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Abstract

Intentions have been widely studied in AI, both in the con-
text of decision-making within individual agents and in multi-
agent systems. Work on intentions in multi-agent systems
has focused on joint intention models, which characterise the
mental state of agents with a shared goal engaged in team-
work. In the absence of shared goals, however, intentions
play another crucial role in multi-agent activity: they pro-
vide a basis around which agents can mutually coordinate
activities. Models based on shared goals do not attempt to
account for or explain this role of intentions. In this paper,
we present a formal model of multi-agent systems in which
belief-desire-intention agents choose their intentions taking
into account the intentions of others. To understand rational
mental states in such a setting, we formally define and inves-
tigate notions of multi-agent intention equilibrium, which are
related to equilibrium concepts in game theory.

Introduction
Intentions have received considerable attention within the AI
community, as a key component in the cognitive makeup
of practical reasoning agents (Bratman 1987; Cohen and
Levesque 1990; Rao and Georgeff 1992; Shoham 2009). A
typical operational interpretation is that an intention corre-
sponds to a plan that has been chosen for execution, and im-
plies a persistent commitment on behalf of an agent to bring
about some state of affairs. As well as playing a central
role in the decision-making process of individual agents, in-
tentions also play a central role in multi-agent activity. Sev-
eral models of joint intentions have been developed, with the
aim of using intentions in practical frameworks for building
teams of cooperative problem solvers (Cohen and Levesque
1991; Jennings 1995; Grosz and Kraus 1996). Joint inten-
tion models typically attempt to characterise the mental state
of agents involved in teamwork, and critically, they assume
that a group of agents is pursuing a common goal. However,
intentions also play a more “everyday” role in coordinating
multi-agent activity, where intentions simply provide a basis
around which to coordinate activities in the absence of com-
mon goals. For example, consider the following scenario:
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Example 1 Bob decides to watch football on TV at home
tonight; Bob’s wife Alice doesn’t like football, so she decides
to go out and visit friends.
Here, Alice coordinates her intentions (go out and visit
friends) around Bob’s (watch football on TV at home). Col-
lective intention models such as (Cohen and Levesque 1991;
Jennings 1995; Grosz and Kraus 1996) do not seem appro-
priate for modelling such scenarios: there is no common
goal here, and no shared plan.

Our first aim in this paper is to develop a model that can
capture this everyday role of intentions in coordination. We
formulate a model of mental state and decision making in
practical reasoning agents that enables them to choose their
intentions taking into account the intentions of others. Now,
since an agent i’s rational choice of intentions might depend
on an agent j’s choice of intentions, and agent j’s choice of
intentions might in turn depend on agent i’s choice of inten-
tions, we are motivated to introduce notions of multi-agent
intention equilibrium, representing possible notions of ratio-
nal mental state in a multi-agent BDI setting. These equilib-
rium notions are related to and indeed inspired by solution
concepts from game theory, in particular, the notion of Nash
equilibrium (Osborne and Rubinstein 1994). The present
paper is novel in two respects: it is the first to explicitly
consider the issue of coordinating intentions in BDI-like sys-
tems without shared goals; and it is the first to consider equi-
librium/stability notions in multi-agent BDI settings. One
interesting aspect of our work is that when defining the dif-
ferent notions of equilibrium, the use of the BDI formalism
makes explicit some assumptions that are implicit in con-
ventional game theoretic models, such as the role of each
agent’s beliefs in computing an equilibrium.

The Model
The formal model of BDI agents that we use is derived
from that proposed in (Grant et al. 2010). First, we as-
sume as given a logical language L, used by all agents to
represent their beliefs. We do not place any requirements
on this language other than that it contains the usual classi-
cal logic connectives (>,⊥,∧,∨,¬,→,↔), which behave
in the classical way, and that there is a proof relation ` de-
fined for the language. For the purposes of analysis, we
will usually assume that L is classical propositional logic.
We write F for the set of sentences of this language, and
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write ∧K to denote the conjunction of a finite set of formu-
lae K ⊂ F. When considering computational questions, as
well as assuming that L is propositional logic, we will as-
sume that we have an oracle for `, i.e., we can determine
in unit time whether B ` ϕ for B ⊆ F and ϕ ∈ F. (In
practice, one would typically choose L to be appropriately
restricted to make proof computationally tractable; but we
will work with the oracle model, since it allows us to fo-
cus on the complexity of our problems.) We assume that
the belief revision operation +̇ has already been defined
for L, cf. (Alchourron, Gärdenfors, and Makinson 1985;
Gärdenfors 1988). We will also assume that we have a unit-
time oracle for this operation, i.e., we assume we can com-
pute B+̇ϕ in unit time for arbitrary B ⊆ F, ϕ ∈ F.

Next, we assume a set A = {1, . . . , n} of agents. For
each agent i ∈ A we assume a finite set of actions, Aci =
{α1, α2, . . .}. The set Aci represents the abilities of agent
i. We will assume Aci ∩ Acj = ∅ for all i 6= j ∈ A.
Agent i’s knowledge about how to bring about states of
affairs in its environment is captured by a set of recipes
Ri = {〈α,ϕ〉 | α ∈ Aci and ϕ ∈ F}. Intuitively, a recipe
〈α,ϕ〉 ∈ Ri represents to agent i ∈ A the fact that per-
forming action α will accomplish a state of affairs satisfying
ϕ (see, e.g., (Pollack 1992) for discussion on the notion of
“plan as recipe”). For every recipe r = 〈α,ϕ〉, we assume
there is a proposition rα,ϕ ∈ L. Intuitively, rα,ϕ will be used
to mean that: (i) the action α is executable, in that its pre-
condition is currently satisfied, and (ii) the performance of
α terminates and makes ϕ true. Only those recipes whose
actions the agent believes can be executed are listed as be-
liefs using the propositions rα,ϕ. We will assume that in
all recipes 〈α,ϕ〉, the formula ϕ contains no recipe proposi-
tions.

BDI Structures
Next we define BDI structures, the basic model of the mental
state of an agent used throughout the remainder of the paper.
For the moment, however, we do not present the constraints
on such structures that characterise a “rational” mental state.
Formally, a BDI structure Si for agent i ∈ A is a 5-tuple,

Si = 〈Bi,Di, Ii, vi, ci〉

where:

• Bi stands for the beliefs of the agent; it is the logical clo-
sure of a finite set of sentences. Formally, Bi = {b ∈ F |
B0

i ` b}, where B0
i ⊂ F is a finite set. When we later

consider computational questions, we assume beliefs Bi
are represented by its basis, B0

i .

• Di ⊂ F and Di is finite. Di stands for the desires of the
agent. We will use d, d1, . . . as meta-variables ranging
over elements of Di .

• Ii ⊆ Ri. Ii stands for the intentions of the agent.

• vi : P(Di) → R≥, where R≥ is the set of real num-
bers greater than or equal to 0: vi is a valuation func-
tion that assigns a nonnegative value to each set of de-
sires of the agent. We require that vi satisfy the following
“entailment-value” condition in case T is consistent:

for T ⊆ Di and T ′ ⊆ Di, if T ` T ′ then vi(T) ≥ vi(T ′).

• ci : P(Aci) → R≥ is a cost function for sets of actions,
which must satisfy the following conditions:

if K ⊆ K′ ⊆ Aci then ci(K′) ≥ ci(K).

There are several points to make about this definition. First,
note that we are explicitly representing an agent’s beliefs as
a set of logical formulae, closed under deduction. Under
this model, agent i is said to believe ϕ if ϕ ∈ Bi. We use
a similar representation for desires. We represent an agent’s
intentions as the set of recipes that it has selected, and im-
plicit within this set of recipes, the states of affairs that it has
committed to bringing about. Thus far, our model closely
resembles many other models of BDI agents developed in
the literature (Rao and Georgeff 1992). However, the value
(vi) and cost (ci) functions distinguish it: as we will see,
they provide the means through which an agent can choose
between and commit to possible sets of intentions.

Where I is a set of intentions, we write:

actions(I) = {α | 〈α,ϕ〉 ∈ I}
goals(I) = {ϕ | 〈α,ϕ〉 ∈ I}.

Where B is a set of beliefs and I is a set of intentions, we say
that I is feasible in the context of B if ∀〈α,ϕ〉 ∈ I, rα,ϕ ∈
B, (i.e., the action part of every intention is believed to be
executable). We write feas(I,B) to denote the largest subset
of I that is feasible in the context of B. Note that since B has
a finite basis, feas(I,B) must be finite.

We find it useful to extend the value function vi to a func-
tion v̄i on all subsets X of F as follows:

v̄i(X) =
{

vi({d ∈ Di | X ` d}) if X 6` ⊥
0 otherwise.

Next, we define a function beni(I,B), which defines the ben-
efit that agent i would obtain from the set of intentions I if it
were the case that beliefs B were correct:

beni(I,B) = v̄i(B+̇ ∧ {goals(feas(I,B))})−
ci(actions(I) ∩ Aci)

So, for example:

• beni(Ii,Bi) is the benefit that agent i would obtain from its
own intentions Ii under the assumption that its own beliefs
Bi were correct;

• beni(Ii,Bj) is the benefit that agent i would obtain from its
own intentions Ii under the assumption that the beliefs of
agent j were correct;

• beni(I1∪· · ·∪In,Bi) is the benefit that agent i would obtain
from the intentions of all agents in the system, under the
assumption that its own beliefs were correct.

This definition embodies several important principles:

• The first term on the r.h.s. implicitly assumes that value
is only obtained from intentions that are feasible in the
context of beliefs B.

• The second term on the r.h.s. implicitly assumes that an
agent only incurs costs on the basis of the actions that it
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must perform; moreover, it is assumed that an agent in-
curs the cost of an intention irrespective of whether or not
that intention is feasible (whereas an agent only obtains
value from feasible intentions). This is needed because
the definition allows I and B to stand for the intentions
and beliefs of different agents.

Notice that we have said nothing about the representation of
BDI structures, which is a key issue if we try to understand
the complexity of various operations on them. We must first
consider how the value and cost functions are represented,
since naive representations of them (listing all input/output
pairs that define the function) is not practical. Clearly, it
would be desirable to have a representation that was poly-
nomial in the size of the remainder of the structure, and
moreover, allows the computation of the corresponding vi
and ci functions in polynomial time. In general, one would
simply want to require that vi and ci are polynomial time
computable functions, but when considering concrete com-
plexity questions, this is often not sufficient for establishing
meaningful results. So, in this paper, we will follow (Grant
et al. 2010) and assume that vi and ci are represented as
straight line programs. Intuitively, a straight line program
can be thought of as a sequence of assignment statements.
Note: When we state complexity results, it should be under-
stood that these results are with respect to this representa-
tion, with respect to the oracle model for proof and belief
revision for propositional logic L, and with respect to the
finite representation B0

i of belief sets Bi.

Weak Rationality Constraints
The following are the basic constraints we consider on our
BDI structures:

A1 Bi is consistent, i.e., Bi 6` ⊥.

A2 Ii is feasible in the context of Bi, i.e., Ii ⊆ feas(Ri,Bi).

A3 goals(Ii) is consistent, i.e., goals(Ii) 6` ⊥.

A4 ∀ϕ ∈ goals(Ii), Bi 6` ϕ.

We say a BDI structure that satisfies these properties is
weakly rational, and hence we will talk of “WRBDI struc-
tures”. In a WRBDI structure, the agent has an internally
consistent model of the environment, and has a set of inten-
tions Ii that is consistent and compatible with this model of
the environment.

Intentions in Equilibrium
The weak rationality conditions presented above do not re-
quire that a set of intentions Ii is in any sense rational with
respect to the cost ci and value vi functions. Nor do they re-
quire that intentions are coordinated in a rational way around
the intentions of others. As Example 1 illustrated, our choice
of intentions will be influenced by the intentions of others,
and their choice by ours in turn. Alice chooses to visit
friends because Bob is watching football on TV and she
doesn’t like football; if she had earlier announced to Bob
that she was planning to watch TV that night, then Bob
might well have chosen to watch the football in a bar. In
this section, our aim is to consider notions of rationality that

take into account the cost and value of an agent’s intentions,
and the intentions of others.

We first extend our model of BDI agents to a model of
multi-agent systems: a multi-agent system M is simply an
indexed set of WRBDI structuresM = {S1, . . . ,Sn}. No-
tice that we do not in general require that agents have the
same, or even collectively consistent beliefs. We will say
that a multi-agent systemM = {S1, . . . ,Sn} has common
beliefs if B1 = · · · = Bn. Sometimes, we find it convenient
to talk about the objective state of the system. This is the
state of the system as perceived by an omniscient external
observer. When we make this assumption, we use E0 ⊂ F
to denote the formulae characterising the objective state of
the system, and we denote the closure of E0 under ` by E.
Thus E will represent the beliefs of an omniscient external
observer; an agent i with beliefs Bi ⊆ E would have correct
(although possibly incomplete) information about its envi-
ronment.

Throughout this section, we make use of the following
running example.
Example 2 Alice owns a business, and Bob works for Alice.
Alice wants to keep the office open as much as possible. She
wants to take a holiday, as long as Bob staffs the office; but
Bob is ill, and if he continues to be unwell, he will not be
able to staff the office. Bob has two options: to take an an-
tibiotic prescribed by his doctor, which will certainly make
him well, but which is expensive, or to take homeopathic
medicine which he believes will make him well. The home-
opathic option is cheap, but it will not make him well. Alice
does not believe that the homeopathic option will work, but
Bob believes it will. What will Alice and Bob do?
As we will see, there are several possible solutions to this ex-
ample, depending on the assumptions made about what the
agents know about each other’s beliefs. We will formalize
this example using our BDI structures.
Example 3 The language contains propositions “well”
(Bob is well), “open” (the office is open), and “holiday”
(Alice takes a holiday). There are three actions: “anti” and
“homeo” (Bob takes antibiotics and homeopathic medicine,
respectively), and “go” (Alice goes on holiday). There
are two recipes: 〈anti,well〉 and 〈homeo,well〉 in Bob’s
recipes set Rb and one for Alice, 〈go, holiday〉. Bob’s be-
lief set is Bb = {ranti,well, rhomeo,well}. Alice’s belief set
is Ba = {rgo,holiday, ranti,well,well → open,¬holiday →
open,¬holiday}. Bob’s desires are Db = {well} and
Alice’s Da = {open, holiday}. Alice’s valuation func-
tion is: va({open}) = 150, va({holiday}) = 50,
va({open, holiday}) = 210, and va(∅) = 0. Bob’s val-
uation function is vb({well}) = 100 and vb(∅) = 0.
Bob’s cost function cb({homeo}) = 10, cb({anti}) =
20, cb({homeo, anti}) = 30 and cb(∅) = 0 and Alice’s
ca({go}) = 30 and ca(∅) = 0.

Locally Rational Intentions
The first possibility we explore is that agents simply ignore
each other: they choose a set of intentions that would be
optimal if they were the only agent in the system. Thus, the
agent assumes that any benefit it derives will be from its own
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intentions alone. Formally, we say Si is locally rational if it
satisfies the following requirement:
A6 6∃I′ ⊆ Ri such that 〈Bi,Di, I′, vi, ci〉 is a WRBDI struc-

ture and beni(I′,Bi) > beni(Ii,Bi).

Example 4 Consider Bob and Alice from Example 3. Bob’s
intention set of a WRBDI that satisfies A6 is Ib =
{〈homeo,well〉} and Alice’s is Ia = ∅. Intuitively, Alice
can’t go on a holiday since she can’t make Bob well but
rather he must take an action that does not belong to her
local view.

Proposition 1 The problem of checking whether a WRBDI
structure 〈Bi,Di, Ii, vi, ci〉 is locally rational is co-NP-
complete.

Proof: We show that the complement problem is NP-
complete. Membership is by a standard “guess and check”
approach. For hardness, we reduce SAT. Let ϕ be a SAT
instance in CNF over k Boolean variables x1, . . . , xk, and
with l clauses ψ1, . . . , ψl. Let CLϕ = {ψ1, . . . , ψl} denote
the set of clauses in ϕ. We create a single agent, and so
we omit subscripts. For each propositional variable xi, we
create two actions αxi and α¬xi , which will correspond to
assignments of truth or falsity to variable xi, respectively.
For each clause ψi ∈ CLϕ we create a propositional vari-
able zi that represents it. We then create a set of recipes
R = {〈zi, α`〉 | zi represents ψi ∈ CLϕ and ` is a literal
in ψi}. Define B so that all intentions are feasible, and let
D = {z1, . . . , z`}. We define v(D) = 1 and v(S) = 0 for all
S 6= D. Then, for a set of actions T we define c(T) = 1 if
for some xi, {αxi , α¬xi} ⊆ T , otherwise c(T) = 0. Finally,
we define I = ∅. Now, ben(I,B) = 0 − 0 = 0, so I will
be sub-optimal only if the agent can choose a set of inten-
tions I′ such that ben(I′,B) = 1, i.e. v(goals(I′),B) = 1
and c(actions(I′)) = 0: such a set of intentions will define a
consistent satisfying valuation for the input formula ϕ.

Nash Stability
Our next equilibrium notion assumes that each agent uses
its own beliefs when choosing an appropriate set of inten-
tions. More precisely, we are assuming that every agent can
see completely and correctly the WRBDI structure of every
other agent, but each agent determines not to change its be-
liefs (i.e., every agent assumes that its beliefs are correct).
Then, when agent i tries to predict what agent j will do, it
has to assume that agent j’s choice of actions will be based
on agent j’s beliefs (and agent j has to assume that agent i’s
choice will be based on agent i’s beliefs).

We say a system M with intention sets I1, . . . , In is in-
dividually stable for agent i if the following requirement is
satisfied:
A7 6∃I′ ⊆ Ri such that 〈Bi,Di, I′, vi, ci〉 is a WRBDI struc-

ture, and beni(I1 ∪ · · · ∪ Ii−1 ∪ I′ ∪ Ii+1 ∪ · · · ∪ In,Bi) >
beni(I1 ∪ · · · ∪ Ii−1 ∪ Ii ∪ Ii+1 ∪ · · · ∪ In,Bi).

Example 5 Consider Bob and Alice from Example 3. Bob’s
intention set of the WRBDI that satisfies A7 is Ib =
{〈homeo,well〉} and Alice’s is Ia = ∅. Intuitively,
〈homeo,well〉 is not feasible according to Alice’s beliefs, so

she does not believe that Bob will be well. However, Bob
believes 〈homeo,well〉 is feasible, and so he intends to take
homeopathic medicine.

Proposition 2 Given a multi-agent system M =
{S1, . . . ,Sn} and agent i, the problem of checking whether
the intentions of i are individually stable is co-NP-complete.

Proof: We work with the complement problem. A
guess-and-check approach suffices for membership, while
for hardness, we reduce the problem of checking that inten-
tions are not locally rational, which was proved NP-complete
in Proposition 1. LetM = {S1, . . . ,Sn} be the multi-agent
system in the local rationality instance, and i be the agent
that we want to check for local rationality. Create a new
multi-agent systemM′ containing only the agent i, and ask
whether the intentions of agent i are individually stable in
M′.
We now extend individual stability to a notion of collective
rationality, which for reasons that will become plain shortly,
we refer to as Nash stability. We sayM is Nash stable if:

A8 ∀i ∈ A, Si is individually stable in the context ofM.

As a corollary of Proposition 2, we have:

Proposition 3 Given a multi-agent system M, checking
whetherM is Nash stable is co-NP-complete.

For which classes of systems M can we check stability in
polynomial time? Consider the following definitions. When
we have a systemM in which |Ii| ≤ 1 for all i ∈ A, then we
sayM is single intentioned; where there is a constant k ∈ N
such that |Ri| ≤ k for all i ∈ A then we sayM is k-bounded.

Proposition 4 If a multi-agent systemM is either (i) single
intentioned, or (ii) k-bounded, then it is possible to check in
polynomial time whetherM is Nash stable.

With respect to the more general problem, of checking
whether a system has a Nash stable state we have:

Proposition 5 The following problem is Σp
2-complete:

Given a multi-agent system M = {S1, . . . ,Sn}, with in-
tention sets I1, . . . , In, do there exist intention sets I′1, . . . , I

′
n

such that if every agent i ∈ A replaces Ii with I′i , then the
resulting systemM′ is Nash stable?

Notice that the intentions of Alice and Bob in Examples 4
and 5 are the same, albeit for different reasons. However,
individually stable intention sets (and thus Nash stable in-
tention sets) and locally rational intention sets may be dif-
ferent:

Example 6 Suppose that there are two parking spaces near
Bob and Alice’s office. One parking space is easier to park
in. Denote Alice and Bob’s attempts to park in space i,
i = 1, 2, by pai and pbi, respectively. The predicates for
Alice parking in space i, i = 1, 2, are ai and similarly for
Bob: bi. The recipes for Bob are Rb = {〈pb1, b1〉, 〈pb2, b2〉}
and for Alice Ra = {〈pa1, a1〉, 〈pa2, a2〉}. A person can’t
park simultaneously in two parking spaces nor can two peo-
ple park in the same space. Thus, Ba = Bb = {¬(a1 ∧
b1),¬(a2 ∧ b2),¬(a1 ∧ a2)}. Da = {a1 ∨ a2} and Db =
{b1 ∨ b2}. va({a1 ∨ a2}) = vb({b1 ∨ b2}) = 100;
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va(∅) = vb(∅) = 0. ca({pa1}) = cb({pb1}) = 10 and
ca({pa2}) = cb({pb2}) = 25. According to the axiom of lo-
cal rationality (A6), Ia = {〈pa1, a1〉} and Ib = {〈pb1, b1〉}.
On the other hand there are two Nash stable intention sets
(A7). The first is I1a = {〈pa1, a1〉} and I1b = {〈pb2, b2〉}.
The second I2a = {〈pa2, a2〉} and I1b = {〈pb1, b1〉}.
Of course, there is no guarantee that a system will have a
Nash stable state, as the following demonstrates.
Example 7 Alice wants to go to the pub tonight, unless Bob
will be there, in which case she would rather stay at home.
Bob wants to go to the pub only if Alice is there; and if she
isn’t then he would rather stay at home.

As the name suggests, Nash stability is inspired by concepts
from game theory, and we can make the link between our
framework and game theory precise. First, we recall some
basic definitions from game theory (Osborne and Rubinstein
1994). A finite game in strategic form is a tuple:

G = 〈A,Σ1, . . . ,Σn,U1, . . . ,Un〉

where:
• A = {1, . . . , n} is a set of agents;
• Σi is finite, non-empty set of strategies for agent i;
• Ui : Σ1 × · · · ×Σn → R is the utility function for agent i.
A tuple of strategies 〈σ1, . . . , σi, . . . , σn〉 where σj ∈ Σj
for each j ∈ A is said to be a Nash equilibrium if for all
agents i ∈ A there is no other strategy σ′i ∈ Σi such that
Ui(σ1, . . . , σ

′
i , . . . , σn) > Ui(σ1, . . . , σi, . . . , σn).

Given a multi-agent system M, let us define the game
GM = 〈AM,ΣM1 , . . . ,ΣMn ,UM1 , . . . ,UMn 〉 induced byM
as follows:
• AM = A = {1, . . . , n}
• for all i ∈ A: ΣMi = {feas(I,Bi) | I ⊆

Ri & 〈Bi,Di, I, vi, ci〉 is a WRBDI structure}
• for all i ∈ A and 〈I1, . . . , In〉 ∈ Σ1 × · · · × Σn:
UMi (I1, . . . , In) = beni(I1 ∪ · · · ∪ In,Bi)

We obtain:
Proposition 6 LetM be a multi-agent system in which the
intention sets of the agents are I1, . . . , In. ThenM is Nash
stable iff 〈I1, . . . , In〉 is a Nash equilibrium of the game GM.

One interesting aspect of our formulation of Nash stability,
as compared to the standard game-theoretic formulation of
Nash equilibrium, is that the role of beliefs in defining the
game structure is made explicit. As we will see in what fol-
lows, we have in fact several different stability notions, de-
pending on whose beliefs are used to judge benefits.

Objective Nash Stability
The next possibility we consider is the equilibrium of the
system from the point of view of an omniscient external ob-
server, who can see exactly what the state of the system is,
and who thus knows exactly what recipes are feasible, etc.
Recall that E denotes the beliefs of an omniscient external
observer, who is objectively able to see the actual state of the
system. This leads to the concept of objective Nash stability.

As with Nash stability defined above, we define this concept
with respect to an intermediate notion, in this case objective
individual stability. An agent’s set of intentions is objec-
tively individually stable if it could not change to another
set of intentions that yield greater benefit, when the benefit
is measured in the context of E. Formally, Si is objectively
individually stable if it satisfies the following property:
A9 6∃I′ ⊆ Ri such that 〈E,Di, I′, vi, ci〉 is a WRBDI struc-

ture, and beni(I1 ∪ · · · ∪ Ii−1 ∪ I′ ∪ Ii+1 ∪ · · · ∪ In,E) >
beni(I1 ∪ · · · ∪ Ii−1 ∪ Ii ∪ Ii+1 ∪ · · · ∪ In,E).

When every agent’s intentions are objectively individually
stable, then the system is objectively Nash stable:
A10 ∀i ∈ A, Si is objectively individually stable.

Example 8 Considering Bob and Alice from Example 3
since taking homeopathic medicine will not make Bob
well, E = {rgo,holiday, ranti,well,well → open,¬holiday →
open,¬holiday}.

The sets of intentions that are objectively individually sta-
ble are Ib = {〈anti,well〉} and Ia = 〈go, holiday〉.
Given a multi-agent system M characterised by E, let us
define the objective game

GM,E = 〈AM,E,ΣM,E
1 , . . . ,ΣM,E

n ,UM,E
1 , . . . ,UM,E

n 〉

induced byM as follows (AM,E is defined as expected):

• for all i ∈ A: ΣM,E
i = {feas(I,E) | I ⊆

Ri & 〈E,Di, I, vi, ci〉 is a WRBDI structure}
• for all i ∈ A and 〈I1, . . . , In〉 ∈ Σ1 × · · · × Σn:
UM,E

i (I1, . . . , In) = beni(I1 ∪ · · · ∪ In,E).
We immediately obtain:
Proposition 7 LetM be a multi-agent system in state E, in
which the intention sets of the agents are I1, . . . , In. ThenM
is objectively Nash stable iff 〈I1, . . . , In〉 is a Nash equilib-
rium of the game GM,E.

Subjective Nash Stability
There is a difficulty in accepting either Nash stability or ob-
jective Nash stability as a rational state of a multi-agent sys-
tem, for the following reason. In order for an agent i to be
able to see that a system is Nash stable, it must be able to
compute benj(I1∪· · ·∪ In,Bj) for each j ∈ A, which implies
that agent i has access to the beliefs Bj of each other player
j ∈ A. In other words, it is only possible to see that a system
is Nash stable if one knows the entire state of the system.
In order to see that a system is objectively Nash stable, each
agent i must be able to compute benj(I1∪· · ·∪In,E) for each
j ∈ A, which implies that agent i has access to the objective
state of the system E. This motivates us to consider Nash
stability from the point of view of individual agents: we call
this subjective Nash stability. In the same fashion as above,
we define this with respect to subjective individual stability.
We say agent i is subjectively individually stable from the
perspective of agent j if:
A11 6∃I′ ⊆ Ri such that 〈Bj,Di, I′, vi, ci〉 is a WRBDI struc-

ture, and beni(I1 ∪ · · · ∪ Ii−1 ∪ I′ ∪ Ii+1 ∪ · · · ∪ In,Bj) >
beni(I1 ∪ · · · ∪ Ii−1 ∪ Ii ∪ Ii+1 ∪ · · · ∪ In,Bj).
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We then say that M is subjectively Nash stable from the
point of view of j if:

A12 ∀i ∈ A, Si is subjectively individually stable with re-
spect to agent j in the context ofM.

Example 9 Consider Bob and Alice from Example 3. The
subjectively individually stable with respect to Bob is Ib =
{〈homeo,well〉} and Ia = {〈go, holiday〉}: Bob thinks it
is rational for him to take homeopathic medicine while Al-
ice goes on holiday. However, the subjectively individu-
ally stable with respect to Alice is Ib = {〈anti,well〉} and
Ia = {〈go, holiday〉}.
Given a multi-agent system M and agent i in M, define
the j-subjective game to be the game induced by the be-
liefs of agent j: intuitively, the game that j thinks it (and ev-
ery other agent) is playing. Formally, the j-subjective game
GM,j = 〈AM,j,ΣM,j

1 , . . . ,ΣM,j
n ,UM,j

1 , . . . ,UM,j
n 〉 induced

byM and j is as follows (AM,j is defined as expected):

• for all i ∈ A: ΣM,j
i = {feas(I,Bj) | I ⊆

Ri & 〈Bj,Di, I, vi, ci〉 is a WRBDI structure}
• for all i ∈ A and 〈I1, . . . , In〉 ∈ Σ1 × · · · × Σn:
UM,j

i (I1, . . . , In) = beni(I1 ∪ · · · ∪ In,Bj)

Now, it will not typically be the case that GM = GM,j,
and so Nash stable systemsM will not typically correspond
to the Nash equilibria of GM,j as in proposition 7. How-
ever, we can easily state a sufficient condition for subjective
games to coincide.

Proposition 8 LetM be a multi-agent system with common
beliefs. Then ∀j ∈ A, GM = GM,j. If the agents have
common beliefs E, then ∀j ∈ A, GM = GM,E = GM,j.

It is of course possible that a system may be subjectively
Nash stable for every agent, even though beliefs are differ-
ent. In this case every agent has a correct model of what
other agents will do, but for the “wrong reasons” (cf. discus-
sion in (Kalai and Lerhrer 1993)).

Related Work & Discussion
Although intentions in BDI-like systems have been widely
studied in AI over the past two decades (Bratman 1987;
Cohen and Levesque 1990; Rao and Georgeff 1992), and
a variety of joint intention models have been proposed
and evaluated (Cohen and Levesque 1991; Jennings 1995;
Grosz and Kraus 1996), our work is novel in two respects:
it is the first to explicitly consider the issue of coordinating
intentions without shared goals; and it is the first to consider
equilibrium/stability notions in BDI settings. (Nair 2004;
Nair and Tambe 2005) considers related questions, in a hy-
brid BDI-POMDP setting. (Zuckerman et al. 2007) pre-
sented a BDI model for adversarial environments. They
gave behavioural axioms specifying the intentions an agent
should consider to adopt in such settings, focusing on one
agent’s point of view. However, again, no stability notions
were considered. Finally, (Larbi, Konieczny, and Marquis
2007) uses game-theoretic notions (including Nash equilib-
rium) applied to multiagent planning but without common

goals. Plans are evaluated in terms of combinations that may
occur when mixed with the other agents’ plans.

An interesting aspect of our work is that it shows how no-
tions of rational mental state in multi-agent BDI-based sys-
tems can usefully be understood through analogues of game
theoretic concepts. Of particular interest is the fact that the
role of belief in computing solution concepts is made ex-
plicit, with different perspectives on whose beliefs are or
should be used leading to different notions of equilibrium.
Future work might consider both conceptual questions (such
as other equilibrium notions), as well as computational ques-
tions (further consideration of tractable instances).
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