receive half of the cake. Agent
1 can do better by reporting that it values the intervals [0, ε]
and [ε, 1] equally, since then it would end up with almost the
entire cake by choosing to cut pieces [0, ε], [ε, 1].

In this paper we consider the design of truthful and fair
cake cutting algorithms. To the best of our knowledge we
are the first to do so.3 However, there is a major obstacle
that must be circumvented: regardless of strategic issues,
and when there are more than four agents, even finding a
proportional and EF allocation in a bounded number of steps
with a deterministic algorithm is a long-standing open prob-
lem! See Procaccia (2009) for an up-to-date discussion.4 We
shall therefore restrict ourselves to specific classes of valu-
ation functions where efficiently finding fair allocations is a
non-issue; the richness of our problem stems from our desire
to additionally achieve truthfulness.

Our results. We first consider deterministic algorithms. We
restrict ourselves to the case where the agents hold piece-
wise uniform valuation functions, that is, each agent is inter-
ested in a collection of subintervals of [0, 1] with the same
marginal value for each fractional piece in each subinterval.

1This algorithm is described here with the agents taking actions;
equivalently, the algorithm acts on behalf of agents using the re-
ported valuations.

2Proportionality and envy-freeness coincide if there are two
agents and the entire cake is allocated.

3Just before the acceptance of this paper we learned of an in-
dependent working paper that asks similar questions (Mossel and
Tamuz 2010), but the technical overlap is minimal. There is also
a loosely related paper by Thomson (2007), who showed that in
general a truthful and Pareto-optimal algorithm must be dictatorial
in the slightly different setting of pie-cutting.

4To be precise, previous algorithmic work assumed that the en-
tire cake has to be allocated, but this does not seem to be a signifi-
cant restriction in the context of fairness.

This is the case when some parts of the cake satisfy a cer-
tain property and an agent desires as much of these parts as
possible. Our main result is a deterministic algorithm for
any number of agents that is truthful, proportional, EF, and
polynomial-time. The proof requires many ingredients, in-
cluding a seemingly unlikely application of the classic Max-
Flow Min-Cut Theorem.

We next consider randomized algorithms. We slightly re-
lax truthfulness by asking that the algorithm be truthful in
expectation, that is, an agent cannot hope to increase its ex-
pected value by lying for any reports of other agents. For
general valuations, we present a simple randomized algo-
rithm that is truthful in expectation, and always outputs an
allocation that is proportional and EF. We further establish
that this algorithm is tractable under the relatively weak
assumption that the agents hold piecewise linear valuation
functions, that is where the marginal value in each subinter-
val of interest is a linear function.

Preliminaries
We consider a heterogeneous cake, represented by the inter-
val [0, 1]. A piece of cake is a finite union of subintervals
of [0, 1]. We sometimes abuse this terminology by treating
a piece of cake as the set of the (inclusion-maximal) inter-
vals that it contains. The length of the interval I = [x, y],
denoted len(I), is y − x. For a piece of cake X we denote
len(X) =

∑
I∈X len(I).

The set of agents is denoted N = {1, . . . , n}. Each
agent i ∈ N holds a private valuation function Vi, which
maps given pieces of cake to the value agent i assigns
them. Formally, each agent i has a value density function,
vi : [0, 1]→ [0,∞), that is piecewise continuous. The func-
tion vi characterizes how agent i assigns value to different
parts of the cake. The value of a piece of cakeX to agent i is
then defined as Vi(X) =

∫
X
vi(x)dx =

∑
I∈X

∫
I
vi(x)dx.

We note that the valuation functions are additive, i.e. for any
two disjoint pieces X and Y , Vi(X ∪Y ) = Vi(X)+Vi(Y ),
and non-atomic, that is Vi([x, x]) = 0 for every x ∈ [0, 1].
The last property implies that we do not have to worry
about the boundaries of intervals, i.e., open and closed in-
tervals are identical for our purposes. We further assume
that the valuation functions are normalized, i.e. Vi([0, 1]) =∫ 1

0
vi(x)dx = 1.

A cake cutting algorithm is a function f from the valua-
tion function of each agent to an allocation (A1, . . . , An) of
the cake such that the pieces are pairwise disjoint. For each
i ∈ N the piece Ai is allocated to agent i, and the rest of the
cake, i.e., [0, 1] \

⋃
i∈N Ai, is thrown away. Here we are as-

suming free disposal, that is, the algorithm can throw away
resources without incurring a cost.

We say that an allocation A1, . . . , An is proportional if
for every i ∈ N , Vi(Ai) ≥ 1/n, that is, each agent receives
at least a (1/n)-fraction of the cake according to its own
valuation. We say that an allocation is envy-free (EF) if for
every i, j ∈ N , Vi(Ai) ≥ Vi(Aj), i.e., each agent prefers its
own piece of cake to the piece of cake allocated to any other
agent. A proportional (resp., EF) cake cutting algorithm al-
ways returns a proportional (resp., EF) allocation.
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Figure 1: An illustration of the value density function for a
piecewise uniform valuation.

Note that when n = 2 proportionality implies envy-
freeness. Indeed, Vi(Ai) + Vi(A3−i) ≤ 1, and hence if
Vi(Ai) ≥ 1/2 then Vi(A3−i) ≤ 1/2. Under the free dis-
posal assumption the converse is not true. For example, an
allocation that throws away the entire cake is EF but not pro-
portional. In general, when n > 2 proportionality neither
implies nor is implied by envy-freeness.5

A cake cutting algorithm f is truthful if when an agent
lies it is allocated a piece of cake that is worth, accord-
ing to its real valuation, no more than the piece of cake it
was allocated when reporting truthfully. Formally, denote
Ai = fi(V1, . . . , Vn), and let V be a class of valuation
functions. The algorithm f is truthful if for every agent i,
every collection of valuations functions V1, . . . , Vn ∈ V ,
and every V ′i ∈ V , it holds that Vi(fi(V1, . . . , Vn)) ≥
Vi(fi(V1, . . . , Vi−1, V

′
i , Vi+1, . . . , Vn)).

Deterministic Algorithms and
Piecewise Uniform Valuations

As noted in the introduction, in general there are no known
bounded deterministic proportional and EF cake cutting al-
gorithms for more than four agents, even if one is not con-
cerned about strategic issues. Therefore, in this section we
restrict ourselves to a specific class of valuation functions.

We say that a valuation function Vi is piecewise constant
if and only if its corresponding value density function vi is
piecewise constant, that is [0, 1] can be partitioned into a
finite number of intervals such that vi is constant on each
interval. We say that Vi is piecewise uniform if moreover
vi is either some constant c ∈ R+ (the same one across
intervals) or zero. See Figure 1 for an illustration.

Piecewise uniform valuation functions imply that agent
i ∈ N is uniformly interested in a finite union of inter-
vals, which we call its reference piece of cake and denote by
Ui. For example, in Figure 1, Ui = [0, 0.25] ∪ [0.6, 0.85].
Given a piece of cake X , it holds that Vi(X) = len(X ∩
Ui)/len(Ui). From the computational perspective, the size
of the input to the cake cutting algorithm is the number of
bits that define the boundaries of the intervals in the agents’
reference pieces of cake.

In the rest of this section we assume that the valuation
functions are piecewise uniform. We believe that piecewise
uniform valuations are very natural. An agent would have
such a valuation function if it is simply interested in pieces
of the good that have a certain property, e.g., a child only

5If free disposal is not assumed, that is, the entire cake is allo-
cated, then envy-freeness implies proportionality for any n.

likes portions of the cake that have chocolate toppings, and
wants as much cake with chocolate toppings as possible. We
consider more general valuations in the next section on ran-
domized algorithms.

A deterministic algorithm
Before introducing our algorithm we present some required
notation. Let S ⊆ N be a subset of agents and let X be a
piece of cake. Let D(S,X) denote the portions of X that
are valued by at least one agent in S. Formally, D(S,X) =(⋃

i∈S Ui

)
∩X , and is itself a union of intervals.

Let avg(S,X) = len(D(S,X))/|S| denote the average
length of intervals in X desired by at least one agent in S.
We say that an allocation is exact with respect to S and X
if it allocates to each agent in S a piece of cake of length
avg(S,X) comprised only of desired intervals. Clearly this
requires allocating all of D(S,X) since the total length of
allocated intervals is avg(S,X) · |S| = len(D(S,X)). Sup-
pose S = {1, 2} and X = [0, 1]: if U1 = U2 = [0, 0.2] then
agents 1 and 2 receiving [0, 0.1] and [0.1, 0.2] respectively is
an exact allocation; but if U1 = [0, 0.2], U2 = [0.3, 0.7] then
there is no exact allocation.

The deterministic algorithm for n agents with piecewise
uniform valuations is a recursive algorithm that finds a sub-
set of agents with a certain property, makes the allocation
decision for that subset, and then makes a recursive call on
the remaining agents and the remaining intervals. Specifi-
cally, for a given set of agents S ⊆ N and a remaining piece
of cake to be allocated X , we find the subset S′ ⊆ S of
agents with the smallest avg(S′, X). We then give an exact
allocation of D(S′, X) to S′. We recurse on S \ S′ and the
intervals not desired by any agent in S′, i.e. X \D(S′, X).
The pseudocode of the algorithm is given as Algorithm 1.

Algorithm 1 (V1, . . . , Vn)

1. SUBROUTINE({1, . . . , n}, [0, 1], (V1, . . . , Vn))

SUBROUTINE(S, X , V1, . . . , Vn):

1. If S = ∅, return.

2. Let Smin ∈ argmin
S′⊆S

avg(S′, X) (breaking ties arbitrarily).

3. Let E1, . . . , En be an exact allocation with respect to Smin, X
(breaking ties arbitrarily). For each i ∈ Smin, set Ai = Ei.

4. SUBROUTINE(S \ Smin, X \D(Smin, X), (V1, . . . , Vn)).

In particular, Steps 2 and 3 of SUBROUTINE imply that
if S = {i} then Ai = D(S,X). For example, sup-
pose X = [0, 1], U1 = [0, 0.1], U2 = [0, 0.39], and
U3 = [0, 0.6]. In this case, the subset with the smallest aver-
age is {1}, so agent 1 receives all of [0, 0.1] and we recurse
on {2, 3}, [0.1, 1]. In the recursive call, set {2} has average
0.39 - 0.1 = 0.29, set {3} has average 0.6 - 0.1 = 0.5, and
set {2, 3} has average (0.6 − 0.1)/2 = 0.25. As a result,
the entire set {2, 3} is chosen as the set with smallest aver-
age, and an exact allocation of [0.1, 1.0] is given to agents 2
and 3. One possible allocation is to give agent 2 [0.1, 0.35]
and agent 3 [0.35, 0.6]. Note that, if agent 1 uniformly val-
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ues [0, 0.2] instead, the first call would choose {1, 2} as the
subset with the smallest average, equally allocating [0, 0.39]
between agents 1 and 2 and giving the rest, [0.39, 0.6], to
agent 3.

An analysis of the two agent algorithm. To gain intuition,
consider the case of two agents; designing truthful, propor-
tional and EF algorithms even for this case is nontrivial. As-
sume that len(U1) ≤ len(U2) for ease of presentation. If
in addition, len(U1) > len(U1 ∪ U2)/2 then set {1, 2} has
the smallest average and we divide U1 ∪ U2 exactly, with
each agent getting all of Ui \ U3−i and sharing U1 ∩ U2 in
a way that len(A1) = len(A2). Otherwise, agent 1 gets all
of U1 and agent 2 gets U2 \ U1. The algorithm tries to give
both agents the same length, with each agent always getting
at least half of its desired intervals, leading to proportion-
ality and EF because of piecewise uniform valuations. For
sufficient overlap in desired intervals, each receives exactly
half of U1 ∪ U2. For totally disjoint reference pieces, each
receives just its reference piece. We defer a discussion of
truthfulness to the general algorithm; the crux here is to note
that each agent i receives all of Ui \U3−i, and the algorithm
precludes overclaims through providing a decreasing share
of Ui ∩ U3−i as len(Ui) increases.

Exact Allocations and Maximum Flows. Before turning
to properties of truthfulness and fairness, we point out that
so far it is unclear whether Algorithm 1 is well-defined. In
particular, the algorithm requires an exact allocation E with
respect to the subset Smin andX , but it remains to show that
such an allocation exists, and to provide a way to compute
it. To this end we exploit a close relationship between exact
allocations and maximum flows in networks.

For a given set of agents S ⊆ N and a piece of cake to be
allocated X , define a graph G(S,X) as follows. We keep
track of a set of marks, which will be used to generate nodes
in G(S,X). First mark the left and right boundaries of all
intervals that are contained in X . For each agent i ∈ N
and subinterval in Ui, mark the left and right boundaries of
subintervals that are contained in Ui ∩ X . When we have
finished this process, each pair of consecutive markings will
form an interval such that each agent will either uniformly
value the entire interval or value none of the interval. In
G(S,X), create a node for each interval I formed by con-
secutive markings, and add a node for each agent i ∈ N , a
source node s, and a sink node t. For each interval I , add a
directed edge from source s to I with capacity equal to the
length of the interval. Each agent node is connected to t by
an edge with capacity avg(S,X). For each interval-agent
pair (I, i), add a directed edge with infinite capacity from
node I to the agent i if agent i desires interval I .

For example, suppose U1 = [0, 0.25] ∪ [0.5, 1] and U2 =
[0.1, 0.4]. If X = [0, 1] then the interval markings will
be {0, 0.1, 0.25, 0.4, 0.5, 1}. Agent 1 values [0, 0.1], both
agents value [0.1, 0.25], agent 2 values [0.25, 0.4], neither
agent values [0.4, 0.5] and agent 1 values [0.5, 1]. It holds
that len(D({1, 2}, [0, 1])) = 0.9. Average values are 0.75,
0.3 and 0.45 for sets {1}, {2} and {1, 2} respectively. See
Figure 2 for an illustration of the induced flow network.
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Figure 2: The flow network induced by the example.

Lemma 1. Let S ⊆ N , and let X be a piece of cake. There
is a flow of size len(D(S,X)) in G(S,X) if and only if for
all S′ ⊆ S, avg(S′, X) ≥ avg(S,X).

Below we only prove the “if” direction, which is the one
we need, using an application of the classic Max-Flow Min-
Cut Theorem (see, e.g., (Cormen et al. 2001)).

Proof of “if”. Assume that for all S′ ⊆ S, avg(S′, X) ≥
avg(S,X). By the Max-Flow Min-Cut Theorem, the mini-
mum capacity removed from a graph in order to disconnect
the source and sink is equal to the size of the maximum flow.
The only edges with finite capacity in G(S,X) are the ones
that connect agent nodes to the sink, and the ones that con-
nect the source to the interval nodes.

Construct a candidate minimum cut by disconnecting
some set of agent nodes T ⊆ S from the sink at cost
|T | · avg(S,X) and then disconnecting all the (s, I) connec-
tions to interval nodes I desired by an agent i ∈ S \ T . This
means that the total additional capacity we need to remove
is len(D(S \ T,X)), the total length of intervals desired by
at least one agent in S \ T . By assumption, this is at least
|S \ T | · avg(S,X). As a result, this cut has capacity of at
least |T |·avg(S,X)+|S\T |·avg(S,X) = |S|·avg(S,X) =
len(D(S,X)).

The following lemma establishes that this flow of size
len(D(S,X)) in G(S,X) is, in particular, characterizing an
exact allocation. We omit the proof, which follows from the
construction of the network.

Lemma 2. Let S ⊆ N , and let X be a piece of cake.
There exists an exact allocation with respect to S,X if and
only if there exists a maximum flow of size len(D(S,X)) in
G(S,X).

By combining Lemma 1 and Lemma 2 we see that the
algorithm is indeed well-defined: if S has the smallest av-
erage then there exists an exact allocation with respect to
S,X .6 Moreover, we obtain a tractable algorithm for com-
puting an exact allocation, by computing the maximum flow
and deriving an exact allocation. A maximum flow can be

6Note that the network in Figure 2 does not satisfy the average
minimality requirement and does not provide a corresponding exact
allocation.
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computed in time that is polynomial in the number of nodes,
that is, polynomial in our input size (see, e.g., (Cormen et
al. 2001)). We remark without proof that it is also possible
to implement Step 2 of SUBROUTINE in polynomial time,
using similar (but slightly more involved) network flow ar-
guments. Therefore, Algorithm 1 can be implemented in
polynomial time.

Truthfulness and fairness. Our main tool in proving that
Algorithm 1 is truthful, proportional and EF is the following
lemma (we omit its proof due to space constraints).
Lemma 3. Let S1, . . . , Sm be the ordered sequence of agent
sets with the smallest average as chosen by Algorithm 1 and
X1, . . . , Xm be the ordered sequence of pieces to be allo-
cated in calls to SUBROUTINE. That is, X1 = [0, 1], X2 =
X1 \ D(S1, X1), . . . , Xm = Xm−1 \ D(Sm−1, Xm−1).
Then for all i > j, avg(Si, Xi) ≥ avg(Sj , Xj), and agents
that are members of later sets receive weakly more in desired
lengths.

Envy-freeness now follows immediately from the lemma.
Indeed, consider an agent i ∈ N . By “chosen” we mean
that the agent was part of the subset with smallest aver-
age. The agent does not envy agents chosen in the same call
to SUBROUTINE since all agents receive the same length
in desired intervals and their valuations are piecewise uni-
form. By Lemma 3, the agent does not envy agents chosen
in earlier calls because the amount agents receive weakly in-
creases with each call. The agent does not envy agents cho-
sen in later calls because all intervals desired by the agent
are removed from consideration when the agent receives its
allocation.

We provide a sketch of truthfulness, which follows by
showing that an agent i ∈ N has no incentive to change the
choice of Smin and cannot profitably manipulate the exact
allocation for a given Smin.

1. Manipulations that change Smin. Consider two subcases.
(a) When i reports truthfully, Smin = S′, i /∈ S′. An agent

cannot affect avg(T,X) if i /∈ T , so the agent can-
not cause some other S′′, i /∈ S′′ to be chosen. The
agent can cause S′′, i ∈ S′′, to be chosen, but then
avg(S′′, X) ≤ avg(S′, X) and it follows from Lemma
3 that the agent does not gain.

(b) When i reports truthfully, Smin = S′, i ∈ S′. As-
sume without loss of generality that |S| ≥ 2. In
this case, all agents in S′, including i, receive ex-
actly avg(S′, X) = k in intervals. Agent i can cause
selection of some S′′ by misstating its valuation. If
i ∈ S′′, then avg(S′′, X) ≥ k for this to be profitable.
If i /∈ S′′, then S′′ was not chosen when i reports
truthfully, so avg(S′′, X) ≥ k. In either case, agents
j ∈ S′ \ {i} previously received k, but now receive at
least k by observing that avg(S′′, X) ≥ k and applying
Lemma 3. Agent i receives at most len(D(S′, X)) mi-
nus the intervals received by agents j ∈ S′\{i}.7 These
agents receive weakly more if i manipulates, and thus,
manipulations are not profitable.

7Lemma 3 also applies to agent i, but since it lies, it may receive
intervals that are not desired and outside of D(S′, X).

2. Manipulations that change the exact allocation for a given
Smin, i ∈ Smin. By definition each agent in Smin receives
exactly avg(Smin, X) in desired intervals. If agent i de-
creases this value, it receives strictly less. If agent i in-
creases this value by lying, then other agents receive more
of the actual D(Smin, X), leaving less for agent i.

We omit the proof of proportionality due to lack of space,
but it follows after establishing that no desired pieces are
thrown away. Overall, we have the following theorem.

Theorem 4. Assume that the agents have piecewise uniform
valuation functions. Then Algorithm 1 is truthful, propor-
tional, EF, and polynomial-time.

Randomized Algorithms and
Piecewise Linear Valuations

In the previous section we saw that designing deterministic
truthful and fair algorithms is not an easy task, even if the
valuation functions of the agents are rather restricted. In this
section we shall demonstrate that by allowing randomness
we can obtain significantly more general results.

A randomized cake cutting algorithm outputs a random
allocation given the reported valuation functions of the
agents. There are very few previous papers regarding ran-
domized algorithms for cake cutting. A rare example is the
paper by Edmonds and Pruhs (2006a), where they give a ran-
domized algorithm that achieves approximate proportional-
ity with high probability. We are looking for a more stringent
notion of fairness. We say that a randomized algorithm is
universally proportional (resp., universally EF) if it always
returns an allocation that is proportional (resp., EF).

One could also ask for universal truthfulness, that is, re-
quire than an agent may never benefit from lying, regardless
of the randomness of the algorithm. A universally truthful
algorithm is simply a probability distribution over determin-
istic truthful algorithms. However, asking for both univer-
sal fairness and universal truthfulness would not allow us to
enjoy the additional flexibility that randomization provides.
Therefore, we slightly relax our truthfulness requirement.
Informally, we say that a randomized algorithm is truthful
in expectation if, for all possible valuation functions of the
other agents, the expected value an agent receives for its al-
location cannot increase by lying, where the expectation is
taken over the randomness of the algorithm.

We remark that while truthfulness in expectation seems
natural, fairness (i.e., proportionality and envy-freeness) is
something that we would like to hold ex-post; fairness is
a property of the specific allocation that is being made,
and continues to be relevant after the algorithm has ter-
minated. Interestingly enough, if we were to turn this
around, then achieving universal truthfulness and envy-
freeness/proportionality in expectation is trivial: simply al-
locate the entire cake to a uniformly random agent!

A randomized algorithm
In order to design a randomized algorithm that is truthful
in expectation, universally proportional, and universally EF,
we consider a very special type of allocation. In the follow-
ing we will not require the free disposal assumption, that
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is, we will consider partitions X1, . . . , Xn of the cake such
that

⋃
iXi = [0, 1]. We say that a partition X1, . . . , Xn is

perfect if for all i, j ∈ N , vi(Xj) = 1/n. Consider the
following randomized algorithm.

Algorithm 2 (V1, . . . , Vn)
1. Find a perfect partition X1, . . . , Xn.

2. Draw a random permutation π over N .

3. For each i ∈ N , set Ai = Xπ(i).

Lemma 5. Algorithm 2 is truthful in expectation, univer-
sally proportional, and universally EF.8

Proof. The fact that the algorithm is universally propor-
tional and universally EF follows from the definition of per-
fect partitions: every agent has value 1/n for every piece!

We turn to truthfulness in expectation. The value an agent
i ∈ N obtains by reporting truthfully is exactly 1/n. If
agent i lies then the algorithm may choose a different par-
tition X ′1, . . . , X

′
n. However, for any partition X ′1, . . . , X

′
n

the expected value of agent i when given a random piece is

∑
j∈N

1
n
· Vi(X ′j) =

1
n

∑
j∈N

Vi(X ′j)

 =
1
n
,

where the second equality follows from the fact that the val-
uation functions are additive.

Finding perfect partitions. Lemma 5 holds much promise,
in that it is valid for all valuation functions. But there still
remains the obstacle of actually finding a perfect partition
given the valuation functions of the agents. Does such a par-
tition exist, and can it be computed? More than two decades
ago, Noga Alon (1987) proved that if the valuation func-
tions of the agents are defined by the integral of a continuous
probability measure then there exists a perfect partition; this
is a generalization of his famous theorem on necklace split-
ting. Unfortunately, Alon’s elegant proof is nonconstructive
(which is unusual for a proof in combinatorics), and to this
day there is no known constructive method under general as-
sumptions on the valuation functions. This is not surprising
since a perfect partition induces an EF allocation, and find-
ing an EF allocation in a bounded number of steps for more
than four agents is an open problem.

To obtain a computational method, we consider valuation
functions that are piecewise linear. A valuation function Vi

is considered piecewise linear if and only if its correspond-
ing value density function vi is piecewise linear on [0, 1].
Piecewise linear valuation functions are significantly more
general than the class of piecewise constant valuation func-
tions. A piecewise linear valuation function can be con-
cisely represented by the intervals on which vi is linear, and
for each interval the two parameters of the linear function.
The following lemma provides us with a tractable method of
finding a perfect partition when the agents have piecewise
linear valuation functions.

8Mossel and Tamuz (2010) make the same observation.

Lemma 6. Assume that the agents have piecewise linear
valuation functions. Consider the following procedure. We
make a mark at 0 and 1, and for each agent i ∈ N make a
mark at the left and right boundaries of each interval where
vi is linear. Next, we divide each interval Ij between two
consecutive marks into 2n consecutive and connected subin-
tervals I1

j , . . . , I
2n
j of equal length. For each such Ij and ev-

ery i ∈ N add the subintervals Ii
j and I2n−i+1

j to Xi. Then
the overall partition is perfect.

The lemma’s proof is omitted. By combining Lemma 6
with Lemma 5 we obtain the following result.
Theorem 7. Assume that the agents have piecewise lin-
ear valuation functions. Then there exists a randomized al-
gorithm that is truthful in expectation, universally propor-
tional, universally EF, and polynomial-time.

Discussion
We have made progress on truthful and fair algorithms for
cake cutting. In unpublished work, we can also preclude
simpler methods that make only contiguous allocations (and
look closer to generalizations of the classic cut-and-choose
algorithm) even for two agents both of whom are uniformly
interested in a single (but different) subinterval. In future
work we would like to generalize the deterministic algorithm
to piecewise constant valuations and drop the free-disposal
assumption. For practical settings, allowing more expres-
siveness (e.g., piecewise linear but a requirement that inter-
vals are above some threshold length) seems important.
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