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Abstract

This paper presents a technique for approximating, up to any
precision, the set of subgame-perfect equilibria (SPE) in re-
peated games with discounting. The process starts with a sin-
gle hypercube approximation of the set of SPE payoff pro-
files. Then the initial hypercube is gradually partitioned on to
a set of smaller adjacent hypercubes, while those hypercubes
that cannot contain any SPE point are gradually withdrawn.
Whether a given hypercube can contain an equilibrium point
is verified by an appropriate mixed integer program. A spe-
cial attention is paid to the question of extracting players’
strategies and their representability in form of finite automata.

Introduction
In multiagent systems, each agent’s strategy is optimal if it
maximizes that agent’s utility function, subject to the con-
straints induced by the respective strategies of the other
agents. Game theory provides a compact yet sufficiently rich
form of representing such strategic interactions. Repeated
games (Osborne and Rubinstein 1999; Mailath and Samuel-
son 2006) are a formalism permitting modeling long-term
strategic interactions between multiple selfish optimizers.

Probably the most known example of a repeated game is
Prisoner’s Dilemma (Figure 1). In this game, there are two

Player 1

Player 2
C D

C 2, 2 −1, 3
D 3,−1 0, 0

Figure 1: The payoff matrix of Prisoner’s Dilemma.

players, and each of them can make two actions: C or D.
When those players simultaneously perform their actions,
the pair of actions induces a numerical payoff obtained by
each player. The game then passes to the next stage, where
it can be played again by the same pair of players.

Game theory assumes that the goal of each player is to
play optimally, i.e., to maximize its utility function given
the strategies of the other players. When the a priori infor-
mation about all players’ strategies and their real strategic
preferences coincide, we talk about equilibria.
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A pair of “Tit-For-Tat” (TFT) strategies is a well-known
example of equilibrium in Repeated Prisoner’s dilemma.
TFT consists of starting by playing C. Then, each player
should play the same action as the very recent action played
by its opponent. Indeed, such history dependent equilibrium
brings to each player a higher average payoff, than that of
another, stationary, equilibrium of the repeated game (a pair
of strategies that prescribe to play the stage-game Nash equi-
librium (D,D) at every stage). An algorithmic construction
of such strategies, given an arbitrary repeated game, is chal-
lenging. For the case where the utility function is given by
the average payoff, (Littman and Stone 2005) propose a sim-
ple and efficient algorithm that constructs equilibrium strate-
gies in two-player repeated games. On the other hand, when
the players discount their future payoffs with a discount fac-
tor, a pair of TFT strategies is still an equilibrium only for
certain values of the discount factor. (Judd, Yeltekin, and
Conklin 2003) propose an approach for computing equilib-
ria for different discount factors, but their approach is lim-
ited to pure strategies, and, as we will discuss below, has
several other important limitations.

In this paper, we present an algorithmic approach to the
problem of computing equilibria in repeated games when the
future payoffs are discounted. Our approach is more general
than that of (Littman and Stone 2005), because it allows an
arbitrary discounting, and is free of four major limitations
of the algorithm of (Judd, Yeltekin, and Conklin 2003). Fur-
thermore, our algorithm finds only those strategies that can
be adopted by artificial agents. The latter are usually charac-
terized by a finite time to compute their strategies and a finite
memory to implement them. To our knowledge, this is the
first time that all these goals are achieved simultaneously.

The remainder of the paper is structured as follows. First,
we formally state the problem. Then, we survey the previ-
ous work, by pointing out its limitations. Next, we present
our novel ASPECT algorithm for approximately solving dis-
counted repeated games and for extracting strategies. We
then state our main theoretical result and give an overview
of a number of experimental results. We conclude with a
short discussion.
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Problem Statement
Stage-Game
A stage-game is a tuple (N, {Ai}i∈N , {ri}i∈N ). In a stage-
game, there is a finite set N of individual players (|N | ≡ n).
Player i ∈ N has a finite set Ai of (pure) actions. Each
player i chooses a certain action ai ∈ Ai; the resulting vec-
tor a ≡ (ai)i∈N forms an action profile that belongs to the
set of action profiles A ≡ ×i∈NAi. The action profile is
then executed and the corresponding stage-game outcome is
realized. A player specific payoff function ri specifies player
i’s payoffs for different game outcomes. A bijection is typi-
cally assumed between the set of action profiles and the set
of game outcomes. In this case, a player’s payoff function is
defined as the mapping ri : A 7→ R.

Given a ∈ A, r(a) ≡ (ri(a))i∈N is called a payoff pro-
file. A mixed action αi of player i is a probability distri-
bution over its actions, i.e., αi ∈ ∆(Ai). A mixed action
profile is a vector α ≡ (αi)i∈N . We denote by αai

i and αa
respectively the probability to play action ai by player i and
the probability that the outcome a will be realized by α, i.e.,
αa ≡

∏
i α

ai
i . Payoff functions can be extended to mixed

action profiles by taking expectations.
Let −i stand for “all players except i”. A (Nash) equi-

librium in a stage-game is a mixed action profile α, s.t. for
each player i and ∀α′i ∈ ∆(Ai), the following holds:

ri(α) ≥ ri(α′i, α−i), where α ≡ (αi, α−i).

Repeated Game
In a repeated game, the same stage-game is played in periods
(or stages) t = 0, 1, 2, . . .. When the number of game peri-
ods is not known in advance and can be infinite, the repeated
game is called infinite. This is the scope of the present paper.

The set of the repeated game histories up to period t is
given by Ht ≡ ×tA. The set of all possible histories is
given by H ≡

⋃∞
t=0H

t. For instance, a history ht ∈ Ht is
a stream of outcomes realized in the repeated game, starting
from period 0 up to period t−1: ht ≡ (a0, a1, a2, . . . , at−1).
A (mixed) strategy of player i is a mapping σi : H 7→
∆(Ai). A pure strategy is a strategy that puts weight 1 on
only one pure action at any h ∈ H . A strategy profile is a
vector σ ≡ (σi)i∈N . We denote by Σi the set of strategies
of player i, and by Σ ≡ ×i∈NΣi the set of strategy profiles.

A subgame is a repeated game that continues after a cer-
tain history. Imagine a subgame induced by a history ht.
Given a strategy profile σ, the behavior of players in this
subgame after a history hτ is identical to the behavior in the
original repeated game after the history ht ·hτ , a concatena-
tion of two histories. For a pair (σ, h), the subgame strategy
profile induced by h is denoted as σ|h.

An outcome path in the repeated game is a possibly in-
finite stream a ≡ (a0, a1, . . .) of action profiles. A finite
prefix of length t of an outcome path corresponds to a his-
tory inHt+1. At each repeated game run, a strategy profile σ
induces a certain outcome path a.

Let σ be a strategy profile. The discounted average payoff
of σ for player i is defined as

uγi (σ) ≡ (1− γ) Ea∼σ

∞∑
t=0

γtri(at),

where γ ∈ [0, 1) is the discount factor, which can be inter-
preted as the probability that the repeated game will continue
after each period. We define the payoff profile induced by σ
as uγ(σ) ≡ (uγi (σ))i∈N .

The strategy profile σ is a (Nash) equilibrium if, for each
player i and its strategies σ′i ∈ Σi,

uγi (σ) ≥ uγi (σ′i, σ−i), where σ ≡ (σi, σ−i).

A strategy profile σ is a subgame-perfect equilibrium (SPE)
in the repeated game, if for all histories h ∈ H , the subgame
strategy profile σ|h is an equilibrium in the subgame.

Strategy Profile Automata
The strategies for artificial agents usually should have a fi-
nite representation. Let M ≡ (Q, q0, f, τ) be an automaton
implementation of a strategy profile σ. It consists of a set
of states Q, with the initial state q0 ∈ Q; of a profile of de-
cision functions f ≡ (fi)i∈N , where fi : Q 7→ ∆(Ai) is
the decision function of player i; and of a transition func-
tion τ : Q × A 7→ Q, which identifies the next state of the
automaton given the current state and the action profile.

Let |M | denote the number of states of automaton M .
If |M | is finite, such automaton is called finite. (Kalai
and Stanford 1988) showed that any SPE can be approxi-
mated with a finite automaton. They defined the notion of
an approximate SPE as follows. For an approximation fac-
tor ε > 0, a strategy profile σ ∈ Σ is an ε-equilibrium, if for
each player i and ∀σ′i ∈ Σi, u

γ
i (σ) ≥ uγi (σ′i, σ−i)−ε, where

σ ≡ (σi, σ−i). A strategy profile σ ∈ Σ is a subgame-
perfect ε-equilibrium (SPεE) in a repeated game, if ∀h ∈ H ,
σ|h is an ε-equilibrium in the subgame induced by h.
Theorem 1 ((Kalai and Stanford 1988)). Consider a re-
peated game with the parameters γ and ε. For any SPE σ,
there exists a finite automatonM , s.t. |uγi (σ)−uγi (M)| < ε,
for all i ∈ N , and M induces an SPεE.

Problem Statement
Let Uγ ⊂ Rn be the set of SPE payoff profiles in a repeated
game with the discount factor γ. Let Σγ,ε ⊆ Σ be the set
of SPεE strategy profiles. The problem of an approximate
subgame-perfect equilibrium computation is stated as fol-
lows: find a set W ⊇ Uγ with the property that for any
v ∈ W , one can find a finite automaton M inducing a strat-
egy profile σM ∈ Σγ,ε, s.t. vi − uγi (M) ≤ ε, ∀i ∈ N .

Note that the goal of any player is to maximize its payoff,
while the strategy is a means. So, we set out with a goal
to find a set W that does not omit any SPE payoff profile.
Ideally, the set W has to be as small as possible. This latter
property is enforced by our second goal, which is to be ca-
pable of constructing, for any payoff profile v ∈ W , a finite
automaton that can approximately induce that payoff profile.

Previous Work
The work on equilibrium computation can be divided into
three main groups. The algorithms of the first group solve
the problem of computing one or several stage-game equi-
libria using only the payoff matrix. The discount factor is
implicitly assumed to be zero (Lemke and Howson 1964;
Porter, Nudelman, and Shoham 2008).
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At the other extremity, there are algorithms that assume
γ to be arbitrarily close to 1. For instance, in two-player
repeated games, this permits efficiently construct automata
inducing SPE strategy profiles (Littman and Stone 2005).

The algorithms of the third group (Cronshaw 1997; Judd,
Yeltekin, and Conklin 2003) aim at computing equilibria by
assuming that γ is a fixed value in the open interval (0, 1).
These algorithms are based on the concept of self-generating
sets. Let us briefly present it here. Let V γ denote the set of
pure SPE payoff profiles one wants to identify. Let BRi(α)
be a stage-game best response of player i to the mixed action
profile α ≡ (αi, α−i):

BRi(α) ≡ max
ai∈Ai

ri(ai, α−i).

Define the map Bγ on a set W ⊂ Rn:

Bγ(W ) ≡
⋃

(a,w)∈A×W

(1− γ)r(a) + γw,

where w is the continuation promise that verifies, for all i:

(1− γ)ri(a) + γwi − (1− γ)ri(BRi(a), a−i)− γwi ≥ 0,

and wi ≡ infw∈W wi. (Abreu, Pearce, and Stacchetti 1990)
show that the largest fixed point of Bγ(W ) is V γ .

Any numerical implementation of Bγ(W ) requires an ef-
ficient representation of the set W in a machine. (Judd, Yel-
tekin, and Conklin 2003) use convex sets for approximating
both W and Bγ(W ) as an intersection of a finite number of
hyperplanes. The main limitations of this approach are as
follows: (i) it assumes the existence of at least one pure ac-
tion stage-game equilibrium; (ii) it permits computing only
pure action SPE payoff and strategy profiles; (iii) it cannot
find SPE strategy profiles implementable by finite automata;
(iv) it relies on availability of public correlation (Mailath and
Samuelson 2006).

In the next section, we present our novel ASPECT algo-
rithm (for Approximate Subgame-Perfect Equilibrium Com-
putation Technique) for approximating the set of SPE play-
off profiles. The set of payoff profilesW returned by our ini-
tial complete formulation of ASPECT includes, among oth-
ers, all pure strategy SPE as well as all stationary mixed
strategy SPE. However, it can omit certain equilibrium
points and, therefore, W does not entirely contain Uγ . In a
subsequent section, we will propose an extension of ASPECT
capable of completely approximating Uγ , by assuming pub-
lic correlation.

Our ASPECT Algorithm
The fixed point property of the map Bγ and its relation to
the set of SPE payoff profiles can be used to approximate
the latter. The idea is to start by a set W that entirely con-
tainsUγ , and then to iteratively eliminate all pointsw′ ∈W ,
for which @(w,α) ∈W ×∆(A1)× . . .×∆(An), such that

w′ = (1− γ)r(α) + γw and (1− γ)ri(α) + γwi
−(1− γ)ri(BRi(α), α−i)− γwi ≥ 0, ∀i. (1)

Algorithm 1 outlines the basic structure of ASPECT. It
starts with an initial approximationW of the set of SPE pay-

off profiles Uγ . The setW , in turn, is represented by a union
of disjoint hypercubes belonging to the set C. Each hyper-
cube c ∈ C is identified by its origin oc ∈ Rn and by the
hypercube side length l. Initially, C contains only one hy-
percube c, whose origin oc is set to be a vector (r)i∈N ; the
side length l is set to be l = r̄ − r, where r ≡ mina,i ri(a)
and r̄ ≡ maxa,i ri(a). Therefore, initially W entirely con-
tains Uγ .

Input: r, a payoff matrix; γ, ε, the parameters.
1: Let l ≡ r̄ − r and oc ≡ (r)i∈N ;
2: Set C ← {(oc, l)};
3: loop
4: Set ALLCUBESCOMPLETED ← TRUE;
5: Set NOCUBEWITHDRAWN ← TRUE;
6: for each c ≡ (oc, l) ∈ C do
7: Let wi ≡ minc∈C oci ; set w ← (wi)i∈N ;
8: if CUBESUPPORTED(c, C, w) is FALSE then
9: Set C ← C\{c};

10: if C = ∅ then
11: return FALSE;
12: Set NOCUBEWITHDRAWN ← FALSE;
13: else
14: if CUBECOMPLETED(c) is FALSE then
15: Set ALLCUBESCOMPLETED ← FALSE;
16: if NOCUBEWITHDRAWN is TRUE then
17: if ALLCUBESCOMPLETED is FALSE then
18: Set C ← SPLITCUBES(C);
19: else
20: return C.

Algorithm 1: The basic structure of ASPECT.

Each iteration of ASPECT (the loop, line 3) consists of
verifying, for each hypercube c, whether it has to be elim-
inated from the set C (procedure CUBESUPPORTED). If c
does not contain any point w′ satisfying the conditions of
Equation (1), this hypercube is withdrawn from the set C.
If, by the end of a certain iteration, no hypercube was with-
drawn, each remaining hypercube is split into 2n disjoint hy-
percubes with side l/2 (procedure SPLITCUBES). The pro-
cess continues until, for each remaining hypercube, a stop-
ping criterion is satisfied (procedure CUBECOMPLETED).

The CUBESUPPORTED Procedure
Computing the set of all equilibria is a challenging task. To
the best of our knowledge, there is no algorithm capable of
even approximately solving this problem. When the action
profiles are allowed to be mixed, their one by one enumera-
tion1 is impossible. Furthermore, a deviation of one player
from a mixed action can only be detected by the others if the
deviation is done in favor of an out-of-support action2.

We solve the two aforementioned problems as follows.
We first define a special mixed integer program (MIP). We
then let the solver decide on which actions to be included

1As, for example, in (Judd, Yeltekin, and Conklin 2003).
2The support of a mixed action αi is a set Aαi

i ⊆ Ai, which
contains all pure actions to whichαi assigns a non-zero probability.
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into the mixed action support of each player, and what prob-
ability has to be assigned to those actions. Note that player i
is only willing to randomize according to a suggested mix-
ture αi, if it is indifferent over the pure actions in the support
of that mixture. The trick is to specify different continua-
tion promises for different actions in the support, such that
the expected payoff of each action remains bounded by the
dimensions of the hypercube. Algorithm 2 defines the pro-
cedure CUBESUPPORTED for ASPECT.

Input: c ≡ (oc, l), a hypercube; C, a set of hypercubes; w
a vector of payoffs.

1: for each c̃ ≡ (oc̃, l) ∈ C do
2: Solve the following mixed integer program:

Decision variables: wi(ai) ∈ R, w′i(ai) ∈ R,
yai
i ∈ {0, 1}, α

ai
i ∈ [0, 1] for all i ∈ {1, 2} and

for all ai ∈ Ai.
Objective function: min f ≡

∑
i

∑
ai
yai
i .

Subject to constraints:

(1) ∀i :
∑
ai
αai
i = 1;

For all i and for all ai ∈ Ai:
(2) αai

i ≤ y
ai
i ,

(3) w′i(ai) = (1− γ)
∑
a−i

α−i(a−i)ri(ai, a−i)
+γwi(ai),

(4) ociy
ai
i ≤ w′i(ai) ≤ ly

ai
i + oci ,

(5) wi − wiy
ai
i + oc̃iy

ai
i ≤ wi(ai) ≤ (wi + l)

−(wi + l)yai
i + (oc̃i + l)yai

i .

3: if a solution is found then return wi(ai) and αai
i for

all i ∈ {1, 2} and for all ai ∈ Ai.
4: return FALSE

Algorithm 2: CUBESUPPORTED for mixed strategies.

The procedure CUBESUPPORTED of Algorithm 2 verifies
whether a given hypercube c has to be kept in the set of hy-
percubes. If yes, CUBESUPPORTED returns a mixed action
profile α and the corresponding continuation promise pay-
offs for each action in the support of αi. Otherwise, the pro-
cedure returns FALSE. The indifference of player i between
the actions in the support of αi is (approximately) secured
by the constraint (4) of the MIP. In an optimal solution of the
MIP, any binary indicator variable yai

i can only be equal to 1
if ai is in the support of αi. Therefore, each w′i(ai) is either
bounded by the dimensions of the hypercube, if ai ∈ Aαi

i ,
or, otherwise, is below the origin of the hypercube.

Note that the above MIP is only linear in the case of two
players. For more than two players, the problem becomes
non-linear, because α−i is now given by a product of de-
cision variables αj , for all j ∈ N\{i}. Such optimization
problems are known to be very difficult to solve (Saxena,
Bonami, and Lee 2008). We solved all linear MIP problems
defined in this paper using CPLEX (IBM, Corp. 2009) to-
gether with OptimJ (ATEJI 2009).

Computing Strategies
Our ASPECT algorithm, defined in Algorithm 1, returns the
set of hypercubes C, such that the union of these hyper-
cubes gives W , a set that contains a certain subset of Uγ .

Intuitively, each hypercube represents all those strategy pro-
files that induce similar payoff profiles. Therefore, one can
view hypercubes as states of an automaton. Algorithm 3
constructs an automaton M that implements a strategy pro-
file that approximately induces any payoff profile ṽ ∈ W .

Input: C, a set of hypercubes, such that W is their union;
ṽ ∈W , a payoff profile.

1: Find a hypercube c ∈ C, which ṽ belongs to; set Q ←
{c} and q0 ← c;

2: for each player i do
3: Find wi = minw∈W wi and a hypercube ci ∈ C,

which wi belongs to;
4: Set Q← Q ∪ {ci};
5: Set f ← ∅ 7→ ×i ∆(Ai);
6: Set τ ← ∅ 7→ C.
7: loop
8: Pick a hypercube q ∈ Q, for which f(q) is not de-

fined, or return M ≡ (Q, q0, f, τ) if there is no such
hypercubes.

9: Apply the procedure CUBESUPPORTED(q) and ob-
tain a (mixed) action profile α and continuation pay-
off profiles w(a) for all a ∈ ×iAαi

i .
10: Define f(q) ≡ α.
11: for each a ∈ ×iAαi

i do
12: Find a hypercube c ∈ C, which w(a) belongs to,

set Q← Q ∪ {c};
13: Define τ(q, a) ≡ c.
14: for each i and each ai ∈ (A\Aαi

i )×j∈N\{i}Aαi
i do

15: Define τ(q, ai) ≡ ci.

Algorithm 3: Algorithm for constructing an automaton M
that approximately induces the given payoff profile v.

Algorithm 3 starts with an empty set of states Q. Then it
puts N punishment states3 into this set, one for each player
(lines 3–4). The transition and the decision function for any
state that has just been put into Q remain undefined. From
the set Q of automaton states, Algorithm 3 then iteratively
picks some state q, for which the transition and the decision
function have not yet been defined (line 8). Then the pro-
cedure CUBESUPPORTED is applied to state q, and a mixed
action profile α and continuation payoff profiles w(a) for all
a ∈ ×i∈NAαi

i are obtained. This mixed action profile αwill
be played by the players when automation enters into state q
during game play (line 10). For each w(a), a hypercube
c ∈ C is found, which w(a) belongs to. Those hypercubes
are also put into the set of states Q (line 12) and the transi-
tion function for state q is finally defined (lines 13 and 15).
Algorithm 3 terminates when, for all q ∈ Q, the transition
function and the decision function have been defined.

The Stopping Criterion
The values of the flags NOCUBEWITHDRAWN and ALL-
CUBESCOMPLETED of Algorithm 1 determine whether AS-

3The punishment state for player i is the automaton state, which
is based on the hypercube that contains a payoff profile v, such that
vi = wi.
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PECT should stop and return the solution. At the end of each
iteration, the flag ALLCUBESCOMPLETED is only TRUE if
for each remaining hypercube c ∈ C, CUBECOMPLETED(c)
is TRUE. The procedure CUBECOMPLETED(c) verifies that
(i) the automaton that starts in the state given by c induces an
SPεE, and (ii) the payoff profile induced by this automaton
is ε-close to oc. Both conditions can be verified by dynamic
programming: assume the remaining agents’ strategies fixed
and use value iteration to compute, for each player i ∈ N ,
both the values of following the strategy profile and the val-
ues of deviations.

The Main Theorem
Here, we present the main theoretical result of the paper.
Theorem 2. For any repeated game, discount factor γ and
approximation factor ε, (i) ASPECT (Algorithms 1, 2) ter-
minates in finite time, (ii) the set of hypercubes C, at any
moment, contains at least one hypercube, (iii) for any input
ṽ ∈ W , Algorithm 3 terminates in finite time and returns
a finite automaton M that satisfies: (1) the strategy pro-
file σM implemented by M induces the payoff profile v, s.t.
ṽi − vi ≤ ε,∀i ∈ N , and (2) the maximum payoff gi that
each player i can achieve by unilaterally deviating from σM

is such that gi − vi ≤ ε.
The proof of Theorem 2 relies on the six lemmas given

below. Due to limited space, we give only a brief intuition
behind the proofs of certain of them.
Lemma 1. At any point of execution of ASPECT,C contains
at least one hypercube.

Proof. According to (Nash 1950), any stage-game has at
least one equilibrium. Let v be a payoff profile of a certain
Nash equilibrium in the stage-game. For the hypercube c
that contains v, the procedure CUBESUPPORTED will al-
ways return TRUE, because, for any γ, v satisfies the two
conditions of Equation (1), with w′ = w = v and α being a
mixed action profile that induces v. Therefore, c will never
be withdrawn.

Lemma 2. ASPECT will reach an iteration, such that
NOCUBEWITHDRAWN is TRUE, in finite time.

Proof. Because the number of hypercubes is finite, the
procedure CUBESUPPORTED will terminate in finite time.
For a constant l, the set C is finite and contains at most
d(r̄ − r)/le elements. Therefore, after a finite time, there
will be an iteration of ASPECT, such that for all c ∈ C,
CUBESUPPORTED(c) returns TRUE.

Lemma 3. Let C be a set of hypercubes at the end of a cer-
tain iteration of ASPECT, such that NOCUBEWITHDRAWN
is TRUE. For all c ∈ C, Algorithm 3 terminates in finite time
and returns a complete finite automaton.

Proof. By observing the definition of Algorithm 3, the proof
follows from the fact that the number of hypercubes and,
therefore, the possible number of the automaton states is fi-
nite. Furthermore, the automaton is complete, because the
fact that NOCUBEWITHDRAWN is TRUE implies that for
each hypercube c ∈ C, there is a mixed action α and a con-
tinuation payoff profile w belonging to a certain hypercube

Figure 2: A generic equilibrium graph for player i.

c′ ∈ C. Consequently, for each state q of the automaton, the
functions f(q) and τ(q) will be defined.

Lemma 4. LetC be the set of hypercubes at the end of a cer-
tain iteration of ASPECT, such that NOCUBEWITHDRAWN
is TRUE. Let l be the current value of the hypercube side
length. For every c ∈ C, the strategy profile σM , imple-
mented by the automatonM that starts in c, induces the pay-
off profile v ≡ uγ(σM ), such that oci − vi ≤

γl
1−γ , ∀i ∈ N .

Proof. Here, we give only the intuition. The proof is built
on the fact that when player i is following the strategy pre-
scribed by the automaton constructed by Algorithm 3, this
process can be reflected by an equilibrium graph, as the one
shown in Figure 2. The graph represents the initial state fol-
lowed by a non-cyclic sequence of states (nodes 1 to Z) fol-
lowed by a cycle of X states (nodes Z + 1 to Z + X). The
labels over the nodes are the immediate expected payoffs
collected by player i in the corresponding states. A generic
equilibrium graph contains one non-cyclic and one cyclic
part. For two successive nodes q and q + 1 of the equilib-
rium graph we have:

oqi ≤ (1− γ)rqi + γwqi ≤ o
q
i + l,

oq+1
i ≤ wqi ≤ o

q+1
i + l,

where oqi , r
q
i and wqi stand respectively for (i) the payoff

of player i in the origin of the hypercube behind the state q,
(ii) the immediate expected payoff of player i for playing ac-
cording to fi(q) or for deviating inside the support of fi(q),
and (iii) the continuation promise payoff of player i for play-
ing according to the equilibrium strategy profile in state q.

By means of the developments based on the properties
of the sum of geometric series, one can derive the equation
for vi, the long-term expected payoff of player i for pass-
ing through the equilibrium graph infinitely often. Further
developments allow us to conclude that oci − vi ≤

γl
1−γ .

Lemma 5. LetC be the set of hypercubes at the end of a cer-
tain iteration of ASPECT, such that NOCUBEWITHDRAWN
is TRUE. Let l be the current value of the hypercube side
length. For every c ∈ C, the maximum payoff gi that each
player i can achieve by unilaterally deviating from the strat-
egy profile σM implemented by an automaton M that starts
in c and induces the payoff profile v ≡ uγ(σM ) is such that
gi − vi ≤ 2l

1−γ , ∀i ∈ N .
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Figure 3: A generic deviation graph for player i.

Proof. The proof of this lemma is similar to that of the previ-
ous lemma. The difference is that, now, one has to consider
deviation graphs for player i as the one depicted in Figure 3.
A deviation graph for player i is a finite graph, which re-
flects the optimal behavior for player i assuming that the be-
haviors of the other players are fixed and are given by a finite
automaton. The nodes of the deviation graph correspond to
the states of the automaton. The labels over the nodes are
the immediate expected payoffs collected by player i in the
corresponding states. A generic deviation graph for player i
(Figure 3) is a deviation graph that has one cyclic and one
non-cyclic part. In the cyclic part (subgraph A), player i
follows the equilibrium strategy or deviations take place in-
side the support of the prescribed mixed actions (nodes 1 to
L−1, with node 1 corresponding to the punishment state for
player i). In the last node of the cyclic part (node L), an out-
of-the-support deviation takes place. The non-cyclic part
of the generic deviation graph contains a single node cor-
responding to the state, where the initial out-of-the-support
deviation of player i from the SPE strategy profile occurs.

Similar developments allow us to find, now for a deviation
graph, an expression for gi, the expected long-term payoff of
the optimal deviation for player i. Then, one can similarly
derive that gi − vi ≤ 2l

1−γ .

Lemma 6. ASPECT terminates in finite time.

Proof. The hypercube side length l is reduced by half ev-
ery time that no hypercube was withdrawn by the end of
an iteration of ASPECT. Therefore, and by Lemma 2, any
given value of l will be reached after a finite time. By Lem-
mas 4 and 5, ASPECT, in the worst case, terminates when l
becomes lower than or equal to ε(1−γ)

2 .

On combining the above lemmas we obtain Theorem 2.

Extensions
The assumption that all continuation payoff profiles for hy-
percube c are contained within a certain hypercube c′ ∈
C (Algorithm 2) makes the optimization problem linear
and, therefore, easier to solve. However, this restricts the
set of equilibria that can be approximated using this tech-
nique. Furthermore, examining prospective continuation
hypercubes one by one is computational time-consuming:
the worst-case complexity of one iteration of ASPECT is
O(|C|2), assuming that solving one MIP takes a unit time.

Clustered Continuations
We can improve in both complexity and range of solutions
by considering clustered continuations. A cluster is a con-
vex hyperrectangle consisting of one or more adjacent hy-
percubes. The set S of hyperrectangular clusters is obtained
from the set of hypercubes, C, by finding a smaller set, such
that the union of its elements is equal to the union of the el-
ements of C. Each s ∈ S is identified by its origin os ∈ Rn
and by the vector of side lengths ls ∈ Rn. When the con-
tinuations are given by convex clusters, the set of solutions
can potentially be richer because, now, continuation payoff
profiles for one hypercube can be found in different hyper-
cubes (within one convex cluster). This also permits reduc-
ing the the worst-case complexity of iterations of ASPECT to
O(|C||S|) ≤ O(|C|2).

The CUBESUPPORTED procedure with clustered contin-
uations will be different from that given by Algorithm 2 in
a few details. Before line 1, the set of clusters S has first to
be computed. To do that, a simple greedy approach can, for
example, be used. Then, the line 1 has to be replaced by

“for each s ≡ (os, ls) ∈ S do”.

Finally, the constraint (5) of line 2 has to be replaced by the
following one:

wi−wiy
ai
i +osiy

ai
i ≤ wi(ai) ≤ (wi+l)−(wi+l)y

ai
i +(osi+l

s
i )y

ai
i .

A more general formulation of the MIP could allow the
continuations for different action profiles to belong to dif-
ferent clusters. This would, however, again result in a hard
non-linear MIP. The next extension permits preserving inW
all SPE payoff profiles (i.e.,W ⊇ Uγ) while maintaining the
linearity of the MIP for the two-player repeated games.

Public Correlation
By assuming the set of continuation promises to be convex,
one does not need to use multiple clusters to contain contin-
uation promises in order to improve the range of solutions.
Moreover, such an assumption guarantees that all realizable
SPE payoff profiles will be preserved in W . A convexifica-
tion of the set of continuation payoff profiles can be done in
different ways, one of which is public correlation. In prac-
tice, this implies the existence of a certain random signal ob-
servable by all players after each repeated game iteration, or
that a communication between players is available (Mailath
and Samuelson 2006).

Algorithm 4 contains the definition of the CUBESUP-
PORTED procedure that convexifies the set of continuation
promises. The definition is given for two players. The pro-
cedure first identifies coW , the smallest convex set con-
taining all hypercubes of the set C (procedure GETHALF-
PLANES). This convex set is represented as a set P of half-
planes. Each element p ∈ P is a vector p ≡ (φp, ψp, λp),
s.t. the inequality φpx + ψpy ≤ λp identifies a half-plane
in a two-dimensional space. The intersection of these half-
planes gives coW . In our experiments, in order to construct
the set P , we used the Graham scan (Graham 1972).

The procedure CUBESUPPORTED defined in Algorithm 4
differs from that of Algorithm 2 in the following aspects. It
does not search for continuation payoffs in different hyper-
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cubes by examining them one by one and, therefore, it does
not iterate. Instead, it convexifies the set W and searches
for continuation promises for the hypercube c inside coW .
The definition of the MIP is also different. New indica-
tor variables, za1,a2 , for all pairs (a1, a2) ∈ A1 × A2,
are introduced. The new constraint (6), jointly with the
modified objective function, verify that za1,a2 is only equal
to 1 whenever both ya1

1 and ya2
2 are equal to 1. In other

words, za1,a2 = 1, only if a1 ∈ Aα1
1 and a2 ∈ Aα2

2 .
Constraint (7) verifies that (w1(a1), w2(a2)), the continu-
ation promise payoff profile, belongs to coW if and only
if (a1, a2) ∈ Aα1

1 × Aα2
2 . Note that in the constraint (7),

M stands for a sufficiently large number. This is a standard
trick for relaxing any constraint.

Input: c ≡ (oc, l), a hypercube; C, a set of hypercubes.
1: P ← GETHALFPLANES(C);
2: Solve the following linear MIP:

Decision variables: wi(ai) ∈ R, w′i(ai) ∈ R, yai
i ∈

{0, 1}, αai
i ∈ [0, 1] for all i ∈ {1, 2} and for all ai ∈

Ai; za1,a2 ∈ {0, 1} for all pairs (a1, a2) ∈ A1 ×A2;
Obj. function: min f ≡

∑
(a1,a2)∈A1×A2

za1,a2 ;
Subject to constraints:

(1)
∑
ai
αai
i = 1, ∀i ∈ {1, 2};

For all i ∈ {1, 2} and for all ai ∈ Ai:
(2) αai

i ≤ y
ai
i ,

(3) w′i(ai) = (1− γ)
∑
a−i

α−i(a−i)ri(ai, a−i)
+γwi(ai),

(4) ociy
ai
i ≤ w′i(ai) ≤ ly

ai
i + oci ,

(5) wi − wiy
ai
i ≤ wi(ai) ≤ (wi + l)

−(wi + l)yai
i + r̄yai

i ;
∀a1 ∈ A1 and ∀a2 ∈ A2:
(6) ya1

1 + ya2
2 ≤ za1,a2 + 1;

∀p ≡ (φp, ψp, λp) ∈ P and ∀(a1, a2) ∈ A1 ×A2:
(7) φpw1(a1) + ψpw2(a2) ≤ λpza1,a2

+M −Mza1,a2 .

3: if a solution is found then return wi(ai) and αai
i for all

i ∈ {1, 2} and for all ai ∈ Ai.
4: return FALSE

Algorithm 4: CUBESUPPORTED with public correlation.

Experimental Results
In this section, we outline the results of our experiments with
a number of well-known games, for which the payoff matri-
ces are standard and their equilibrium properties have been
extensively studied: Prisoner’s Dilemma, Duopoly (Abreu
1988), Rock-Paper-Scissors, and Battle of the Sexes.

The graphs in Figure 4 reflect, for two different values
of γ, the evolution of the set of SPE payoff profiles com-
puted by ASPECT extended with public correlation in Pris-
oner’s Dilemma. Here and below, the vertical and the hori-
zontal axes of each graph correspond respectively to the pay-
offs of Players 1 and 2. Each axis is bounded respectively by
r̄ and r. The numbers under the graphs are iterations of the
algorithm. The red (darker) regions reflect the hypercubes

5 15 30 50
(a) γ = 0.7, ε = 0.01

2 6 10 20
(b) γ = 0.3, ε = 0.01

Figure 4: The evolution of the set of SPE payoff profiles in
Prisoner’s Dilemma with public correlation.

5 10 20 33

Figure 5: The evolution of the set of SPE payoff profiles in
Rock-Paper-Scissors with γ = 0.7 and ε = 0.01.

that remain in the set C by the end of the corresponding it-
eration. One can see in Figure 4a that when γ is sufficiently
large, the algorithm maintains a set that converges towards
the set F ∗ of feasible and individually rational payoff pro-
files (Mailath and Samuelson 2006), the largest possible set
of SPE payoff profiles in any repeated game.

Rock, Paper, Scissors (RPS) is a symmetrical zero-sum
game. In the repeated RPS game, the point (0, 0) is the only
possible SPE payoff profile. It can be realized by a station-
ary strategy profile prescribing to each player to sample ac-
tions from a uniform distribution. The graphs in Figure 5
certify the correctness of the approach in this case.

Battle of the Sexes with payoff profiles (2, 1), (1, 2) and
(0, 0) is the game that has two pure action stage-game equi-
libria, (1, 2) and (2, 1), and one mixed stage-game equi-
librium with payoff profile (2/3, 2/3). When γ is suffi-
ciently close to 0, the set of SPE payoff profiles computed
by ASPECT converges towards these three points (Figure 6b),
which is the expected behavior. As γ grows, the set of SPE
payoff profiles becomes larger (Figure 6a). We also ob-
served that when the value of γ becomes sufficiently close
to 1, the set of SPE payoff profiles converges towards F ∗
and eventually includes the point (3/2, 3/2) that maximizes
the Nash product (the product of players’ payoffs).

In the game of Duopoly (Abreu 1988), we have made
another remarkable observation: ASPECT, limited to pure
strategies, preserves the point (10, 10) in the set of SPE pay-
off profiles. (Abreu 1988) showed that this point can only
be in the set of SPE payoff profiles, if γ > 4/7. Our exper-
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5 15 20 40
(a) γ = 0.45, ε = 0.01

2 6 10 15
(b) γ = 0.05, ε = 0.01

Figure 6: The evolution of the set of SPE payoff profiles in
Battle of the Sexes.

ε l Iterations Time

0.025 0.008 55 1750

0.050 0.016 41 770

0.100 0.031 28 165

0.200 0.063 19 55

0.300 0.125 10 19

0.500 0.250 5 15

Table 1: The performance of ASPECT, extended with clus-
tered continuations, in the repeated Battle of the Sexes.

iments confirm that. Moreover, the payoff profile (0, 0) of
the optimal penal code does also remain there. Algorithm 3
also returns an automaton that generates the payoff profile
(10, 10). This automaton induces a strategy profile, which
is equivalent to the optimal penal code based strategy profile
proposed by (Abreu 1988). To the best of our knowledge,
this the first time that optimal penal code based strategies,
which so far were only proven to exist (in the general case),
were algorithmically computed.

Finally, the numbers in Table 1 demonstrate how different
values of the approximation factor ε impact the performance
of ASPECT for mixed action equilibria with clustered contin-
uations in terms of (i) number of iterations until convergence
(column 3) and (ii) time, in seconds, spent by the algorithm
to find a solution (column 4).

Discussion
We have presented an approach for approximately comput-
ing the set of subgame-perfect equilibrium (SPE) payoff
profiles and for deriving strategy profiles that induce them
in repeated games. For the setting without public correla-
tion, our ASPECT algorithm returns the richest set of pay-
off profiles among all existing algorithms: it returns a set
that contains all stationary equilibrium payoff profiles, all
non-stationary pure action SPE payoff profiles, and a sub-

set of non-stationary mixed action SPE payoff profiles. In
the presence of public correlation, our extended algorithm is
capable of approximating the set of all SPE payoff profiles.

In this work, we adopted an assumption that the values of
the discount factor, γ, and the hypercube side length, l, are
the same for all players. ASPECT can readily be modified to
incorporate player specific values of both parameters.

The linearity of the MIP problem of the CUBESUP-
PORTED procedure is preserved only in the two-player case.
In more general cases, a higher number of players or a pres-
ence of multiple states in the environment are sources of
non-linearity. This latter property, together with the pres-
ence of integer variables, require special techniques to solve
the problem; this constitutes subject for future research.
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