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Abstract

In distributed work systems, individual users perform
work for other users. A significant challenge in these
systems is to provide proper incentives for users to
contribute as much work as they consume, even when
monitoring is not possible. We formalize the problem
of designing incentive-compatible accounting mecha-
nisms that measure the net contributions of users, de-
spite relying on voluntary reports. We introduce the
Drop-Edge Mechanism that removes any incentive for
a user to manipulate via misreports about work con-
tributed or consumed. We prove that Drop-Edge pro-
vides a good approximation to a user’s net contribution,
and is accurate in the limit as the number of users grows.
We demonstrate very good welfare properties in simula-
tion compared to an existing, manipulable mechanism.
In closing, we discuss our ongoing work, including a
real-world implementation and evaluation of the Drop-
Edge Mechanism in a BitTorrent client.

1 Introduction

Distributed work systems arise in many places where indi-
vidual users perform work for other users, often called peer
production. For example, users of a peer-to-peer (P2P) file-
sharing network share videos, music or software with each
other. Amazon Mechanical Turk and other “crowd sourc-
ing” applications suggest an explosion of interest in new
paradigms for economic production. Within AI, distributed
work systems contribute to the agenda on multi-agent re-
source allocation, enhancing our understanding of architec-
tures to coordinate artificial agents.

Of course, the total work performed by a population must
equal the total work consumed. Moreover, while some de-
gree of free-riding may be acceptable (e.g., if some users
are altruistic while work is extremely costly for others), it is
generally accepted that the long-term viability of work sys-
tems that operate without the use of monetary transfers must
rely on roughly balanced work contributions. Often time this
is achieved by seeking to enforce temporally-local balance,
e.g., via fair exchange protocols such as BitTorrent. Yet, this
“local balance” clearly introduces a large inefficiency– users
are limited to consuming work at a rate at which they can
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themselves produce work, must be able to simultaneously
consume and produce work, and cannot perform work and
store credits for future consumption (Piatek et al. 2008).1

The problem of designing accounting mechanisms is mo-
tivated by this need to tally work contributed and consumed
in order to improve system efficiency by temporally decou-
pling these activities. The particular challenge that we ad-
dress here occurs when there is no ability for a third party to
monitor the activities, and instead tallies rely on voluntary
reports by the same users that may seek to free-ride. Thus,
an accounting system must be robust to manipulations, be-
cause users might overstate the amount of work contributed,
or understate the amount of work consumed.

Accounting vs. Reputation Mechanisms. The problem of
designing an incentive-compatible accounting mechanism
shares some features with work on trust/reputation mecha-
nisms (Friedman, Resnick, and Sami 2007). However, there
are significant differences which make reputation and ac-
counting mechanisms incomparable. First, and somewhat
informally, the essence of accurate reputation aggregation
is the operation of averaging whereas the essence of accu-
rate accounting is the operation of addition. In a reputation
system like eBay, individual users provide feedback about
each other, and the individual feedback reports of two dif-
ferent agents regarding a third agent could be very different.
The task of the reputation system is to aggregate multiple
reports into one overall reputation score; in a sense, “aver-
aging” over all reports. In contrast, in distributed work sys-
tems, multiple reports about work consumed or performed
by an agent simply need to be added together, to eventually
determine the overall net contributions of that agent.

Second, in distributed work systems, every positive report
by A about his interaction with B, i.e., B performed work
for A, is simultaneously a negative report about A, i.e., A re-
ceived work from B. This fundamental tension is not present
in reputation mechanisms where a good report by A about
B does not reflect badly on A. Third, mechanisms that are
sybilproof in traditional reputation systems are not necessar-
ily sybilproof in distributed work systems.

1(Pouwelse et al. 2005) found that more than 80% of BitTorrent
users go offline immediately once they have finished downloading.
Accounting mechanisms would solve this problem by giving users
an incentive to share even after they have finished downloading.
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Overview of Results. We present what we believe to be
the first formal model for the design of incentive-compatible
accounting mechanisms for distributed work systems. We
suggest a simple misreport attack on BarterCast, an existing
accounting mechanism that is already implemented in the
BitTorrent client Tribler (Meulpolder et al. 2009), and intro-
duce the Drop-Edge Mechanism, a new mechanism that is
robust to misreports. We show analytically that Drop-Edge
provides a good approximation to a user’s net contribution,
and is accurate in the limit as the number of users grows.
Furthermore, our simulation results suggest that the effect
of misreports in BarterCast can significantly reduce social
welfare, while Drop-Edge achieves much better efficiency.

Related Work. Our work is motivated by Barter-
Cast (Meulpolder et al. 2009), a decentralized accounting
mechanism that is effective in distinguishing between coop-
erative agents and free-riders. However, the authors do not
analyze the attacks presented here in detail. (Piatek et al.
2008) also study decentralized accounting and find empiri-
cally that most users of P2P file-sharing networks are con-
nected via a one hop link in the connection graph. They pro-
pose to use well-connected intermediaries to broker infor-
mation, but without providing proper incentives to the inter-
mediaries to behave truthfully. Feldman et al. (2004) study
the challenges in providing robust incentives in fully decen-
tralized P2P networks, including potential misreport attacks.
However, they do not propose a misreport-proof mechanism.
Interestingly, our mechanism shares some similarities with
a mechanism proposed by Alon et al. (2010), who con-
sider voting environments where the set of candidates co-
incides with the set of voters. However, they don’t consider
the problem of transitive trust in networks. A recent paper
by Resnick and Sami (2009) addresses this exact problem
in detail, and they show novel results about sybilproof trust
mechanisms. In their domain they do not consider shared
trust information and thus they do not have to study mis-
report attacks. An interesting, but orthogonal direction, is
provided by studies of virtual currency systems (Friedman,
Halpern, and Kash 2006). There, work provision or con-
sumption is observable and there is a trusted currency.

2 Formal Model

Consider a distributed work system of n agents each capable
of doing work for each other. All work is assumed to be
quantifiable in the same units. The work performed by all
agents is captured by a work graph:

Definition 1. (Work Graph) A work graph G = (V, E, w)
has vertices V = {1, . . . , n}, one for each agent, and di-
rected edges (i, j) ∈ E, for i, j ∈ V , corresponding to work
performed by i for j, with weight w(i, j) ∈ R≥0 denoting
the number of units of work.

In general, the true work graph is unknown to individ-
ual agents because agents only have direct information about
their own participation:

Definition 2. (Agent Information) Each agent i ∈ V keeps
a private history (wi(i, j), wi(j, i)) of its direct interactions
with other agents j ∈ V , where wi(i, j) and wi(j, i) are the
work performed for j and received from j respectively.

Figure 1: A subjective work graph from agent i’s perspec-
tive. Edges where i has direct information have only one
weight. Other edges can have two weights, corresponding to
the possibly conflicting reports of the two agents involved.

Based on its own experiences and known reports from
other agents, agent i can construct a subjective work graph

(see Figure 1). Let wj
i (j, k), wk

i (j, k) ∈ R≥0 denote the
edge weight as reported by agent j and agent k respectively.

Definition 3. (Subjective Work Graph) A subjective work
graph from agent i’s perspective, Gi = (Vi, Ei, wi), is a
set of vertices Vi ⊆ V and directed edges Ei. Each edge
(j, k) ∈ Ei for which i /∈ {j, k}, is labeled with one, or

both, of weights wj
i (j, k), wk

i (j, k) as known to i. For edges

(i, j) and (j, i) the associated weight is wi
i(i, j) = w(i, j)

and wi
i(j, i) = w(j, i) respectively.

Note that the edge weights wj
i (j, k) and wk

i (j, k) need not
be truthful reports about w(j, k). These weights may propa-
gate through a centralized mechanism, where a center shares
received reports with all agents, or a decentralized informa-
tion exchange protocol, where agents exchange information
about work performed and received bilaterally.

Periodically, an agent i can receive a work request by a
set of agents with which the agent may have rarely or never
interacted with before. This induces a choice set:

Definition 4. (Choice Set) We let Ci ⊆ V \ {i} denote the
choice set for agent i, i.e., the set of agents that are currently
interested in receiving some work from i.

We assume that an agent has no a priori bias towards as-
sisting one agent over another. The role of an accounting
mechanism is to provide an estimate of the net work con-
tributed by each agent j ∈ Ci to the system.

Definition 5. (Accounting Mechanism) An accounting
mechanism M takes as input a subjective work graph Gi,
a choice set Ci, and determines the score SM

j (Gi, Ci), for

any agent j ∈ Ci, as viewed by agent i.2

Based on the results of the accounting mechanism, the
agent then decides who to allocate work to. We use the fol-
lowing allocation method in this paper:

Definition 6. (Winner-takes-all Allocation) Given subjec-
tive work graph Gi, choice set Ci, and accounting mech-
anism M , agent i performs one unit of work for agent
j ∈ argmaxk∈Ci

SM
k (Gi, Ci), breaking ties at random.

In general, other allocation rules can be used, e.g., pro-
portional allocation, or threshold rules.

2Note that we purposefully chose to use the term “score” in-
stead of “reputation value” even though this is in contrast to prior
work by Meulpolder et al. (2009). Our goal is to clearly distinguish
between accounting and reputation mechanisms and to emphasize
that outputs of such mechanisms have very different meanings.
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(a) (b) (c) (d)

Figure 2: (a) Work graph 1 based on true reports. (b) Subjective work graph as viewed by i, including a misreport attack by j
to boost its score in BarterCast. (c) Work graph 2 based on true reports. (d) Subjective work graph 2 as viewed by i, including
a misreport attack by j to decrease k’s score and increase its own score. Dotted edges indicate misreports.

Strategic Manipulations
We adopt the model and terminology of Meulpolder et al.
(2009), and assume a population that consists of a mixture
of cooperative agents (or sharers), who always contribute
work, and lazy free-riders who intermittently shirk work.
The role of an accounting mechanism is to make it unben-
eficial to be a free-rider. We further model a subset of the
free-riding agents as strategic agents, who also try to ma-
nipulate the accounting mechanism itself through misreport
attacks, where an agent reports false information about its
work performed or consumed. The non-strategic free-riders
are called “lazy” because they try to avoid performing work,
but they are too lazy to perform any kind of manipulations.3

Definition 7. (Misreport-proof) An accounting mechanism
M is misreport-proof if, for any agent i ∈ V , any subjective
work graph Gi, any choice set Ci, any agent j ∈ Ci, for ev-
ery misreport manipulation by j, where G′

i is the subjective
work graph induced by the misreports, the following holds:

• SM
j (G′

i, Ci) ≤ SM
j (Gi, Ci), and

• SM
k (G′

i, Ci) ≥ SM
k (Gi, Ci) ∀k ∈ Ci \ {j}.4

Given a misreport-proof accounting mechanism, we as-
sume that strategic agents will choose to follow the protocol
and be truthful. We assume that the accounting mechanism
itself is fixed along with the allocation rule of an agent. We
model only strategic behavior with regard to reports about
work performed or consumed. The motivating assumption
is that agents are a priori indifferent as to whom they work
for, with free-riders having preferences only in favor of re-
ceiving work and against performing work.

3 The Drop-Edge Mechanism
In this section we first review BarterCast, the mechanism in-
troduced by Meulpolder et al. (2009). We then demonstrate
two misreport attacks on BarterCast. Finally, we introduce
our Drop-Edge Mechanism which is misreport-proof.

3Another class of attacks are sybil attacks, where an agent in-
troduces sybil nodes (fake agents) that perform and consume work.
In practice, misreport attacks are much easier to execute than sybil
attacks and also more beneficial. In contrast, sybil attacks might
require adopting multiple IP addresses and coordinating work be-
tween them. According to Pouwelse et al., they have not yet seen
sybil attacks in practice, while misreport attacks have a long his-
tory (c.f. Kazaa Lite, eDonkey). Thus, for practitioners, protecting
against misreport attacks is of higher importance.

4Note that the first requirement is equivalent to value-
strategyproofness as defined for trust mechanisms, and both re-
quirements together imply rank-strategyproofness (Cheng and
Friedman 2006).

Definition 8. (BarterCast Mechanism) Given subjective
work graph Gi and choice set Ci, construct a modified
graph GB

i = (Vi, Ei, w
B
i ) with weights defined as:

∀(j, k)|i ∈ {j, k} : wB
i (j, k) = wi

i(j, k)

∀(j, k)|i /∈ {j, k} : wB
i (j, k) = max{wj

i (j, k), wk
i (j, k)},

where missing reports in the max-operator are set equal
to 0. Let MFGB

i
(i, j) denote the maximum flow from i

to j in GB
i . Define the BarterCast Score of agent j as

SB
j (Gi, Ci) = MFGB

i
(j, i) − MFGB

i
(i, j).5

In BarterCast, an agent takes its own information over re-
ports from others. Given two reports, it takes the maximum
of the two. Note that even if no agents misreport, two reports
for the same edge will generally be in conflict when a decen-
tralized mechanism is being used due to the decentralized in-
formation exchange protocol. By taking the maximum of the
two reports, an agent always uses the most up-to-date infor-
mation it has. The max-flow algorithm bounds the influence
of any report that agent j can make by the edges between i
and j, preventing an agent from grossly inflating the work
it has performed for another agent. This limits the power
of strategic manipulations and also protects against Byzan-
tine attacks (i.e., arbitrary attacks not necessarily originating
from rational agents). In some sense, using max-flow can be
seen as performing a form of bounded addition.

BarterCast can be manipulated via misreports. In fact, it is
a dominant strategy in BarterCast to always report ∞ work
performed, and 0 work consumed. We illustrate two attacks
in Figure 2. We always show the subjective work graph from
i’s perspective and the manipulating agent is j. Graph (a)
shows a true work graph. Graph (b) shows agent i’s view of
the work graph, now including a misreport by agent j. Agent
j has simply reported that it has done work for k1, k2, and
k3, although it did not. BarterCast cannot catch this: because
there never was an interaction there are no reports from these
other agents. Note that agent j increased its score from 0 to
30. Now consider Graph (c) which shows a new true work
graph. Graph (d) shows a misreport manipulation by agent j
where j reported that it has done 5 units of work for k even
though it only did 2 units of work. Because BarterCast takes
the maximum of two reports, agent i will believe j. As a
result, agent k’s score has decreased from 0 to -3, and agent
j’s score has increased from 0 to 3.

5This specification of BarterCast differs from Meulpolder et
al. (2009) only in that they take the arctan of the difference be-
tween the flows. However, because arctan is a monotonic function
this does not change the ranking of the agents.
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We now introduce a powerful alternative to BarterCast:
Definition 9. (Drop-Edge Mechanism) Given subjective
work graph Gi and choice set Ci, construct the modified
graph GD

i = (Vi, Ei, w
D
i ) with the weights wD

i defined as:

∀(j, k)|i ∈ {j, k} : wD
i (j, k) = wi

i(j, k)

∀(j, k)|j, k ∈ Ci : wD
i (j, k) = 0 (1)

∀(j, k)|j ∈ Ci, k 6∈ Ci : wD
i (j, k) = wk

i (j, k) (2)

∀(j, k)|k ∈ Ci, j 6∈ Ci : wD
i (j, k) = wj

i (j, k) (3)

∀(j, k)|j, k /∈ Ci, i /∈{j, k} :wD
i (j, k)=max{wj

i (j, k), wk
i (j, k)}.

Missing reports in the max-operator are set to 0. Agent
j’s score is SD

j (Gi, Ci) = MFGD
i
(j, i) − MFGD

i
(i, j). 6

Lines (1)-(3) implement a simple “edge-dropping” idea.
Any reports received by agent i from agents in the choice
set Ci are dropped in determining edge weights in modified
graph GD

i . An edge (j, k) is dropped completely if both j
and k are inside Ci. We make the following observation:

Proposition 1. Drop-Edge is misreport-proof.

Proof. No report of agent j is used in i’s decision making
process whenever agent j is in the choice set of agent i.

4 Theoretical Analysis
In this section we analyze the information loss of Drop-
Edge due to the discarded edges. All statements are w.r.t.
the centralized version of Drop-Edge only. The analysis is
based on agent i’s subjective work graph Gi = (Vi, Ei, wi).
GD

i = (Vi, Ei, w
D
i ) denotes the modified graph after the

Drop-Edge mechanism has been applied to Gi, and GO
i =

(Vi, Ei, w
O
i ) analogously for the omniscient mechanism

(which adjusts weights like BarterCast would). For both
Drop-Edge and the omniscient mechanism, we assume that
agents do not perform manipulations. For the first theorem,
we only consider the information loss in the work graph that
Drop-Edge produces. We later add the use of max-flow to
the analysis. For graph Gi = (Vi, Ei, wi), we define the net
work on edge (k, j) as w̃i(k, j) = wi(k, j)−wi(j, k) so that
the overall net work is work i(k, Gi) =

∑

j 6=k w̃i(k, j).

Theorem 1. For all subjective work graphs Gi =(Vi,Ei,wi)
with |Vi| = n, for all k ∈ Vi, for all choice sets C chosen
uniformly at random with |C| = m and k ∈ C:

EC [work i(k, GD
i )]

work i(k, GO
i )

= 1 −
(m − 1)

(n − 1)
.

Proof.

EC [work i(k, GD
i )] = EC [

j 6=k

w̃D
i (k, j)] =

j 6=k

EC [w̃D
i (k, j)]

=
j 6=k

(m − 1)

(n − 1)
· 0 + 1 −

(m − 1)

(n − 1)
· w̃O

i (k, j) (4)

= 1 −
(m − 1)

(n − 1)
· work i(k, GO

i )

For equation 4, consider edge (k, j). Because C is chosen
uniformly at random with k ∈ C, the probability that j is
also inside any random C is m−1

n−1 . If k and j are inside C

the edge gets dropped, otherwise w̃O
i (k, j) is counted.

6Note that we do not need max-flow for misreport-proofness.
However, we retain it because it makes a more direct comparison
with BarterCast possible and it protects against Byzantine attacks.

Theorem 1 implies that if n is relatively large compared
to m, then the expected net work computed by the Drop-
Edge Mechanism is very close to the true net work.7 The
following corollary states this nice property more formally:

Corollary 1. For all subjective work graphs Gi =(Vi,Ei,wi)
with |Vi| = n, for all k ∈ V , for choice sets C chosen
uniformly at random with |C| = m, it holds that:

lim
n
m

→∞

EC [work i(k, GD
i )]

work i(k, GO
i )

= 1.

We now turn our attention to the approximation ratio of
the scores computed by Drop-Edge when the max-flow algo-
rithm is used. We consider max-flows restricted to a certain
number of hops, and let MFG,h(i, j) denote the max-flow
from node i to j in graph G with exactly h hops. We let
SD

j,h(Gi, C) denote the score computed by Drop-Edge for h

hops, i.e., SD
j,h(Gi, C) = MFGD

i
,h(j, i) − MFGD

i
,h(i, j).

Analogously, S=
j,h(Gi, C) is the score computed by an om-

niscient mechanism for exactly h hops.

Theorem 2. For all subjective work graphs Gi =(Vi,Ei,wi)
with |Vi| = n, for all k ∈ Vi, for i’s choice set Ci = C
chosen uniformly at random with |C| = m and k ∈ C:

EC [SD
k (Gi, C)]

= EC [SO
k,0(Gi, C)] +

n−m−1

h=1

h

p=1

n − m − p

n − 1 − p
· EC [SO

k,h(Gi, C)].

Proof.

EC [SD
k (Gi, C)] = EC [MFGD

i
(k, i) − MFGD

i
(i, k)] (5)

=

n−m−1

h=0

EC [MFGD
i

,h(k, i) − MFGD
i

,h(i, k)] (6)

= EC [MFGD
i

,0(k, i) − MFGD
i

,0(i, k)] (7)

+

n−m−1

h=1

E[MFGD
i

,h(k, i) − MFGD
i

,h(i, k)] (8)

= EC [SO
k,0(Gi, C)] (9)

+ EC [MFGD
i

,1(k, i) − MFGD
i

,1(i, k)] (10)

+
n−m−1

h=2

EC [MFGD
i

,h(k, i) − MFGD
i

,h(i, k)] (11)

= EC [SO
k,0(Gi, C)] +

n − m − 1

n − 2
EC [SO

k,1(Gi, C)] (12)

+
n − m − 1

n − 2
·

n − m − 2

n − 3
EC [SO

k,2(Gi, C)] (13)

+

n−m−1

h=3

EC [MFGD
i

,h(k, i) − MFGD
i

,h(i, k)] (14)

= EC [SO
k,0(Gi, C)] +

n−m−1

h=1

h

p=1

n − m − p

n − 1 − p
· EC [SO

k,h(Gi, C)]

In Equation 7 we isolated the expectation of the 0-hop max-
flow terms, which are direct paths between i and k and thus

7Note that Theorem 1 holds for any graph, including power-law
graphs which we would expect in the file-sharing domain. There, a
choice set size of 50 and a graph size larger than 100, 000 are rea-
sonable. The expected ratio would then already be above 0.9995.
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the edges are not dropped and Equation 9 follows. In Equa-
tion 10 we isolated the expectation of the 1-hop max-flow
terms which are paths of length 2 between i and k. Because
C was chosen uniformly at random, the probability that the
intermediate node lies outside of C is n−m−1

n−2 and Equation

12 follows. The final expression follows from analogous
reasoning for all h-hop max-flows.

In practice, running the max-flow algorithm on the full
work graph takes too long. The following corollary tells us
the accounting accuracy for a restricted max-flow algorithm:

Corollary 2. Let H denote the max number of hops used in
computing max-flow. Then, for all subjective work graphs
Gi = (Vi, Ei, wi) with |Vi| = n, for all k ∈ Vi, for i’s
choice set Ci = C chosen uniformly at random with |C| =
m and k ∈ C:

EC [SD
k,H(Gi, C)] ≥

(

n − m − H

n − H

)H

EC [SO
k,H(Gi, C)].

In the BarterCast implementation (Meulpolder et al.
2009) and also in our experiments, the max-flow is restricted
to at most 1 hop (i.e., paths of length at most 2). For that par-
ticular mechanism we get:

EC [SD
i,1(Gi, C)]

EC [SO
i,1(Gi, C)]

≥
(n − m − 1

n − 2

)

.

Note that the theoretical results bound the accuracy in ex-
pectation over choice sets and don’t directly pertain to ac-
curacy with respect to selecting the right agent from a given
choice set. Fortunately, the experimental results we present
in the next section show that Drop-Edge indeed performs
very well in practice.

5 Experimental Evaluation

In this section, we evaluate the mechanisms empirically via
simulation to better understand the trade-offs that are made
in the Drop-Edge and BarterCast mechanisms.

Experimental Set-up. We simulate a P2P file-sharing en-
vironment with 100 agents and discrete time steps. Down-
loading a file corresponds to consuming work and uploading
a file corresponds to performing work. In every time step,
every agent decides whether to perform one unit of work or
not. Agents are divided into a fraction 1 − β of cooperative
and a fraction β of free-riding agents. Cooperative agents
always perform one unit of work, while free-riders only per-
form work in every other round. Furthermore, we also model
strategic free-riding agents who seek to manipulate the ac-
counting mechanism. We let γ ≤ β denote the total fraction
of all agents that are strategic free-riders. With BarterCast,
the strategic agents perform the optimal misreport manipu-
lation, i.e., always reporting they have consumed 0 units of
work and contributed ∞ units of work.

In each round that agent i performs work, it gets a ran-
dom choice set of 5 agents. With probability 0.1, i performs
1 unit of work for a random agent in the choice set, and with
probability 0.9 it uses the accounting mechanism and allo-
cation rule to determine who receives work. This simulates

the “optimistic unchoking” found to be useful in distributed
work systems such as BitTorrent. Each round, every agent
contacts one other agent at random to exchange messages
about their direct experiences in the network. All agents
send a report about the last 5 agents they have interacted
with and the 5 agents that have uploaded the most to them.
Strategic agents are untruthful when sending these reports.

For both Bartercast and Drop-Edge we run a centralized
and decentralized version for the experiment. In the central-
ized version, all reports (which can still be untruthful) are
made directly to a central entity, immediately after each in-
teraction, and are then available to every agent. Considering
the centralized version of each mechanism helps isolate the
effect of the message passing algorithm. We run each simu-
lation for 100 time steps and record the work contributions
and consumptions (averaged over 10 trials).

Results. We first verify our theoretical results on infor-
mation loss from Section 4. Fixing a choice set size
m = 5, free-rider agent fraction β = 0.5, and strate-
gic agent fraction γ = 0.2, we simulate networks of size
n = 10, 20, ...200. After 100 time steps, for every agent we
randomly choose a choice set and measure for every agent in
the choice set the ratio of the Drop-Edge score and the score
under the omniscient mechanism. Averaging over all agents
and choice sets, we find that our empirical results closely
match the theoretical results from Corollary 2 (Figure 3).

Now that we have established experimentally that at least
on average, Drop-Edge provides a good approximation to
the agents’ scores, we turn our attention to directly measur-
ing the mechanisms’ performance. First, we measure their
performance without strategic agents, to isolate their effec-
tiveness as algorithms in aggregating information and pro-
moting good decisions. Consider the graphs in Figure 4 (a)
with zero strategic agents, i.e. where γ = 0 . We expect
Drop-Edge to be slightly less efficient because we are drop-
ping information that BarterCast is using, and no strategic
agents are present that could harm BarterCast. We see that
the efficiency is indeed higher under both versions of Barter-
cast, but only minimally so (less than 5% difference).

The more interesting analysis concerns the overall effi-
ciency with strategic agents present. The efficiency of a par-
ticular agent type is defined to be the average amount of

Figure 3: The approximation ratio of the scores.
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(a) (b) (c)
Figure 4: Bandwidth of different types of agents, using Bartercast and Drop-Edge. The fraction of free-riding agents is β = 0.5.

bandwidth received by that type of agent per time step. It is
our goal to maximize the efficiency of the cooperative agents
and to minimize the efficiency for free-riding agents, and for
strategic free-riders in particular. Ultimately, the goal is to
cause agents to change from free-riding to cooperating.

We compare Figures 4 (a),(b) and (c), to analyze the rel-
ative efficiency of all agent types under the Bartercast and
Drop-Edges mechanisms. Note that the total efficiency is the
same for both mechanisms because the amount of work per-
formed by individual agent types is fixed. In Figure 4(b), we
clearly see that strategic agents are able to sharply increase
their performance compared to the other agents (see Figures
4(a) and (c)) by misreporting under the BarterCast mecha-
nism. This effect is particularly high when only a few strate-
gic agents are in the system. With 10% strategic agents, the
performance of a strategic agent is 3 times as high as that of
the other agents under the decentralized BarterCast mecha-
nism, and more than 5 times as high under the centralized
BarterCast mechanism. With BarterCast, agents have a very
large incentive to act strategically. The Drop-Edge mech-
anism in contrast leads to the same constant efficiency for
each individual agent type (because there is no incentive to
manipulate), and in particular the efficiency of cooperative
agents is almost twice as high as that of free-riding agents.

In practice, strategic misreports may also occur under
Drop-Edge even though such behavior is not rational for an
individual agent. We have tested Drop-Edge in settings with
strategic agents (not plotted) and although the efficiency of
the cooperative agents decreases slightly as the proportion
of strategic agents increases, Drop-Edge continues to clearly
outperform Bartercast. Interestingly, if we move from a 1-
hop maxflow to a standard maxflow algorithm, the efficiency
of cooperative agents under Drop-Edge actually increases as
the proportion of strategic agents increases. A more detailed
analysis of this effect is subject to future investigations.

We also ran a longer experiment with β = 0.5, γ = 0.2
for 500 time steps, measuring how efficiency changes over
time. In Figure 5, we see that the benefit that strategic agents
gain from misreporting in BarterCast gets even larger over
time. Compare this against Figure 6, which presents re-
sults for DropEdge. Strategic agents cannot manipulate their
scores, and receive decreasing amounts of work as the sim-
ulation proceeds. At the end of the run, cooperative agents
indeed receive twice as much work per round as the other
agents (note they also perform exactly twice as much work).

Figure 5: Bandwidth in BarterCast Mechanism over Time.

Figure 6: Bandwidth in Drop-Edge Mechanism over Time.

6 Ongoing & Future Research

We are currently pursuing multiple avenues to further im-
prove the design of work accounting mechanisms. First,
we want to test the performance of the Drop-Edge Mech-
anism in a more realistic environment. To this end we have
partnered with the authors of BarterCast (Meulpolder et al.
2009), and we are currently implementing the Drop-Edge
Mechanism into the Tribler BitTorrent client. This allows
us to run trace-based simulations on the piece level. During
this transition from a very stylized simulation to a real-world
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implementation, we realized quickly that now the compu-
tational complexity of the Drop-Edge mechanism plays a
much larger role. In fact, when comparing BarterCast to
Drop-Edge, one drawback of Drop-Edge becomes apparent:
every time the composition of the choice set changes, the
agents have to re-compute the max-flow algorithm which is
a costly operation. Obviously, this was not necessary for
the BarterCast mechanism. But in fact, if both mechanisms
are implemented as described in Section 3, then any time
an edge in the subjective work graph changes its weight,
the scores would need to be re-computed. To avoid running
the full max-flow algorithm each time a change occurs, we
are currently investigating incremental max-flow algorithms
that have better running times.

The second avenue involves a more detailed analysis of
the max-flow algorithm that is used in both BarterCast and
Drop-Edge. Earlier in the paper, we have argued that us-
ing max-flow to estimate an agent’s net work is a form of
“bounded addition”. A closer look at the semantics of the
max-flow algorithm reveals, that simply taking the flow be-
tween two agents in one direction minus the flow in the other
direction does not really make sense. By using max-flow we
are limiting the influence of any agent on the max-flow path
by the incoming and outgoing edges of that agent respec-
tively. However, this only makes sense for an agent’s outgo-
ing edges which represent work it has performed for other
agents, and thereby earned trust and is now allowed to make
reports about other agents. However, incoming edges repre-
sent work consumed and thus there is no reason we should
trust an agent more when the agent has a high weight on in-
coming edges. It is easy to show that a Byzantine agent that
never performs any work but manages to consume work is
now able to spread bad information in the accounting mech-
anism despite the use of the max-flow algorithm. We are cur-
rently exploring variations of the max-flow algorithm that do
not suffer from this problem.

The third avenue regards sybil attacks on work account-
ing mechanisms. Despite using the max-flow algorithm
which provides sybilproofness in reputation systems (Cheng
and Friedman 2006), both BarterCast and Edge-Drop can
be manipulated by sybil attacks. This is because sybil at-
tacks are more powerful against work accounting mecha-
nisms than against reputation systems. In PageRank for
example, the only concern about a sybil attack is that an
agent could increase the reputation of its website by cre-
ating a set of sybils that are linking to the original web-
site but an agent does not directly benefit from a sybil web-
site with a high reputation. Various reputation mechanisms
(e.g., maxflow, hitting-time (Cheng and Friedman 2006;
Sheldon and Hopcroft 2007) are sybil-proof in the sense that
they can protect against these kinds of attacks. The situation
is drastically different in distributed work systems. For ex-
ample, in P2P file-sharing, if I can create sybils with a pos-
itive score, then I can use these sybils to receive work from
other users without any negative effect on my real score. Ex-
isting sybil-proof mechanisms do not protect against these
kinds of sybil attacks. Thus a new approach is required and
subject to our ongoing research.

7 Conclusion
In this paper we have formalized the problem of designing
incentive-compatible accounting mechanisms for distributed
work systems. We have shown that the existing BarterCast
mechanism is highly susceptible to misreport attacks and
that strategic agents could benefit significantly from ma-
nipulating. To address this, we have introduced the Drop-
Edge Mechanism which is misreport-proof. In our theoret-
ical analysis we have proved that Drop-Edge provides good
approximations to an agent’s net contributions and scores
respectively, and is accurate as the number of agents grows.
Via simulations of a P2P file-sharing system we have shown
that the good approximation of the scores also translates into
good system efficiency. When strategic agents are present,
the Drop-Edge Mechanism clearly outperforms BarterCast:
cooperative agents have higher efficiency, while free-riding
agents have lower efficiency. We have shown that the mag-
nitude of this effect even grows over time. Thus, we believe
that using Drop-Edge over BarterCast in a real system has
significant advantages.
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