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Abstract

Using a model of agent behavior based around envy-reducing
strategies, we describe an iterated combinatorial auction in
which the allocation and prices converge to a solution in the
core of the agents’ true valuations. In each round of the iter-
ative auction mechanism, agents act on envy quotes produced
by the mechanism: hints that suggest the prices of the bun-
dles they are interested in. We describe optimal methods of
generating envy quotes for two different core-selecting mech-
anisms. Prior work on core-selecting combinatorial auctions
has required agents to have perfect information about every
agent’s valuations to achieve a solution in the core. In con-
trast, here a core solution is reached even in the private infor-
mation setting.

Introduction
The Vickrey-Clarke-Groves mechanism (VCG) is ubiqui-
tous in theoretical mechanism design. In the standard set-
ting, it is the revenue-maximizing mechanism among all in-
centive compatible efficient mechanisms (Krishna and Perry
1997). Unfortunately, in addition to being unwieldy to im-
plement in practice, VCG suffers from a number of patholo-
gies (Rothkopf, Teisberg, and Kahn 1990; Sandholm 2000;
Ausubel and Milgrom 2006; Rothkopf 2007). These include
revenue non-monotonicity, in which adding another bidder
can lower revenues, and receiving an arbitrarily small frac-
tion of the revenue achievable by posting prices.

To obtain higher revenues than VCG, one can explore
inefficient mechanisms, which leads to combinatorial gen-
eralizations of the revenue-maximizing single-item auc-
tion (Myerson 1981). Revenue-maximizing mechanisms are
unknown even for the (unrestricted) two-item setting, and
in general a concise description of the revenue-maximizing
combinatorial auction cannot exist (unless P=NP) because
that design problem is NP-complete (Conitzer and Sand-
holm 2004). Some work has been done on automated
mechanism design for finding high-revenue combinatorial
auctions, but those approaches have not been used for
large numbers of items (Likhodedov and Sandholm 2004;
2005). Even simple revenue-enhancement approaches like
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setting reserve prices require good knowledge of a prior dis-
tribution over agent valuations, which may or may not be
available depending on the setting.

A different approach is to relax incentive compatibil-
ity. One recent stream of research in non-truthful mecha-
nisms has involved core-selecting combinatorial auctions.
Mechanisms of this class were used in the recent success-
ful spectrum license auction in the United Kingdom (Cram-
ton 2008a; 2008b; Day and Cramton 2008). These mech-
anisms mitigate the terrible worst-case revenue properties
of the VCG mechanism without necessarily subscribing to
a first-price mechanism (which motivates significant under-
bidding). Selecting an outcome in the core yields a host of
desirable properties that VCG lacks (Parkes 2002), like rev-
enue monotonicity and resistance to shill bidding (sybil at-
tacks) (Yokoo 2006).

The word iterative has taken on a confusing double mean-
ing in core-selecting combinatorial auction research. On
the one hand, the auction process itself can be iterative, in
which bids are solicited in a series of rounds until a termi-
nation condition is reached (for instance, no agent submits
a new bid). This is the concept we explore in this paper.
On the other hand, given a set of bids, a solution may be
produced iteratively, e.g., by raising the price of bundles in
ascending rounds in a specific way until reaching a point
in the core. Examples of this latter process include (Parkes
1999), (Ausubel and Milgrom 2002), (Wurman, Zhong, and
Cai 2004), and (Hoffman et al. 2006). Unfortunately, these
techniques are too slow to be used in an explicitly multi-
round auction, and so these mechanisms work by inputting
valuations into proxy agents that bid on the behalf of auc-
tion participants. Thus, price increases are a function of iter-
ating on the bids of these proxy agents rather than multiple
iterative rounds of buyers changing their valuations. As a
consequence these auctions are essentially one-shot.

One attempt to get around the computational constraints
of a multi-round core-selecting auction is the clock-proxy
auction (Ausubel, Cramton, and Milgrom 2006). This mech-
anism maintains (easy-to-compute) linear prices over items
through a number of explicit iterative rounds before solving
a final core-selecting round.

It would be ideal, however, to conduct a series of fully
core-selecting rounds. Recent computational work by (Day
and Raghavan 2007) has shown that constraint generation
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can be used to clear large-scale core-selecting combinato-
rial auctions orders of magnitude faster than previously pos-
sible, making fully iterative approaches tractable in prac-
tice. In this paper we describe the implementation of a core-
selecting mechanism over a number of explicitly iterative
rounds.

Prior work by (Milgrom 2006) and (Day and Milgrom
2008) has studied some of the revenue and strategic proper-
ties of core-selecting combinatorial auctions. That literature
has examined the case where bidders have perfect informa-
tion about their own valuations and the valuations of others.
They analyze a mechanism under which the bidder-optimal
(revenue-pessimal) point in the core is selected. They em-
phasize that, with perfect information, this will be the out-
come if side-payments between players are allowed in any
core-selecting mechanism. They show that agents will adopt
a set of strategies that involve truncation, that is, each agent
shaves all her bids by a certain individual value.

Unfortunately, the perfect information assumption is sel-
dom realistic in practice. One of the primary reasons for
running an auction in the first place—as opposed to, for
example, simply posting prices—is that there may be con-
siderable uncertainty about agents’ valuations. It is a poor
modeling choice to assume the auctioneer has no prior infor-
mation about the agents’ valuations, while at the same time
assuming that every agent exactly knows the private valu-
ation of every other agent. The contribution of this paper
is to provide a mechanism with all the benefits of a core-
selecting combinatorial auction in a more plausible private-
information setting.

We begin by formally establishing the properties of envy-
freeness and envy-reduction, and show that a straightfor-
ward approach to applying these techniques to an iterated
core-selecting combinatorial auction fails to produce an out-
come in the core. We then introduce the driving concept be-
hind this paper, envy quotes, which serve as estimates of the
current prices of bundles the agent is losing. Implementing
these envy quotes in an iterated setting, we prove that when
agents act to reduce their envy of their envy quotes, the so-
lution converges to the core of the agents’ true valuations.
Then, we discuss what happens when agents do not behave
as we expect them to in our mechanism, showing that our
mechanism has desirable safeguards to prevent returning a
low revenue result, even when agents do not exactly follow
the behavioral model we prescribe. Finally, we discuss how
to generate these envy quotes in practice, showing a gen-
eral method that works with any core-selecting combinato-
rial auction, an (inefficient) optimal technique for any core-
selecting combinatorial auction, an optimal technique for
the bidder-optimal core-selecting combinatorial auction, and
an optimal technique for the bidder-pessimal core-selecting
combinatorial auction, which is equivalent to a first-price
mechanism.

The theory of envy-freeness
There exists a set of n agents and k items, and therefore
2k − 1 bundles. As is normal, we assume that agents have
quasilinear utility, so that an agent’s utility for receiving al-
location a and paying π is u(a)− π.

Definition 1. A (feasible) outcome is a set of allocations
a1, . . . , an and payments π1, . . . , πn, where ai ∩ aj = ∅ for
i 6= j.
Definition 2. A blocking coalition is a group of agents
G who can propose an alternate outcome (with alloca-
tions a′1, . . . , a

′
n and payments π′1, . . . , π

′
n) in which only

members of G win a bundle, such that for all i ∈ G,
ui(a′i)− π′i ≥ ui(ai)− πi where the inequality is strict for
at least one i, and

∑
i π
′
i >

∑
i πi.

Definition 3. An outcome is in the core if it induces no
blocking coalitions.
Definition 4. An outcome is efficient if no other feasible
outcome has a higher social welfare (sum of utilities) for the
participants.

It follows that every outcome in the core is efficient, be-
cause any inefficiencies would yield a blocking coalition
(c.f. (Shapley and Shubik 1971; Day and Raghavan 2007)).
Definition 5. Agent i (with allocation ai and payment
πi) envies agent j (with allocation aj and payment πj) if
ui(ai)−πi < ui(aj)−πj , where (ui(aj)−πj)− (ui(ai)−
πi) is the amount of envy (or just envy).
Definition 6. An agent plays a (myopic) envy-reducing
strategy if, given a set of reports of the other agents, she
modifies her type report to reduce her envy of some agent
without lowering her utility. A group of agents play a (my-
opic) group envy-reducing strategy when no agent in the
group lowers their utility and at least one agent changes her
bid to reduce her envy of another agent.
Definition 7. An outcome is envy-free if no subset of agents
prefers the allocation-payment pair of any other subset of
agents to its own allocation-payment pair. If both subsets
are restricted to consist of only individual agents, then we
call that set individually envy-free.

The set of individually envy-free points is at least as large
as the set of envy-free points because the concept is less re-
strictive.
Definition 8. An envy-free fixed point is a fixed point of a
system where groups of agents follow envy-reducing strate-
gies.
Corollary 1. Every envy-free fixed point is in the core (with
respect to true valuations).
Corollary 2. Every envy-free fixed point is efficient (with
respect to true valuations).
Lemma 1 ((Leonard 1983)). The revenue from VCG does
not exceed that of the bidder-optimal (i.e., revenue-pessimal)
outcome in the core.
Corollary 3. Every envy-free fixed point delivers at least as
much revenue as the VCG mechanism.

The path forward seems straightforward: Simply have
agents iterate in an envy-reducing manner towards an envy-
free solution in the core. This would yield desirable revenue
properties while only requiring agents to have private infor-
mation. However, as we show in the next section, the com-
binatorial nature of the problem complicates a simple model
of individual envy-reduction.
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Individual envy-reduction is insufficient
The following example shows how individual envy reduc-
tion can be insufficient for reaching a fixed point in the core.
Example 1. Consider a two-item three-bidder problem,
where bids (bi) and true valuations (vi) are given by the fol-
lowing table:

Bundle Bid Valuation
A b1 = 5, b2 = 0, b3 = 0 v1 = 9, v2 = 0, v3 = 0
B b1 = 0, b2 = 5, b3 = 0 v1 = 0, v2 = 9, v3 = 0
AB b1 = 5, b2 = 5, b3 = 15 v1 = 9, v2 = 9, v3 = 15

Every core solution awards itemA to bidder one and itemB
to bidder two at a total price of between 15 and 18. But with
these valuations and bids, every core-selecting combinato-
rial auction awards both items to the third agent at a price in
[10,15]—a solution that is not in the true core. However, no
agent individually envies the allocation of any other: neither
losing bidder would prefer to pay 10 for AB.

Iterative combinatorial auctions
with envy quotes

The problems illustrated by the above example arise because
we are not properly expressing to an agent how her bid im-
pacts the combinatorial nature of the allocation. As we have
discussed, envy-free dynamics in the combinatorial setting
only work when groups of agents work together. But this
is undesirable, because it encourages collusion among bid-
ders (which could lead to bad outcomes) or could be illegal,
which is the case in many public goods auctions (Day and
Raghavan 2007). In this section, we explore how to present
envy quotes to agents regarding the clearing prices of bids
they have lost, such that the envy quotes meaningfully reflect
what actual prices are. In effect, we are changing the target
of agents’ envy from distinct bidders to the prices received
by the winners of bundles in the agent’s interest. Further-
more, we show that the fixed point of individuals reducing
their envy on these quotes is in the core with respect to true
valuations.

Our iterative scheme
We propose the following process:

1. Solicit bids from agents.
2. Compute current winners and payments according to

some core-selecting combinatorial auction.
3. For each of her losing bids, an agent receives an

envy quote, p(S), in the form of “The bundle S is cur-
rently going for price p(S)”.

4. Repeat steps 1 through 3 until no new bids are received.
When we provide an envy quote to an agent on the price

of a bundle, we have competing objectives. On the one hand,
the envy quote has to be low enough so that it does not cut
into the core (which could lead to agents not envying out-
comes they should legitimately envy). On the other hand,
an envy quote should not be lower than the agent’s bid on
a bundle, in order to reflect the core-selecting nature of the
mechanism. This leads us to the following definitions:

Definition 9. An agent’s core support c(S) for a bundle S
they are losing is the largest possible bid they could make
and not change the current allocation or prices.

It follows that the core support c(S) is always less than
the agent’s quote on S, or the amount they would need to
win the bundle.

Definition 10. Let an agent bid b(S) for bundle S and
not win that bundle. The envy quote p(S) satisfies
b(S) ≤ p(S) ≤ c(S).

Now we can define what envy means in the envy quote
context.

Definition 11. Let an agent currently be winning bundle w
at price πw. She envies the envy quote p(S) on a bundle she
is losing, S, if u(S)− p(S) > u(w)− πw.

Proposition 1. If the current solution in the iterated core-
selecting combinatorial auction is not in the core (with re-
spect to true valuations), then some agent has a bid that re-
duces her envy of the envy quote she receives on at least one
bundle.

Proof. Assume we are in a non-core state such that alloca-
tions are given by a1, . . . , an and prices by π1, . . . , πn. We
will show that some agent has envy in this state, and that she
has a bid to reduce that envy.

Since the solution is not in the core, there exists some
blocking coalition in which at least one member of the coali-
tion is strictly better off. Call that new solution a′1, . . . , a

′
n,

with prices π′1, . . . , π
′
n. Without loss of generality, let agent

1 be strictly better off. We have u1(a1)−π1 < u1(a′1)−π′1,
where the left hand side is non-negative, and a′1 6= ∅ by the
restriction that no agent bids above her valuation. We will
show that in the initial state, agent 1 is presented with an
envy quote that induces envy. Let the envy quote of a′1 in
the original state be p. To show agent 1 has envy for a′1, we
must have u1(a1)−π1 < u1(a′1)−p, for which it is sufficient
to show that p ≤ π′1, which holds because envy quotes are
always less than quotes. As an example of an envy-reducing
strategy, the agent can increase her bid on a′1 to p+ ε, where
0 < ε < (u1(a′1) − p) − (u1(a1) − π1), because either the
agent’s next envy quote on a′1 must be higher so her envy of
it is reduced, or she wins the item at a price of at most p+ ε,
which gives her more utility. �

Envy-reducing dynamics converge
In this section, we show that if agents respond to their
envy quotes on items they are not winning, then prices to
converge to a fixed point. Furthermore, it suffices that agents
select such envy-reducing actions with positive probability.
This kind of convergence result is standard in the match-
ing market literature (c.f. (Roth and Vande Vate 1990)), and
holds regardless of the path taken to the current set of prices.

Proposition 2. Assume that bids must be from a finite set
of discrete levels, where the difference between consecutive
levels is at most ε (e.g., bids are in integer dollars). If at ev-
ery state of the auction at least one agent has positive prob-
ability of selecting an action among those that reduce her
envy of an envy quote on a bundle she is not winning, then
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any iterated core-selecting combinatorial auction converges
to a fixed point with probability 1. In this fixed point, each
agent’s envy of the envy quote on any bundle is at most ε,
each coalition’s payoff is no less than its pessimal core pay-
off minus |coalition| · ε, and revenue is no less than that of
the revenue-pessimal point of the core minus n · ε.

Proof. The proof of Proposition 1 can be extended trivially
to show that in the fixed point, no agent can have more than
ε envy on any bundle, and that an ascending bid exists oth-
erwise. Furthermore, the largest envy quotes on bundles of
some core outcome are no smaller than the agents’ bids in
that core outcome minus ε. If this were not the case, some
agent could reduce her envy by bidding ε higher for some
bundle. Since some agent has an ascending bid at every
non-fixed point, by assumption the agent will select such
an action with positive probability. Since there are only a
finite number of (agent, bundle, bid level)-triples, we can
construct a finite number of steps to reach a state in which
no agent has envy greater than ε of her envy quote on any
bundle. Thus, these envy-reducing dynamics converge to
such a fixed point with probability 1.

Suppose some coalition’s payoff is less than its lowest
core payoff minus |coalition| · ε. Then some agent in the
coalition has at least ε envy of the core state. Because envy
quotes are smaller than quotes, it follows that the agent has
at least ε envy of the envy quote of the bundle she would
receive in that state. Thus we are not in a fixed point, which
contradicts our premise. Therefore, each coalition’s payoff
is at least its lowest core payoff minus |coalition| · ε.

Let r denote the revenue in the fixed point we reach. Let
rc denote the revenue from the core solution that we are near
(not necessarily the revenue-pessimal core solution), and let
pi represent the largest envy quote received by any agent for
agent i’s bundle in the core solution we are near. Because the
mechanism is core-selecting with respect to reported bids we
have rc ≥

∑
pi, Since we are in a fixed point, we must have

r ≤
∑

(pi + ε), because were this not the case, an agent
would have an envy-reducing play by bidding ε higher and
thereby forcing the core solution. Letting rpessimal ≤ rc
represent the revenue-pessimal core solution, it follows that
rpessimal − n · ε ≤

∑
pi ≤ r. Therefore, our revenue is

no smaller than that of the revenue-pessimal core outcome
minus n · ε. �

Robustness of the approach
Core-selecting combinatorial auctions are not incentive
compatible: only when the VCG solution lies (at the bidder-
optimal extrema) in the core will core-selecting mechanisms
be incentive-compatible (Goeree and Lien 2009). Abandon-
ing incentive compatibility comes a host of strategic con-
cerns. How can we say how agents will play if they do not
play truthfully? In this section, we explore the robustness
of our mechanisms: what happens when agents either bid
too little or too much, or attempt to otherwise manipulate
the mechanism in ways that could be to their benefit. That
is, what happens when agents fail—either due to willful ma-
nipulation or incompetence—to decrease their envy of envy
quotes?

The optimal manipulation, if agents had perfect informa-
tion and side payments were allowed, would be for each to
shave her bid in a specific manner in order to achieve the
core solution that minimizes the sum of the payments by the
agents. This solution will coincide with the VCG solution
if the VCG solution is in the core; this is the solution con-
cept featured by (Ausubel and Milgrom 2002) and (Day and
Raghavan 2007). But in our setting, agents do not have per-
fect information, and the setting is iterated.

An agent can, of course, shave her bid too much. This
is the great fear of running a non-truthful mechanism—that
agents, recognizing that they should shave their bids, will
bid very little and the end result will be low revenue. As
we show, however, we do not necessarily need to rely on
agents being motivated only by envy to achieve solutions in
the core.

Proposition 3. If total revenues are less than the revenue-
minimal point in the (true) core, then it is a weakly dominant
strategy for some agent to increase her bid on a bundle she
is losing.

Proof. If total revenues are less than the revenue-minimal
point in the core, then some agent has an envy-reducing
bid on an envy quote they are receiving on a losing bundle.
Moreover, since envy quotes may well coincide with a quote
of the actual value she would need to pay to win the bundle,
bidding in response to such a report is a weakly dominant
strategy from a utility sense—if she captures the bundle at
the higher price she will be better off utility-wise, and if she
fails to capture the bundle she will be no worse off. �

Agent rationality provides a strong argument for our
mechanism not returning a low revenue solution. On the
other hand, if an agent shaves her bid too little, there might
not be any straightforward way to achieve a better outcome
for her. There may be a multitude of core outcomes with
higher revenue, in which agents bid more than in the bidder-
optimal solution. If an agent insufficiently shaves her bid,
the mechanism might arrive at such a state. Since that out-
come is in the core, only a global effort by a grand coalition
of agents can force an outcome where the agents pay less.

In summary, our mechanism handles agents’ mistakes in a
revenue-optimizing way. If agents bid too low, self-interest
will compel them to correct their bids. If agents bid too high,
the structure of the core can lock agents into a high-revenue
core solution that no agent can escape.

Another concern if agents do not play optimally is that, in
an iterated setting, agents will move around in the state space
of possible allocations, attempting to find advantageous out-
comes in which other agents make errors that are beneficial
to the agent that is causing the moving. One way of dealing
with this possibility is to ignore it; as we have shown, only
efficient outcomes can emerge as the fixed points of our iter-
ated mechanisms. Therefore, the only way an agent will be
able to take advantage of an inefficient outcome that yields
low revenue for the auctioneer is for some other agent to not
make an envy-reducing (and utility non-reducing) move that
is made apparent to her by her envy quotes. Another possi-
bility is to add an ascending clock to the auction, such that
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bids can only increase. This does not impact our conver-
gence result, which relies on agents increasing their bids on
bundles they are not winning.

Comparison with the ascending proxy auction
In this section, we discuss the differences between our ap-
proach and the iterative core-selecting combinatorial auction
of (Ausubel and Milgrom 2002), the ascending proxy auc-
tion (APA).

The most important difference involves bidder strategies.
The APA mandates that bidders behave in a specific way
to achieve a solution in the core, namely, that agents raise
their losing bids by small ε in each iterative round. Since
that elicitation process is slow and there is no guarantee
agents will behave this way in practice, (Ausubel and Mil-
grom 2002) suggest that agents surrender their valuations to
a proxy agent that bids in this manner on their behalf. Such
a scheme loses out on perhaps the most important part of
having an ascending auction in the first place; iterative auc-
tions can produce higher revenues by making bidders feel
more secure in their valuations (c.f. (Cramton 1998)). Fur-
thermore, even with proxy agents, the APA is a very slow
way to calculate a core solution from a set of bids (Day and
Raghavan 2007).

Essentially, what envy quotes provide is a more efficient
way of conveying price information to losing agents. As we
discuss in the next section, we can formalize this argument.
If an optimal scheme for generating envy quotes with a par-
ticular core-selecting mechanism is used, price information
is conveyed to losing bidders as efficiently as possible. In
contrast, the APA uses the least efficient scheme for con-
veying prices to losing bidders.

Additionally, our approach works with any core-selecting
combinatorial auction, while the APA was designed only for
the bidder-optimal core-selecting combinatorial auction, and
our approach does not require an ascending clock.

Computing envy quotes
In this section we introduce the concept of optimal envy
quotes and show how to compute optimal envy quotes for
two different core-selecting mechanisms.

Trivial envy quotes for any core-selecting
combinatorial auction
One simple but valid scheme for producing envy quotes is
to give an agent losing bundle S with a bid of b, the envy
quote of b. This trivially satisfies the envy quote definition.
It is also fundamentally equivalent to the APA, because us-
ing this scheme the only feedback a bidder receives on a
bundle they are losing is that they are losing the bundle at
their current bid, and that a bid of ε higher may (or may not)
win the bundle.

Recalling that envy quotes are bounded from above by
the core support c(S) (Definition 9), we have the following
definition:
Definition 12. A method for generating envy quotes is
optimal for a core-selecting combinatorial auction if it al-
ways generates the largest possible envy quotes.

It is never possible for an agent following their envy
quotes to make a bid that does not change the final outcome;
optimal envy quote methods are as efficient as possible and,
for a given set of bids, will take the fewest interaction rounds
before termination. Making envy quotes as large as possible
ensures that a bidder will never place an uncompetitive bid.
Conveying the best possible information about current prices
to bidders allows them to make the best decisions about what
bundles to bid on and how much to bid on them.

Optimal envy quotes for any core-selecting
combinatorial auction
Intrinsically, the use of a core-selecting auction implies that,
for each losing bid, there exists some threshold value (the
optimal envy quote) above which the allocation and/or pay-
ments change and below which they do not. Because of this
property, we can solve for the threshold value by treating
the core-selecting process as a black box and using binary
search. Letting v∗ represent the sum total of the accepted
bids of the current solution, we begin on the search interval
[0, v∗+ε], and query as to whether the midpoint of the inter-
val changes the current solution. If so, the midpoint becomes
the new upper bound, and if not, the midpoint becomes the
new lower bound. Each time this process is run, we pro-
duce an additional bit of accuracy with respect to finding the
optimal envy quote.

Because it treats the core-selecting mechanism as a black
box, this process can work with any core-selecting combina-
torial auction, but is likely to be very slow, because it must
be run multiple times for each losing bid. In the following
sections, we develop techniques to solve for optimal envy
quotes in a single step for two different core-selecting com-
binatorial auctions.

Optimal envy quotes for bidder-optimal
core-selecting combinatorial auctions
We now describe a method for generating optimal envy
quotes in the context of the recent core-selecting combi-
natorial auction of (Day and Raghavan 2007). The con-
cept of selecting a bidder-optimal point in the core (a
core solution that minimizes total payments) has also been
featured in more recent papers (Day and Cramton 2008;
Erdil and Klemperer 2009), which discuss different ways of
selecting which bidder-optimal point in the core to return.
To construct an optimal envy quote, we use a MIP to find
the smallest price for that bundle that could be used to con-
struct a blocking coalition. To compute an envy quote for
agent i for bundle S, we do the following.

1. Add each winners’ accepted bid constrained by the price
paid by the agent into the MIP. For example, if an agent
wins the bundle ABC at a price of 20, we add the con-
straint πA + πB + πC = 20.

2. For each bidder j 6= i, calculate j’s surplus, subtract it
from j’s losing bids, and add those revised losing bids as
constraints into the MIP using the sum of item prices. To
illustrate this, imagine a winning agent with surplus 3 that
has a losing bid for the bundle AB for a price of 10. This
would be added as πA + πB ≥ 10− 3.
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3. Add all of i’s losing bids as constraints, without subtract-
ing i’s surplus. For example, if i has a losing bid on AB
for a price of 5, then we add the constraint πA + πB ≥ 5.

4. For each agent, link binary variables corresponding to
each of their losing bids with an SOS1 constraint, so that
any blocking coalition of bids involves at most one bid
from each agent. This ensures that none of the constraints
(from Step 2 or Step 3) cut into the core.

5. The objective of the MIP is to calculate the lowest bundle
price (as sum of item prices) for S. For instance, consider
bundle AB. Our objective function is minπA +πB . This
is equivalent to designating the envy quote for a bundle
along a hyperplane normal to the items in the bundle, and
is therefore more flexible than imposing only item prices.
The solution to the objective, the minimum bundle price,

is given to the agent as an envy quote for their losing bid.
Proposition 4. The method described by this section is op-
timal for the bidder-optimal core-selecting combinatorial
auction.

Proof. Suppose our method produces an envy quote for a
bundle S of p. We will show that a bid of p+ ε will change
the mechanism’s allocation-payment pair.

The set of constraints in the MIP that we use to generate
the envy quote define the set of all possible blocking coali-
tions involving an agent’s bids exactly. Since the combina-
torial auction selects the bidder-optimal point in the core,
this implies the addition of a hyperplane corresponding to
the items of S,

∑
xi∈S πi = p+ ε cuts in to the core, which

implies the existence of a blocking coalition at the current
set of prices based on that bid. Because the mechanism se-
lects the bidder-optimal point in the core, either the bid of
p + ε would be part of a new winning coalition or it would
change the prices charged by the mechanism. �

One can make this MIP into an anytime algorithm by first
adding the agent’s losing bids as constraints, and then adding
the constraints from the other agents into the MIP incre-
mentally. After the optimization of every such addition, we
have a valid envy quote, and those quotes increase as addi-
tional constraints are added. However, terminating the opti-
mization prematurely will obviously not yield optimal envy
quotes in every case.

Figure 1 provides graphical intuition for our method for
generating envy quotes, and why it is superior to the simple
universal method. In the figure, the bidder is receiving an
envy quote on the bundle {x, y}, for which he is bidding
3. The actual core, defined by the losing bids of two other
bidders, is supported by x = 2, y = 3. The trivial envy
quoting mechanism would return the bidder’s losing bid of
3, whereas the optimal quoting mechanism described in this
section returns 5, the smallest value at which the hyperplane
normal to (1, 1) intersects the darker polytope.

Optimal envy quotes for the first-price
combinatorial auction
We can also develop optimal envy-quoting methods for
other core-selecting mechanisms. As an extreme (bidder-
pessimal) example, consider a first-price mechanism, which

Figure 1: A simple graphical example of how smarter
envy quotes can be more informative to bidders. Here, a
bidder has losing bids of {x = 1, y = 1, x + y = 3}, while
the actual core is supported by bids of {x = 2, y = 3}. The
naı̈ve envy quote formulation of returning only an agent’s
failed bids would return 3 for the bundle x, y, while our more
sophisticated core generating MIP would return 5, as indi-
cated by the line x+ y = 5 intersecting the darker polytope.

charges winning bidders their bids, and selects the allocation
that will maximize revenue. It is trivially core-selecting as
long as no bidder bids above their true valuation for an item.

For this setting, the optimal envy quote scheme is to pro-
duce the quote for each losing bid, that is, the threshold value
at which the agent would go from losing to winning the bun-
dle in question. Any lower envy quote is not optimal, be-
cause an agent could bid higher without altering the mecha-
nism’s allocation-payment pair, and no envy quote can ever
be higher than a quote. Solving for these quotes is NP-hard
(Sandholm 2002).

Conclusion
The recently developed manipulable core-selecting combi-
natorial auction seems to be a promising future path for re-
search from both a theoretical and practical standpoint. The-
oretically, because it enforces a core outcome, it avoids the
many pathologies of VCG, including terrible worst-case rev-
enue properties and shill-bidding manipulations. Practically,
core-selecting auctions are manipulable, closely matching
the mechanisms seen in practice, as well as being efficient,
which squares well with our intuitive sense of what an auc-
tion’s outcome should be. However, previous models of the
core-selecting combinatorial auction have either been too
slow to clear practical-sized problems, or have made unreal-
istic assumptions about the amount of information available
to bidders as a prerequisite to achieving these desirable re-
sults.

In this work, we expanded upon previous advances by de-
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signing an iterated version of the core-selecting combina-
torial auction. We began by showing that when agents as
a group follow envy-reducing strategies, the resulting fixed
point is in the core of true values. However, we demon-
strated that agents acting individually to reduce their envy
would be insufficient to arrive at a fixed point in the core,
because of the combinatorial nature of the auction.

To remedy this problem, we developed a system of
envy quotes, where agents are given estimates on their los-
ing bids of the prices at which those bundles are being won.
We proved a convergence result, showing that when agents
act to reduce their envy of their envy quotes, we achieve an
outcome in the core of true values. Moreover, we discussed
some of the safeguards the mechanism has for when agents
do not play optimally within the mechanism. Our format
makes it possible for agents to pay too much for their allo-
cations, but that the mechanism cannot reach an allocation-
payment pair where agents pay too little without some agent
having a clear potentially utility-increasing (and not merely
envy-reducing) bid.

Finally, we developed three different techniques for gen-
erating envy quotes. The trivial method of returning a losing
agent’s bid is valid, but not optimal, for any core-selecting
combinatorial auction. We discussed the links between
this inefficient method and the ascending proxy auction of
(Ausubel and Milgrom 2002). We generated an optimal
method for the bidder-optimal core-selecting combinatorial
auction, and another optimal method for the bidder-pessimal
core-selecting (first-price) combinatorial auction. Equipped
with an optimal method for generating envy quotes, our
iterative core-selecting combinatorial auction ensures, un-
der very loose behavioral restrictions, a core solution in the
fewest possible iterative rounds.
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