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Abstract

This paper investigates search techniques for multi-agent set-
tings in which the most suitable agent, according to given
criteria, needs to be found. In particular, it considers the case
where the searching agent incurs a cost for learning the value
of an agent and the goal is to minimize the expected overall
cost of search by iteratively increasing the extent of search.
This kind of search is applicable to various domains, includ-
ing auctions, first responders, and sensor networks. Using an
innovative transformation of the extents-based sequence to a
probability-based one, the optimal sequence is proved to con-
sist of either a single search iteration or an infinite sequence
of increasing search extents. This leads to a simplified char-
acterization of the the optimal search sequence from which it
can be derived. This method is also highly useful for legacy
economic-search applications, where all agents are consid-
ered suitable candidates and the goal is to optimize the search
process as a whole. The effectiveness of the method for both
best-valued search and economic search is demonstrated nu-
merically using a synthetic environment.

1 Introduction
Consider a government agency seeking the cheapest con-
tractor to provide a service. It can issue a call for bids and
select the lowest bidder. Depending on the costs associated
with this process, this may be inefficient from the social wel-
fare perspective (i.e., minimize the overall expense of all
parties involved). For example, if there are costs for prepar-
ing, submitting, and processing the bids, then requesting all
bids may be more costly than necessary. Instead, the agency
can publish a threshold on the maximum allowable bid (e.g.,
a reservation price) and request that contractors submit their
bids only if they are below this threshold, potentially reduc-
ing the number of bids and their associated costs. However,
it must repeat this process with greater reservation prices
until at least one bid is received, incurring additional costs
for reissuing the call for bids. In many cases, the right se-
quence of reservation prices results in an overall saving in
cost, thereby improving social welfare.

This paper provides a thorough analysis of the problem
of deriving the optimal threshold-based search sequence in
settings similar to the one above. In the general model, an
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agent needs to find the agent with the best value (either the
lowest or the highest, depending on the application) in its
environment. The agent is acquainted with the distribution
of agents’ values; however, the process of learning the value
of any specific agent incurs a cost (Kephart and Greenwald
2002; Choi and Liu 2000). To guarantee search complete-
ness, all agents must be probed, but not all agents must
be compelled to reply. As part of the probing, the agent
can publish a threshold, compelling a response only from
agents whose values are above or below it, and repeat the
process until at least one agent responds. Since the pro-
cess of probing all agents is also a costly act, the optimal
sequence should trade off the expected decrease in the num-
ber of replying agents with the increase in the number of
search rounds.

There are many multi-agent systems (MAS) that can ben-
efit from such a search technique, here called increasing
threshold search. For example, a volunteer ambulance corps
dispatcher needs to find the closest volunteer to an emer-
gency. She must page the volunteers and request that they
call back to learn their locations. Instead of requesting that
all volunteers call back, she can request that only volun-
teers within a certain distance of the emergency call back,
and repeat the request with greater distances until at least
one volunteer calls. Similarly, in a data-centric sensor net-
work (Intanagonwiwat et al. 2003), the sink may only need
the highest sensor reading. Requesting that all sensors send
their data significantly depletes the sensors’ power supply.
Rather, the sink can request only readings above a certain
threshold and iteratively decrease the threshold until at least
one reply is received.

Search by iteratively increasing the search extent is a com-
mon approach to minimizing search costs, such as depth-
first iterative-deepening search in artificial intelligence (Korf
1985) and expanding ring search in networking (Chang
and Liu 2004). Given a cost structure for the individual
search rounds, the overall cost of this type of search de-
pends on the sequence of search extents applied. Most re-
search in optimizing such sequences is in expanding ring
search as it applies to networks (Hassan and Jha 2004;
Chang and Liu 2004; Cheng and Heinzelman 2005). Al-
though this problem has been extensively analyzed, the re-
sults are not applicable to the problem analyzed in this paper.
In the expanding ring search problem, the cost of each round
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Application Reservation values Fixed cost (α) Variable cost (β(i))
Finding the cheapest
contractor

Bidding scale values Cost of issuing a call for bids Resources to prepare and evalu-
ate each bid

Emergency services Distance from event Time to page volunteers Time to answer each call
Sensor network dB scale values Energy to broadcast the request Energy to transmit response

Table 1: Mapping of sample applications to the increasing threshold search model

increases as the search extent increases. In the increasing
threshold search problem, the cost of each search round is
fixed (the cost of probing all agents), while the last round in-
curs an additional variable cost (which increases as the num-
ber of agents that comply with the threshold increases).

In the next two sections, we formally introduce and ana-
lyze the optimal increasing threshold search for the class of
environments described above. One important result of the
analysis is that the optimal search sequence is either a sin-
gle or an infinite number of reservation values characterized
by a common probabilistic property, unlike in expanding
ring-like domains, where the optimal strategy is finite due
to the discrete nature of the problem (Chang and Liu 2004).
This result facilitates the extraction of a generic distribution-
independent solution, which can be then mapped to the ac-
tual sequence of thresholds for specific distributions of val-
ues using a simple transformation. The latter result is of
great importance, since dynamic programming and other
methodologies used in expanding ring search (Chang and
Liu 2004; Cheng and Heinzelman 2005) are inapplicable in
our case due to the infinite nature of the strategy.

The remaining sections address other important aspects of
the problem. In Section 4, we illustrate the benefit of using
the optimal strategy in a synthetic setting with different val-
ues of the problem parameters. The results are compared to
those of three adaptations of commonly used expanding ring
strategies to the problem considered in this paper. In Section
5, we address the usefulness of increasing threshold search
in settings where the searcher is not necessarily constrained
to finding the best-valued agent, but rather attempts to opti-
mize a function that captures the cost of the overall process.
This latter model is the essence of economic search (McMil-
lan and Rothschild 1994; Lippman and McCall 1976). We
develop the optimal sequential economic sampling strategy
for our case and demonstrate, in synthetic settings, how in-
creasing threshold search can lead to a better overall perfor-
mance from the economic search point of view.

2 Model Formulation
We consider an agent searching in an environment where N
other agents, applicable to its search, can be found. Each
of the N agents is characterized by its value to the searcher.
As in most search-related models, the values are assumed to
be randomly drawn from a continuous distribution described
by a PDF f(x) and a CDF F (x), defined over the interval
[xmin, xmax] (Chang and Liu 2004). The searcher agent is
assumed to be ignorant of the value associated with each of
the N agents, but acquainted with the overall utility distri-
bution function, which is assumed to remain constant over
time (McMillan and Rothschild 1994). The searcher is in-
terested in finding the agent associated with the “best” value,

which, depending on the application, is either the minimum
or the maximum value. For simplicity of exposition, we as-
sume that the best-valued agent is the one associated with
the minimum value.

Learning the actual value of an agent incurs some cost.
In its most general form, the cost of simultaneously learn-
ing the values of i other agents is β(i) (β(i) is strictly in-
creasing) (Benhabib and Bull 1983; Morgan and Manning
1985). In order to refine the population of agents whose
values it plans to learn, the searcher can publish a maxi-
mum threshold r for the agents’ value, denoted a reserva-
tion value, requesting to communicate only with agents that
comply with that threshold. If at least one agent complies
with r, the search process terminates. Otherwise, the agent
sets a new reservation value r′ > r and repeats the pro-
cess. This continues until a non-empty set is found, out
of which the agent associated with the minimum value is
chosen. A strategy S is therefore a sequence [r1, . . . , rm]
(xmin < ri < ri+1 ≤ xmax,∀1 ≤ i < m), where ri de-
notes the reservation value to be used in the ith search round.

The process of initiating a new search round and com-
municating the next reservation value to the agents is also
associated with a fixed cost α (e.g., the cost of issuing a new
call for bids or the cost of broadcasting a message). The
overall cost of a search round is thus α + β(j), where j is
the number of agents that comply with ri. The expected ac-
cumulated cost of finding the best-valued agent when using
strategy S is denoted V (S). The searcher’s goal is therefore
to derive a strategy S∗ that minimizes V (S).

Table 1 maps the problems described in the introduction
to the general model introduced in this section.

3 Analysis
Consider a searcher agent using a strategy S =
[r1, . . . , rm = xmax]. (In order to guarantee search com-
pleteness when using a finite sequence, the following should
hold: rm = xmax.) If the agent has to start the ith

search round, then there is necessarily no agent found be-
low ri−1. The a priori probability of such a scenario is
(1−F (ri−1))N . Furthermore, upon reaching the ith round,
the searcher agent can update its beliefs concerning the PDF
of the values of the N agents, as it knows that these are nec-
essarily in the interval (ri−1,rmax]. The PDF of the agents’
values in round i, denoted fi(x) (1 ≤ i ≤ m), can thus be
calculated as (xmin ≤ x ≤ xmax):

fi(x) =

8><>:
f(x)

1−F (ri−1)
x > ri−1 ∧ i > 1

0 x ≤ ri−1 ∧ i > 1

f(x) i = 1

(1)

Similarly, the CDF of any of the agents’ values in round i,
denoted Fi(x) (1 ≤ i ≤ m), can be calculated as (xmin ≤
x ≤ xmax):
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Fi(x) =

8><>:
F (x)−F (ri−1)

1−F (ri−1)
x > ri−1 ∧ i > 1

0 x < ri−1 ∧ i > 1

F (x) i = 1

(2)

The expected cost of the ith round is thus:

α+

NX
j=1

β(j)

 
N

j

!
Fi(ri)

j(1− Fi(ri))
N−j (3)

as it takes into account the cost of initiating the new search
round and the learning costs for each possible number of
agent values j (1 ≤ j ≤ N). The expected cost of using
strategy S is the sum of the expected cost of each of the m
search rounds weighted by the probability of reaching that
round:

V(S)=

mX
i=1

“
α+

NX
j=1

β(j)

 
N

j

!
Fi(ri)

j(1−Fi(ri))
N−j

”
(1−F (ri−1))

N

(4)
where r0 ≡ xmin. The probability of starting the ith search
round can alternatively be formulated as the product of the
probability that no agent was found in each of the i− 1 pre-
vious rounds, expressed as

∏i−1
j=1(1− Fj(rj))N . Therefore,

(4) transforms into:

V (S)=

mX
i=1

"
α+

NX
j=1

β(j)

 
N

j

!
Fi(ri)

j(1− Fi(ri))
N−j

#
·

i−1Y
j=1

(1− Fj(rj))
N (5)

For the specific case in which the reservation values are
chosen from a finite set {x1, x2, ..., xm}, the optimal strat-
egy can be derived with the following dynamic program-
ming formulation:

C(xm) = 0

C(xi) = mini+1≤l≤m


α+ C(xl)

“
1−F (xl)
1−F (xi)

”N

+
PN

j=1 β(j)
`

N
j

´
(F (xl)−F (xi)

1−F (xi)
)j
“

1−F (xl)
1−F (xi)

”N−j
ff (6)

where C(xi) is the cost of continuing the search if a search
up to value xi failed to yield any bids.

For the general case in which the interval [xmin, xmax]
is continuous and the process is not constrained by a finite
number of rounds, the optimal search strategy must be de-
rived with different methodology since, as we prove in The-
orem 1, the optimal search sequence is either a single search
round in which the value of all agents is learned or an infinite
sequence of reservation values.
Theorem 1. The optimal sequence of reservation values
is either [r1 = xmax] or the infinite sequence [r1, r2, . . .],
xmin < ri < xmax,∀i > 0, where Fi(ri) = Fj(rj) = P ,
for some P and ∀i, j > 0.

Proof. Assume the finite sequence S1 = [r1, . . . , rm] is
the optimal strategy. We use S2 = [r2, . . . , rm] to de-
note the optimal strategy to be used if no agent is found
in the first search round and denote its expected cost from
that point on by V (S2). Using S2, we construct strategy
S′1 = [r′2, . . . , r

′
m] to be applied from the first round, where

F1(r′i) = F2(ri) ∀1 < i ≤ m. The new strategy S′1 has

an expected cost V (S′1), which equals V (S2) according to
(5). Since S1 is the optimal strategy, V (S1) ≤ V (S′1).
Now consider a new strategy S′2 = [r′′1 , . . . , r

′′
m] to be ap-

plied from the second round on, where F2(r′′i ) = F1(ri)
∀1 ≤ i ≤ m. We denote the expected cost of S′2
from that point on by V (S′2). According to (5), we ob-
tain V (S′2) = V (S1). Since S2 is the optimal strategy
from the second round, then V (S2) ≤ V (S′2), resulting in
V (S1) ≤ V (S′1) = V (S2) ≤ V (S′2) = V (S1), which can
hold only if V (S2) = V (S1). The same logic can be applied
to any search round j ≤ m, resulting in V (Sj) = V (S1).
In particular, V (S1) = V (Sm). However, the cost on-
wards when reaching the last (mth) round, V (Sm), equals
α + β(N) since rm = xmax; thus, we necessarily find all
agents. Therefore, we obtain V (S1) = α + β(N), which
is equivalent to S1 = [r1 = xmax]. Any optimal strategy
that has an expected cost less than α+β(N) must consist of
an infinite sequence and satisfy Fi(ri) = Fi+1(ri+1) = P ,
∀i > 0 and some P .

The immediate implication of Theorem 1 is that the op-
timal search strategy can be expressed as a single value
0 < P ≤ 1, denoted the reservation probability. This is
the key to deriving the optimal sequence of reservation val-
ues. As outlined below, the searcher only needs to derive
P and then set the reservation value ri in each round i such
that Fi(ri) = P . Additionally, the derivation of P is distri-
bution independent, such that the same value can be used for
problem instances that only differ by their CDF.

First we show how to derive P . Since the optimal se-
quence is infinite and the expected cost from each round on-
wards is stationary, the expected cost of using P is:

V (P ) =α+

NX
j=1

 
β(j)

 
N

j

!
P j(1−P )N−j

!
+(1−P )NV (P )

(7)
Consequently:

V (P ) =
α+

PN
j=1(β(j)

`
N
j

´
P j(1− P )N−j)

1− (1− P )N
(8)

The value P = P ∗ that minimizes V (P ) according to (8)
is the optimal reservation probability. This can be solved
using numerical approximation. Then, based on (2), the
corresponding reservation value to be used in each round
can be calculated by solving for ri in the equation P =
F (ri)−F (ri−1)

1−F (ri−1)
, i.e.,

ri = F−1(P (1− F (ri−1)) + F (ri−1)) (9)

We consider the special case where the cost of learning the
values of j agents is linear in j, i.e., β(j) = cj. This setting
is highly applicable as, in many cases, agents are evaluated
individually and independent of one another. Substituting
β(j) = cj, the expression

∑N
j=1(j

(
N
j

)
P j(1 − P )N−j) in

the numerator of (8) is the mean of a binomially distributed
random variable, which equals NP . Therefore,

V (P ) =
α+ cNP

1− (1− P )N
(10)

This result enables the proof of Proposition 1, which high-
lights the nature of the trade-off by which P ∗ is set.
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Figure 1: Performance of the proposed method compared to expanding ring search

Proposition 1. When β(j) is linear in j, the reservation
probability that minimizes V (P ), P = P ∗, satisfies c =
(1− P ∗)N−1V (P ∗).

Proof. Differentiating (10) with respect to P and setting it
to zero obtains:

cN(1− (1− P )N )−N(1− P )N−1(α+ cNP )

(1− (1− P )N )2
= 0 (11)

Notice that V (P )(1− (1−P )N ) = α+ cNP according to
(10). Substituting the latter expression in (11), we observe
that the value P ∗ which satisfies the equation is given by
cN(1−(1−P )N )−N(1−P )N−1V (P )(1−(1−P )N ) = 0,
which turns into c = (1− P )N−1V (P ).

The explanation of Proposition 1 requires understanding
the trade-off associated with any increase in P . By in-
creasing P , we increase the chance of finding each of the
agents. Each agent found due to the increased chance will
incur a cost c. On the benefit side, if the agent found due
to the increase is the only agent found during that round,
then the increase has actually saved us the expected cost as-
sociated with continuing the search V (P ). The probability
that the latter case holds is (1− P )N−1 (i.e., when all other
agents are characterized with a value above Fi(P )). Oth-
erwise, the search just ends. Since the incurred cost c is
fixed, and the expected benefit (1− P )N−1V (P ) decreases
as P increases, the optimal P value is the one for which
(1− P )N−1V (P ) = c, i.e., when the additional benefit due
to the potential saving is offset by the cost incurred by find-
ing that agent.

4 Comparative Illustration
In this section, we study the benefit of using the opti-
mal strategy under various settings. We show how the ex-
pected cost changes with N for different combinations of
α and β. Note that F (x) does not affect the expected
cost, as evident in (8). We also compare the expected
cost of the optimal strategy to that of other strategies to
understand the importance of choosing the right strategy.
Since this problem has not been well addressed in the lit-
erature, we adapt to our problem three strategies for expand-
ing ring search that are well studied in networking litera-
ture (Cheng and Heinzelman 2005; Hassan and Jha 2004;
Chang and Liu 2004). One reason for choosing expanding

ring-based strategies is that, when confronted with a new
problem, one might naturally turn to a related problem for
solutions. In the following paragraphs, we describe the three
strategies and then compare their performance in our con-
text.

Two-Step Rule
The optimal two-step expanding ring strategy S = [r1, r2 =
xmax] in networking was analyzed under specific assump-
tions about the network structure (Cheng and Heinzelman
2005). The optimal strategy can be derived with (4).

Fixed-Step Rule
A common design of a multi-round expanding ring search
strategy is to use a fixed increment between search extents.
In the networking literature, optimal fixed-step strategies for
expanding ring search are usually derived empirically (Has-
san and Jha 2004). For our purposes, we algorithmically
derive the optimal m-round strategy S = [r1, . . . , rm], in
which ri = xmin+ ixmax−xmin

m ,∀1≤i≤m (i.e., the one which
minimizes (4)).

California Split Rule
According to the California Split rule (Baryshnikov et al.
2004), the search extent is doubled each round. This strategy
has the best worst-case cost in an expanding ring search. A
better solution chooses values randomly from the interval
((
√

2 + 1)i−1, (
√

2 + 1)i] in each round i (Chang and Liu
2004). We adapt this method to our problem such that ri =
xmin+r(

√
2+1)i−1 and rm = xmax, where r is an arbitrary

value. Here we use the r value that minimizes the overall
expected cost.

Results
The expected costs of the strategies were calculated under
various synthetic settings. Figure 1 depicts the performance
(measured as the expected cost of search) of the three ex-
panding ring-based methods and the increasing threshold
search as a function of the number of agents N in the envi-
ronment. The performance is evaluated in three settings that
differ in their search costs. The distribution of values used
in all three settings is Gaussian, with µ = 50 and σ = 12.5,
normalized over the interval (0,100). The costs of search
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used in the different settings are: (A) α = 1, β(i) = i; (B)
α = 1, β(i) = (i)2; and (C) α = 100, β(i) = i. As ex-
pected, according to Theorem 1, the performance of the in-
creasing threshold search generally dominates the methods
inspired by expanding ring search. Also, as expected, none
of the expanding ring-based methods generally dominates
any of the other methods. Similarly, the differences in per-
formance between the increasing threshold search technique
and the expanding ring search techniques are setting depen-
dent. In some settings, an expanding ring-based method can
result in performance close to the one achieved with increas-
ing threshold search (e.g., two-step technique in setting (C))
while it can perform significantly worse in others (e.g., in
settings (B) and (A)). Finally, we observe that the number
of agents in the environment is a significant factor affecting
performance of all methods. Nevertheless, the effect of this
factor on the performance of the increasing threshold search
is significantly smaller than on the performance of the ex-
panding ring search methods.

5 Implications for Economic Search
Economic search is a widely studied model in the search
literature. Unlike in the “best-valued” agent search, in eco-
nomic search, the searcher is not constrained to finding the
best agent. Instead, it attempts to minimize the expected
overall cost of the process, defined as the weighted sum of
the costs incurred due to the search itself and the lowest
value found (assuming costs are additive and can be mapped
to the agents’ value scale) ((McMillan and Rothschild 1994;
Lippman and McCall 1976), and references therein). For ex-
ample, consider a buyer agent that is interested in purchas-
ing a product, and that the process of communicating with
seller agents to learn their posted prices incurs a cost. Here,
the buyer agent can purchase the product from any of the
seller agents. Thus, the optimal search strategy derives from
the trade-off between the marginal saving of each additional
price obtained and the cost of obtaining it.

While economic-search models are inapplicable to our
problem, as they do not guarantee finding the best-valued
agent, the analysis supplied in this paper is an important
contribution to economic search theory. This is because, as
we illustrate in the following paragraphs, increasing thresh-
old search, whenever applicable, can result in an overall re-
duced cost even in comparison to the optimal economic-
search strategy. This result is interesting, since increasing
threshold search is by definition constrained by the need to
find the best-valued agent.

The general economic search model is a multi-stage
search in which the number of agents sampled may vary in
each stage (Benhabib and Bull 1983; Morgan and Manning
1985). It puts a constraint on the decision horizon, i.e., the
number of search rounds allowed, but not on the number of
agents that may be evaluated. Therefore, in order to demon-
strate the usefulness of increasing threshold search within
the economic search context, we first develop the optimal
economic search strategy for the case where there is a lim-
ited number of agents available to be explored.

In the absence of any other information related to the other
agents, the optimal economic search strategy is to randomly

Figure 2: Expected overall cost of economic and increasing
threshold search
sample a varying number of other agents in each search
round and to decide whether to resume the search based
on the best value found so far (Benhabib and Bull 1983;
Morgan and Manning 1985). The cost α can be discarded
in this case, as the searcher does not need to communicate
(publish) its reservation value to the other agents in the en-
vironment. The economic search strategy, S : (x, k) → n,
(0 < n ≤ k), is the mapping from the pair (x, k) to the
number of other agents that should be sampled in the next
search round, where x is the lowest value among the values
of the agents sampled so far and k is the number of remain-
ing non-sampled agents (k ≤ N). Notice that S(x, k) = 0 if
the agent decides to terminate its search, i.e., when satisfied
with x.

Given the pair (x, k), we denote the optimal search strat-
egy by S∗(x, k) and the expected overall cost onwards when
using S∗(x, k) by V ∗(x, k). V ∗(x, k) can be calculated us-
ing the following recursive equation:

V ∗(x, k) = β(S∗(x, k))+

Z x

y=xmin

V ∗(y, k−S∗(x, k))fS∗(x,k)(y)dy

+ (1− FS∗(x,k)(x))V (x, k − S∗(x, k)) (12)

where f j(y) and F j(y) are the PDF and CDF of the ex-
pected minimum of a sample of size j, respectively.

Notice that in the case where the cost of learning the value
of j agents is linear in j, the searcher does not benefit from
learning the value of more than one agent in any round. The
optimal economic search strategy is thus to learn the value
of a single agent at a time and terminate the search once the
best value found so far is below a pre-defined reservation
value. The optimal reservation value can be derived using
the solution to Pandora’s problem (Weitzman 1979). Ac-
cording to this strategy, a reservation value r is calculated
for each agent based on the distribution of its value and the
cost of learning its value, c. Since all agents share the same
distribution of values, they are all assigned the same reser-
vation value, which can be extracted from:

r = c+

Z r

y=xmin

yf(y)dy + r

Z xmax

y=r

f(y)dy (13)

Substituting
∫ xmax

y=r
f(y) = 1− F (r) and using integration

by parts, we obtain:
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c =

Z r

y=xmin

F (y)dy (14)

For comparative illustration purposes, we use this latter
economic search model in a synthetic environment where
β(i) = 0.01 ∗ i and agent values are uniformly distributed
over the interval (0,1). Substituting F (x) = x in (14), we
determine that the optimal reservation value to be used in
this case is r =

√
2c. For c = 0.01, the optimal reserva-

tion value is r = 0.14. Figure 2 depicts the performance
(measured as overall cost) of the optimal economic search
and increasing threshold search in our synthetic environment
for different values of the ratio α/β(1) and the number of
agents, N . As observed from Figure 2, whenever the ratio
between the fixed cost of each search iteration and the cost of
evaluating an agent is sufficiently low, increasing threshold
search results in a lower expected overall cost than economic
search. This can be intuitively explained as the less it costs
to set the limit for distinguishing the agents to be evaluated
(in comparison to the cost of evaluating each agent), finer
grained increments are used, and, consequently, the better is
the result when using our method. Additionally, we observe
that the greater the number of agents, the larger the minimal
ratio that needs to hold in order for our method to dominate
the economic search sampling technique. Here, the intuitive
explanation is that, as the number of agents in the system
increases, the expected number of search iterations until the
best-valued agent is found decreases when using increasing
threshold search.

6 Discussion and Conclusions
As illustrated throughout the paper, increasing threshold
search is applicable to a wide variety of MAS settings, yet it
has not received adequate attention in the literature. Most re-
search of techniques utilizing increasing search extents has
focused on other models. As discussed in Section 4, the
strategies most studied in those domains are very different
from the optimal strategy to our problem, both in struc-
ture and quality of the solution obtained. By correlating
the reservation values to the respective probabilities in our
proof of Theorem 1, we reveal that the essence of the opti-
mal solution is captured by a single reservation probability.
Upon calculating the optimal reservation probability using
the equations supplied, the searcher can easily derive the op-
timal sequence of search extents.

One important result is that the optimal reservation proba-
bility and corresponding expected cost of search are distribu-
tion independent. This substantially simplifies calculations.
Furthermore, the solution to one problem instance can be
used to derive the optimal search sequence for any other in-
stance that only differs in its distribution of values by merely
applying a simple transformation.

As evident in Section 5, increasing threshold search
can also be useful in economic search settings where the
searcher is not constrained to finding the best-valued agent.
This has many implications in the evolving research area
known also as search theory (McMillan and Rothschild
1994). Among the various possible extensions to existing
economic search models are threshold-based enhancements

to sequential search models with finite decision horizon and
an integrated preliminary increasing threshold search for re-
fining the population on which sequential search takes place.

Other possible extensions of this work include competi-
tion and cooperation models for two or more searchers when
operating in settings where search is costly and one or more
of them is capable of using increasing threshold search.
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