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Abstract

Multi-agent decision problems, in which independent agents
have to agree on a joint plan of action or allocation of re-
sources, are central to AI. In such situations, agents’ individ-
ual preferences over available alternatives may vary, and they
may try to reconcile these differences by voting. Based on the
fact that agents may have incentives to vote strategically and
misreport their real preferences, a number of recent papers
have explored different possibilities for avoiding or eliminat-
ing such manipulations. In contrast to most prior work, this
paper focuses on convergence of strategic behavior to a deci-
sion from which no voter will want to deviate. We consider
scenarios where voters cannot coordinate their actions, but
are allowed to change their vote after observing the current
outcome. We focus on the Plurality voting rule, and study the
conditions under which this iterative game is guaranteed to
converge to a Nash equilibrium (i.e., to a decision that is sta-
ble against further unilateral manipulations). We show for the
first time how convergence depends on the exact attributes of
the game, such as the tie-breaking scheme, and on assump-
tions regarding agents’ weights and strategies.

Introduction
The notion of strategic voting has been highlighted in re-
search on Social Choice as crucial to understanding the re-
lationship between preferences of a population, and the final
outcome of elections. The most widely used voting rule is
the Plurality rule, in which each voter has one vote and the
winner is the candidate who received the highest number of
votes. While it is known that no reasonable voting rule is
completely immune to strategic behavior, Plurality has been
shown to be particularly susceptible, both in theory and in
practice (Saari 1990; Forsythe et al. 1996). This makes
the analysis of any election campaign—even one where the
simple Plurality rule is used—a challenging task. As voters
may speculate and counter-speculate, it would be beneficial
to have formal tools that would help us understand (and per-
haps predict) the final outcome.

Natural tools for this task include the well-studied solu-
tion concepts developed for normal form games. While vot-
ing games are not commonly presented in this way, several
natural formulations have been proposed. Moreover, such
formulations are extremely simple in Plurality voting games,
where voters only have a few ways available to vote.
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While some work has been devoted to the analysis of so-
lution concepts such as dominant strategies and strong equi-
libria, this paper concentrates on Nash equilibria (NE). This
most prominent solution concept has typically been over-
looked, mainly because it appears to be too weak for this
problem: there are typically many Nash equilibria in a vot-
ing game, but most of them are trivial. For example, if all
voters vote for the same candidate, then this is clearly an
equilibrium, since any single agent cannot change the result.
This means that Plurality is distorted, i.e., there can be NE
points in which the outcome is not truthful.

The lack of a single prominent solution for the game sug-
gests that in order to fully understand the outcome of the vot-
ing procedure, it is not sufficient to consider voters’ prefer-
ences. The strategies voters’ choose to adopt, as well as the
information available to them, are necessary for the analysis
of possible outcomes. To play an equilibrium strategy for
example, voters must know the preferences of others. Partial
knowledge is also required in order to eliminate dominated
strategies or to collude with other voters.

We consider the other extreme, assuming that voters have
initially no knowledge regarding the preferences of the oth-
ers, and cannot coordinate their actions. Such situations may
arise, for example, when voters do not trust one another or
have restricted communication abilities. Thus, even if two
voters have exactly the same preferences, they may be reluc-
tant or unable to share this information, and hence they will
fail to coordinate their actions. Voters may still try to vote
strategically, based on their current information, which may
be partial or wrong. The analysis of such settings is of par-
ticular interest to AI as it tackles the fundamental problem
of multi-agent decision making, where autonomous agents
(that may be distant, self-interested and/or unknown to one
another) have to choose a joint plan of action or allocate re-
sources or goods. The central questions are (i) whether, (ii)
how fast, and (iii) on what alternative the agents will agree.

In our (Plurality) voting model, voters start from some
announcement (e.g., the truthful one), but can change their
votes after observing the current announcement and out-
come.1 The game proceeds in turns, where a single voter
changes his vote at each turn. We study different versions of
this game, varying tie-breaking rules, weights and policies

1A real-world example of a voting interface that gives rise to a
similar procedure is the recently introduced poll gadget for Google
Wave. See http://sites.google.com/site/polloforwave.
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of voters, and the initial profile. Our main result shows that
in order to guarantee convergence, it is necessary and suffi-
cient that voters restrict their actions to natural best replies.

Related Work

There have been several studies applying game-theoretic so-
lution concepts to voting games, and to Plurality in partic-
ular. (Feddersen, Sened, and Wright 1990) model a Plu-
rality voting game where candidates and voters play strate-
gically. They characterize all Nash equilibria in this game
under the very restrictive assumption that the preference do-
main is single peaked. Another highly relevant work is that
of (Dhillon and Lockwood 2004), which concentrates on
dominant strategies in Plurality voting. Their game for-
mulation is identical to ours, and they prove a necessary
and sufficient condition on the profile for the game to be
dominance-solvable. Unfortunately, their analysis shows
that this rarely occurs, making dominance perhaps a too-
strong solution concept for actual situations. A weaker con-
cept, though still stronger than NE, is Strong Equilibrium. In
strong equilibrium no subset of agents can benefit by making
a coordinated diversion. A variation of strong equilibrium
was suggested by (Messner and Polborn 2002), which char-
acterized its existence and uniqueness in Plurality games.
Crucially, all aforementioned papers assume that voters have
some prior knowledge regarding the preferences of others.

A more complicated model was suggested by (Myerson
and Weber 1993), which assumes a non-atomic set of vot-
ers and some uncertainty regarding the preferences of other
voters. Their main result is that every positional scoring rule
(e.g., Veto, Borda, and Plurality) admits at least one voting
equilibrium. In contrast, our model applies to a finite num-
ber of voters, that possess zero knowledge regarding the dis-
tribution of other voters’ preferences.

Variations of Plurality and other voting rules have been
proposed in order to increase resistance to strategic behavior
(e.g., (Conitzer and Sandholm 2003)). We focus on achiev-
ing a stable outcome taking such behavior into account.

Iterative voting procedures have also been investigated in
the literature. (Chopra, Pacuit, and Parikh 2004) consider
voters with different levels of information, where in the low-
est level agents are myopic (as we assume as well). Oth-
ers assume, in contrast, that voters have sufficient informa-
tion to forecast the entire game, and show how to solve it
with backward induction (Farquharson 1969; McKelvey and
Niemi 1978); most relevant to our work, (Airiau and Endriss
2009) study conditions for convergence in such a model.

Preliminaries

The Game Form

There is a set C of m candidates, and a set V of n voters.
A voting rule f allows each voter to submit his preferences
over the candidates by selecting an action from a set A (in
Plurality, A = C). Then, f chooses a non-empty set of
winner candidates—i.e., it is a function f : An → 2C \ {∅}.

Each such voting rule f induces a natural game form. In
this game form, the strategies available to each voter are A,
and the outcome of a joint action is f(a1, . . . , an). Mixed
strategies are not allowed. We extend this game form by
including the possibility that only k out of the n voters

v1, v2 a b c

a (14, 9, 3) {a} (10, 13, 3) {b} (10, 9, 7) {a}

b (11, 12, 3) {b} (7, 16, 3) {b} (7, 12, 7) {b}

c (11, 9, 6) {a} (7, 13, 6) {b} (7, 9, 10) {c}

Table 1: There is a set C = {a, b, c} of candidates with initial
scores (7, 9, 3). Voter 1 has weight 3 and voter 2 has weight 4.
Thus, GFT = 〈{a, b, c}, {1, 2}, (3, 2), (7, 9, 3)〉. The table shows
the outcome vector s(a1, a2) for every joint action of the two vot-
ers, as well as the set of winning candidates GFT (a1, a2). In this
example there are no ties, and it thus fits both tie-breaking schemes.

may play strategically. We denote by K ⊆ V the set of
k strategic voters (agents) and by B = V \ K the set of
n − k additional voters who have already cast their votes,
and are not participating in the game. Thus, the outcome
is f(a1, . . . , ak, bk+1, . . . , bn), where bk+1, . . . , bn are fixed
as part of the game form. This separation of the set of voters
does not affect generality, but allows us to encompass situa-
tions where only some of the voters behave strategically.

From now on, we restrict our attention to the Plurality
rule, unless explicitly stated otherwise. That is, the winner
is the candidate (or a set of those) with the most votes; there
is no requirement that the winner gain an absolute majority
of votes. We assume each of the n voters has a fixed weight
wi ∈ N. The initial score ŝ(c) of a candidate c is defined
as the total weight of the fixed voters who selected c—i.e.,
ŝ(c) =

∑
j∈B:bj=c wj . The final score of c for a given joint

action a ∈ Ak is the total weight of voters that chose c (in-
cluding the fixed set B): s(c,a) = ŝ(c) +

∑
i∈K:ai=c wi.

We sometimes write s(c) if the joint action is clear from the
context. We write s(c) >p s(c′) if either s(c) > s(c′) or
the score is equal and c has a higher priority (lower index).
We denote by PLR the Plurality rule with randomized tie
breaking, and by PLD the Plurality rule with determinis-
tic tie breaking in favor of the candidate with the lower in-
dex. We have that PLR(ŝ,w,a) = argmaxc∈Cs(c,a), and
PLD(ŝ,w,a) = {c ∈ C s.t. ∀c′ 6= c, s(c,a) >p s(c′,a)}.
Note that PLD(ŝ,w,a) is always a singleton.

For any joint action, its outcome vector s(a) contains the
score of each candidate: s(a) = (s(c1,a), . . . , s(cm,a)).
For a tie-breaking scheme T (T = D, R) the Game Form
GFT = 〈C, K,w, ŝ〉 specifies the winner for any joint ac-
tion of the agents—i.e., GFT (a) = PLT (ŝ,w,a). Table 1
demonstrates a game form with two weighted manipulators.

Incentives

We now complete the definition of our voting game, by
adding incentives to the game form. Let R be the set of
all strict orders over C. The order ≻i∈ R reflects the prefer-
ences of voter i over the candidates. The vector containing
the preferences of all k agents is called a profile, and is de-
noted by r = (≻1, . . . ,≻k). The game form GFT , coupled
with a profile r, define a normal form game GT = 〈GFT , r〉
with k players. Player i prefers outcome GFT (a) over out-
come GFT (a′) if GFT (a) ≻i GFT (a′).

Note that for deterministic tie-breaking, every pair of out-
comes can be compared. If ties are broken randomly, ≻i

does not induce a complete order over outcomes, which
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v1, v2 a b * c

* a {a} 3, 2 {b} 2, 1 * {a} 3, 2

b {b} 2, 1 {b} 2, 1 {b} 2, 1

c {a} 3, 2 {b} 2, 1 {c} 1, 3

Table 2: A game GT = 〈GFT , r〉, where GFT is as in Table 1,
and r is defined by a ≻1 b ≻1 c and c ≻2 a ≻2 b. The table shows
the ordinal utility of the outcome to each agent (the final score is
not shown). Bold outcomes are the NE points. Here the truthful
vote (marked with *) is also a NE.

are sets of candidates. A natural solution is to augment
agents’ preferences with cardinal utilities, where ui(c) ∈ R

is the utility of candidate c to agent i. This definition nat-
urally extends to multiple winners by setting ui(W ) =

1
|W |

∑
c∈W ui(c).

2 A utility function u is consistent with

a preference relation ≻i if u(c) > u(c′) ⇔ c ≻i c′.

Lemma 1. For any utility function u which is consistent with
preference order ≻i , the following holds:

1. a≻i b ⇒ ∀W ⊆ C \ {a, b}, u({a}∪W ) > u({b}∪W ) ;

2. ∀b∈W, a≻i b ⇒ u(a)>u({a}∪W )>u(W ) .

The proof is trivial and is therefore omitted. Lemma 1 in-
duces a partial preference order on the set of outcomes, but it
is not yet complete if the cardinal utilities are not specified.
For instance, the order a ≻i b ≻i c does not determine if i
will prefer {b} over {a, c}. When utilities are given explic-
itly, every pair of outcomes can be compared, and we will
slightly abuse the notation by using GFR(a) ≻i GFR(a′)
to note that i prefers the outcome of action a over that of a

′.

Manipulation and Stability

Having defined a normal form game, we can now apply stan-
dard solution concepts. Let GT = 〈GFT , r〉 be a Plurality
voting game, and let a = (a−i, ai) be a joint action in GT .

We say that ai
i

→ a′
i is an improvement step of agent i if

GFT (a−i, a
′
i) ≻i GFT (a−i, ai). A joint action a is a Nash

equilibrium (NE), if no agent has an improvement step from
a in GT . That is, no agent can gain by changing his vote,
provided that others keep their strategies unchanged. A pri-
ori, a game with pure strategies does not have to admit any
NE. However, in our voting games there are typically (but
not necessarily) many such points.

Now, observe that the preference profile r induces a spe-
cial joint action a

∗, termed the truthful vote, such that
a
∗(r) = (a∗

1, . . . , a
∗
k), where a∗

i ≻i c for all c 6= a∗
i . We also

call a∗(r) the truthful state of GT , and refer to GFT (a∗(r))
as the truthful outcome of the game. If i has an improvement
step in the truthful state, then this is a manipulation.3 Thus,
r cannot be manipulated if and only if a

∗(r) is a Nash equi-
librium of GT = 〈GFT , r〉. However, the truthful vote may
or may not be included in the NE points of the game, as can
be seen from Table 2.

2This makes sense if we randomize the final winner from the
set W . For a thorough discussion of cardinal and ordinal utilities
in normal form games, see (Borgers 1993).

3This definition of manipulation coincides with the standard
definition from social choice theory.

Game Dynamics

We finally consider natural dynamics in Plurality voting
games. Assume that players start by announcing some ini-
tial vote, and then proceed and change their votes until no
one has objections to the current outcome. It is not, how-
ever, clear how rational players would act to achieve a sta-
ble decision, especially when there are multiple equilibrium
points. However, one can make some plausible assumptions
about their behavior. First, the agents are likely to only make
improvement steps, and to keep their current strategy if such
a step is not available. Thus, the game will end when it first
reaches a NE. Second, it is often the case that the initial state
is truthful, as agents know that they can reconsider and vote
differently, if they are not happy with the current outcome.

We start with a simple observation that if the agents may
change their votes simultaneously, then convergence is not
guaranteed, even if the agents start with the truthful vote
and use best replies—that is, vote for their most preferred
candidate out of potential winners in the current round.

Proposition 2. If agents are allowed to re-vote simultane-
ously, the improvement process may never converge.

Example. The counterexample is the game with 3 candi-
dates {a, b, c} with initial scores given by (0, 0, 2). There
are 2 voters {1, 2} with weights w1 = w2 = 1 and the fol-
lowing preferences: a ≻1 b ≻1 c, and b ≻2 a ≻2 c. The
two agents will repeatedly swap their strategies, switching
endlessly between the states a(r) = (a, b) and (b, a). Note
that this example works for both tie-breaking schemes. ♦

We therefore restrict our attention to dynamics where si-
multaneous improvements are not available. That is, given
the initial vote a0, the game proceeds in steps, where at each
step t, a single player may change his vote, resulting in a new
state (joint action) at. The process ends when no agent has
objections, and the outcome is set by the last state. Such a re-
striction makes sense in many computerized environments,
where voters can log-in and change their vote at any time.

In the remaining sections, we study the conditions under
which such iterative games reach an equilibrium point from
either an arbitrary or a truthful initial state. We consider
variants of the game that differ in tie-breaking schemes or
assumptions about the agents’ weights or behavior. In cases
where convergence is guaranteed, we are also interested in
knowing how fast it will occur, and whether we can say any-
thing about the identity of the winner. For example, in Ta-
ble 2, the game will converge to a NE from any state in at
most two steps, and the outcome will be a (which happens to
be the truthful outcome), unless the players initially choose
the alternative equilibrium (b, b) with outcome b.

Results

Let us first provide some useful notation. We denote the
outcome at time t by ot = PL(at) ⊆ C, and its score by
s(ot). Suppose that agent i has an improvement step at time
t, and as a result the winner switched from ot−1 to ot. The
possible steps of i are given by one of the following types
(an example of such a step appears in parentheses):

type 1 from ai,t−1 /∈ ot−1 to ai,t ∈ ot ; (step 1 in Ex.4a.)

type 2 from ai,t−1 ∈ ot−1 to ai,t /∈ ot ; (step 2 in Ex.4a.)
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type 3 from ai,t−1 ∈ ot−1 to ai,t ∈ ot ; (step 1 in Ex.4b.),

where inclusion is replaced with equality for deterministic
tie-breaking. We refer to each of these steps as a better reply
of agent i. If ai,t is i’s most preferred candidate capable of

winning, then this is a best reply.4 Note that there are no best
replies of type 2. Finally, we denote by st(c) the score of a
candidate c without the vote of the currently playing agent;
thus, it always holds that st−1(c) = st(c).

Deterministic Tie-Breaking

Our first result shows that under the most simple conditions,
the game must converge.

Theorem 3. Let GD be a Plurality game with deterministic
tie-breaking. If all agents have weight 1 and use best replies,
then the game will converge to a NE from any state.

Proof. We first show that there can be at most (m − 1) · k

sequential steps of type 3. Note that at every such step a
i

→ b
it must hold that b ≻i a. Thus, each voter can only make
m − 1 such subsequent steps.

Now suppose that a step a
i

→ b of type 1 occurs at time t.
We claim that at any later time t′ ≥ t: (I) there are at least
two candidates whose score is at least s(ot−1); (II) the score
of a will not increase at t′. We use induction on t′ to prove
both invariants. Right after step t we have that

st(b) + 1 = s(ot) >p s(ot−1) >p st(a) + 1 . (1)

Thus, after step t we have at least two candidates with scores
of at least s(ot−1): ot = b and ot−1 6= b. Also, at step t the
score of a has decreased. This proves the base case, t′ = t.

Assume by induction that both invariants hold until time
t′ − 1, and consider step t′ by voter j. Due to (I), we have
at least two candidates whose score is at least s(ot−1). Due
to (II) and Equation (1) we have that st′(a) ≤p st(a) <p

s(ot−1)−1. Therefore, no single voter can make a a winner
and thus a cannot be the best reply for j. This means that (II)
still holds after step t′. Also, j has to vote for a candidate
c that can beat ot′—i.e., st′(c) + 1 >p s(ot′) >p s(ot−1).
Therefore, after step t′ both c and ot′ 6= c will have a score
of at least s(ot−1)—that is, (I) also holds.

The proof also supplies us with a polynomial bound on
the rate of convergence. At every step of type 1, at least one
candidate is ruled out permanently, and there at most k times
a vote can be withdrawn from a candidate. Also, there can
be at most mk steps of type 3 between such occurrences.
Hence, there are in total at most m2k2 steps until conver-
gence. It can be further shown that if all voters start from
the truthful state then there are no type 3 steps at all. Thus,
the score of the winner never decreases, and convergence
occurs in at most mk steps. The proof idea is similar to that
of the corresponding randomized case in Theorem 8.

We now show that the restriction to best replies is neces-
sary to guarantee convergence.

4Any rational move of a myopic agent in the normal form game
corresponds to exactly one of the three types of better-reply. In
contrast, the definition of best-reply is somewhat different from
the traditional one, which allows the agent to choose any strategy
that guarantees him a best possible outcome. Here, we assume the
improver makes the more natural response by actually voting for
ot. Thus, under our definition, the best reply is always unique.

Proposition 4. If agents are not limited to best replies, then:
(a) there is a counterexample with two agents; (b) there is a
counterexample with an initial truthful vote.

Example 4a. C = {a, b, c}. We have a single fixed voter
voting for a, thus ŝ = (1, 0, 0). The preference profile is
defined as a ≻1 b ≻1 c, c ≻2 b ≻2 a. The following
cycle consists of better replies (the vector denotes the votes
(a1, a2) at time t, the winner appears in curly brackets):

(b, c){a}
2

→ (b, b){b}
1

→ (c, b){a}
2

→ (c, c){c}
1

→ (b, c) ♦

Example 4b. C = {a, b, c, d}. Candidates a, b, and c have
2 fixed voters each, thus ŝ = (2, 2, 2, 0). We use 3 agents
with the following preferences: d ≻1 a ≻1 b ≻1 c, c ≻2

b ≻2 a ≻2 d and d ≻3 a ≻3 b ≻3 c. Starting from the
truthful state (d, c, d) the agents can make the following two
improvement steps (showing only the outcome):

(2, 2, 3, 2){c}
1

→ (2, 3, 3, 1){b}
3

→ (3, 3, 3, 0){a} ,

after which agents 1 and 2 repeat the cycle shown in (4a). ♦

Weighted voters While using the best reply strategies
guaranteed convergence for equally weighted agents, this is
no longer true for non-identical weights. However, if there
are only two weighted voters, either restriction is sufficient.
Proofs of this sub-section are omitted due to lack of space.

Proposition 5. There is a counterexample with 3 weighted
agents that start from the truthful state and use best replies.

Theorem 6. Let GD be a Plurality game with deterministic
tie-breaking. If k = 2 and both agents (a) use best replies
or (b) start from the truthful state, a NE will be reached.

Randomized Tie-Breaking

The choice of tie-breaking scheme has a significant impact
on the outcome, especially when there are few voters. A ran-
domized tie-breaking rule has the advantage of being neutral
—no specific candidate or voter is preferred over another.

In order to prove convergence under randomized tie-
breaking, we must show that convergence is guaranteed for
any utility function which is consistent with the given pref-
erence order. That is, we may only use the relations over
outcomes that follow directly from Lemma 1. To disprove,
it is sufficient to show that for a specific assignment of utili-
ties, the game forms a cycle. In this case, we say that there is
a weak counterexample. When the existence of a cycle will
follow only from the relations induced by Lemma 1, we will
say that there is a strong counterexample, since it holds for
any profile of utility scales that fits the preferences.

In contrast to the deterministic case, the weighted ran-
domized case does not always converge to a Nash equilib-
rium or possess one at all, even with (only) two agents.

Proposition 7. There is a strong counterexample GR for
two weighted agents with randomized tie-breaking, even if
both agents start from the truthful state and use best replies.

Example. C = {a, b, c}, ŝ = (0, 1, 3). There are 2 agents
with weights w1 = 5, w2 = 3 and preferences a ≻1 b ≻1 c,
b ≻2 c ≻2 a (in particular, b ≻2 {b, c} ≻2 c). The resulting
3 × 3 normal form game contains no NE states. ♦

Nevertheless, the conditions mentioned are sufficient for
convergence if all agents have the same weight.
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Theorem 8. Let GR be a Plurality game with randomized
tie-breaking. If all agents have weight 1 and use best replies,
then the game will converge to a NE from the truthful state.

Proof. Our proof shows that in each step, the current agent
votes for a less preferred candidate. Clearly, the first im-
provement step of every agent must hold this invariant.

Assume, toward deriving a contradiction, that b
i

→ c at

time t2 is the first step s.t. c ≻i b. Let a
i

→ b at time t1 < t2
be the previous step of the same agent i.

We denote by Mt = ot the set of all winners at time t.
Similarly, Lt denotes all candidates whose score is s(ot)−1.

We claim that for all t < t2, Mt∪Lt ⊆ Mt−1∪Lt−1,
i.e., the set of “almost winners” can only shrink. Also, the
score of the winner cannot decrease. Observe that in order
to contradict any of these assertions, there must be a step

x
j

→ y at time t, where {x} = Mt−1 and y /∈ Mt−1 ∪Lt−1.
In that case, Mt = Lt−1 ∪ {x, y} ≻j {x}, which means
either that y ≻j x (in contradiction to the minimality of t2)
or that y is not a best reply.

From our last claim we have that s(ot1−1) ≤ s(ot′) for
any t1 ≤ t′ < t2. Now consider the step t1. Clearly b ∈
Mt1−1∪Lt1−1 since otherwise voting for b would not make
it a winner. We consider the cases for c separately:

Case 1: c /∈ Mt1−1 ∪ Lt1−1. We have that st1(c) ≤
s(ot1−1) − 2. Let t′ be any time s.t. t1 ≤ t′ < t2, then c /∈
Mt′ ∪Lt′ . By induction on t′, st′(c) ≤ st1(c) ≤ s(ot1−1)−
2 ≤ s(ot′ ) − 2, and therefore c cannot become a winner at
time t′ + 1, and the improver at time t′ + 1 has no incentive
to vote for c. In particular, this holds for t′ + 1 = t2; hence,
agent i will not vote for c.

Case 2: c ∈ Mt1−1 ∪ Lt1−1. It is not possible that
b ∈ Lt1−1 or that c ∈ Mt1−1: since c ≻i b and i plays
best reply, i would have voted for c at step t1. Therefore,
b ∈ Mt1−1 and c ∈ Lt1−1. After step t1, the score of b
equals the score of c plus 2; hence, we have that Mt1 = {b}
and c /∈ Mt1 ∪ Lt1 , and we are back in case 1.

In either case, voting for c at step t2 leads to a contra-
diction. Moreover, as agents only vote for a less-preferred
candidate, each agent can make at most m− 1 steps, hence,
at most (m − 1) · k steps in total.

However, in contrast to the deterministic case, conver-
gence is no longer guaranteed, if players start from an ar-
bitrary profile of votes. The following example shows that
in the randomized tie-breaking setting even best reply dy-
namics may have cycles, albeit for specific utility scales.

Proposition 9. If agents start from an arbitrary profile,
there is a weak counterexample with 3 agents of weight 1,
even if they use best replies.

Example. There are 4 candidates {a, b, c, x} and 3
agents with utilities u1 = (5, 4, 0, 3), u2 = (0, 5, 4, 3)
and u3 = (4, 0, 5, 3). In particular, a ≻1 {a, b} ≻1

x ≻1 {a, c}; b ≻2 {b, c} ≻2 x ≻2 {a, b}; and
c ≻3 {a, c} ≻3 x ≻3 {b, c}. From the state a0 = (a, b, x)
with s(a0) = (1, 1, 0, 1) and the outcome {a, b, x},

the following cycle occurs: (1, 1, 0, 1){a, b, x}
2

→

(1, 0, 0, 2){x}
3

→ (1, 0, 1, 1){a, x, c}
1

→

(0, 0, 1, 2){x}
2

→ (0, 1, 1, 1){x, b, c}
3

→ (0, 1, 0, 2){x}
1

→
(1, 1, 0, 1){a, b, x}. ♦

As in the previous section, if we relax the requirement for
best replies, there may be cycles even from the truthful state.

Proposition 10. If agents use arbitrary better replies, then
there is a strong counterexample with 3 agents of weight 1.
Moreover, there is a weak counterexample with 2 agents of
weight 1, even if they start from the truthful state.

The examples are omitted due to space constraints.

Truth-Biased Agents

So far we assumed purely rational behavior on the part of
the agents, in the sense that they were indifferent regarding
their chosen action (vote), and only cared about the outcome.
Thus, for example, if an agent cannot affect the outcome
at some round, he simply keeps his current vote. This as-
sumption is indeed common when dealing with normal form
games, as there is no reason to prefer one strategy over an-
other if outcomes are the same. However, in voting problems
it is typically assumed that voters will vote truthfully unless
they have an incentive to do otherwise. As our model in-
corporates both settings, it is important to clarify the exact
assumptions that are necessary for convergence.

In this section, we consider a variation of our model
where agents always prefer their higher-ranked outcomes,
but will vote honestly if the outcome remains the same—
i.e., the agents are truth-biased. Formally, let W =
PLT (ŝ,w, ai,a−i) and Z = PLT (ŝ,w, a′

i,a−i) be two
possible outcomes of i’s voting. Then, the action a′

i is better
than ai if either Z ≻i W , or Z = W and a′

i ≻i ai. Note
that with this definition there is a strict preference order over
all possible actions of i at every step. Unfortunately, truth-
biased agents may not converge even in the simplest settings
(we omit the examples due to space limitations).

Proposition 11. There are strong counterexamples for (a)
deterministic tie-breaking, and (b) randomized tie-breaking.
This holds even with two non-weighted truth-biased agents
that use best reply dynamics and start from the truthful state.

Discussion

We summarize the results in Table 3. We can see that in
most cases convergence is not guaranteed unless the agents
restrict their strategies to “best replies”—i.e., always select
their most-preferred candidate that can win. Also, determin-
istic tie-breaking seems to encourage convergence more of-
ten. This makes sense, as the randomized scheme allows for
a richer set of outcomes, and thus agents have more options
to “escape” from the current state. Neutrality can be main-
tained by randomizing a tie-breaking order and publicly an-
nouncing it before the voters cast their votes.

We saw that if voters are non-weighted, begin from the
truthful announcement and use best reply, then they al-
ways converge within a polynomial number of steps (in both
schemes), but to what outcome? The proofs show that the
score of the winner can only increase, and by at most 1 in
each iteration. Thus possible winners are only candidates
that are either tied with the (truthful) Plurality winner, or
fall short by one vote. This means that it is not possible
for arbitrarily “bad” candidates to be elected in this process,
but does not preclude a competition of more than two candi-
dates. This result suggests that widely observed phenomena
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Tie breaking
Dynamics Best reply from Any better reply from

Truth biased
Initial state Truth Anywhere Truth Anywhere

Deterministic
Weighted (k > 2) X (5) X X X X
Weighted (k = 2) V V (6a) V (6b) X (4a) X
Non-weighted V V (3) X (4b) X X (11a)

Randomized
Weighted X (7) X X X X
Non-weighted V (8) X (9) X (10) X (10) X (11b)

Table 3: We highlight cases where convergence in guaranteed. The number in brackets refers to the index of the corresponding theorem
(marked with V) or counterexample (X). Entries with no index follow from other entries in the table.

such as Duverger’s law only apply in situations where voters
have a larger amount of information regarding one another’s
preferences, e.g., via public polls.

Our analysis is particularly suitable when the number of
voters is small, for two main reasons. First, it is technically
easier to perform an iterative voting procedure with few par-
ticipants. Second, the question of convergence is only rele-
vant when cases of tie or near-tie are common. An analysis
in the spirit of (Myerson and Weber 1993) would be more
suitable when the number of voters increases, as it rarely
happens that a single voter would be able to influence the
outcome, and almost any outcome is a Nash equilibrium.
This limitation of our formulation is due to the fact that the
behaviors of voters encompass only myopic improvements.
However, it sometimes makes sense for a voter to vote for
some candidate, even if this will not immediately change
the outcome (but may contribute to such a change if other
voters will do the same).

A new voting rule We observe that the improvement steps
induced by the best reply policy are unique. If, in addition,
the order in which agents play is fixed, we get a new voting
rule—Iterative Plurality. In this rule, agents submit their full
preference profiles, and the center simulates an iterative Plu-
rality game, applying the best replies of the agents according
to the predetermined order. It may seem at first glance that
Iterative Plurality is somehow resistant to manipulations, as
the outcome was shown to be an equilibrium. This is not
possible of course, and indeed agents can still manipulate
the new rule by submitting false preferences. Such an action
can cause the game to converge to a different equilibrium (of
the Plurality game), which is better for the manipulator.

Future work It would be interesting to investigate com-
putational and game-theoretic properties of the new, itera-
tive, voting rule. For example, perhaps strategic behavior
is scarcer, or computationally harder. Another interesting
question arises regarding possible strategic behavior of the
election chairperson: can voters be ordered so as to arrange
the election of a particular candidate? This is somewhat sim-
ilar to the idea of manipulating the agenda. Of course, a
similar analysis can be carried out on voting rules other than
Plurality, or with variations such as voters that join gradu-
ally. Such analyses might be restricted to best reply dynam-
ics, as in most interesting rules the voter strategy space is
very large. Another key challenge is to modify our best-
reply assumption to reflect non-myopic behavior. Finally,
even in cases where convergence is not guaranteed, it is

worth studying the proportion of profiles that contain cycles.
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