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Abstract

Dynamic auctions are trading mechanisms for discovering
market-clearing prices and efficient allocations based on price
adjustment processes. This paper studies the computational
issues of dynamic auctions for selling multiple indivisible
items. Although the decision problem of efficient allocations
in a dynamic auction in general is intractable, it can be solved
in polynomial time if the economy under consideration sat-
isfies the condition of Gross Substitutes and Complements,
which is known as the most general condition that guaran-
tees the existence of Walrasian equilibrium. We propose a
polynomial algorithm that can be used to find efficient allo-
cations and introduce a double-direction auction procedure to
discover a Walrasian equilibrium in polynomial time.

Introduction

Auction processes have been a well-established research
theme in economics and recently become an emerging re-
search topic in AI due to a set of related computational chal-
lenges (Cramton et al. 2006). It is well-known that the prob-
lem of winner determination in a combinatorial auction is
NP-complete (Rothkopf et al. 1998; Sandholm 2002). How-
ever, most of the discussions on the computational issues
of combinatorial auctions are based on one-shot sealed-bid
mechanisms. This paper aims to make a contribution to-
wards the discussions on dynamic procedures of combinato-
rial auctions.

Dynamic auctions refer to any auction mechanisms based
on price adjustment process (Gul and Stacchetti 2000;
Ausubel 2006). A dynamic auction can be described as a
rule for adjusting prices given buyers’ demand correspon-
dences (i.e., bids) and a rule for specifying an allocation
(i.e., determining who gets the goods) (Gul and Stacchetti
2000). Assume that a seller wishes to sell a set of indivisible
items to a number of buyers. The seller announces the cur-
rent prices of the items and the buyers respond by reporting
the bundles of items they wish to buy at the given prices. The
seller then calculates the excess demand and increases or de-
creases the prices according to whether the excess demand
is positive or negative. This iterative process continues until
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all the selling items can be sold at the prices at which the
demand is balanced.

There are a few reasons to believe that a dynamic auction
mechanism can be “easier” than a one-shot combinatorial
auction. On the one hand, from the buyer’s perspective, a
buyer only has to decide which items to buy at given prices
at each round without requiring to consider different bundle-
price combinations. Therefore the bidding language can be
simpler. On the other hand, from the seller’s point of view,
the process of discovering market-clearing prices has been
split into a sequence of decision-making rounds, therefore
its complexity could be resolved to certain extent. However,
as we will see, the core decision-making problems in dy-
namic auctions are proved to be computationally intractable
if we do not apply any restrictions on buyers’ value func-
tions.

Different from one-shot combinatorial auctions, the main
issue of a dynamic auction is whether the procedure can lead
to an equilibrium state (Walrasian equilibrium) at which all
the selling items are effectively allocated to the buyers (equi-
librium allocation) and the price of each bundle of items
gives the buyers their best values (equilibrium price). It
has been observed that without certain assumptions on buy-
ers’ value functions, there is no guarantee for a dynamic
auction to converge toward an equilibrium (Gul and Stac-
chetti 1999). Kelso and Crawford (1982) proposed a condi-
tion, named gross substitutes (GS), on buyers’ value func-
tions, which guarantees the existence of Walrasian equi-
libria. Gul and Stacchetti (1999) introduced two alterna-
tive conditions that are equivalent to GS and demonstrated
that if no complementarities are allowed, these conditions
are “almost” necessary to guarantee a Walrasian equilib-
rium. Sun and Yang (2006; 2009) extended the condition
to gross substitutes and complements (GSC), which allows
the present of complementarities. A set of procedures for
finding Walrasian equilibria were developed by (Gul and
Stacchetti 2000; Ausubel 2006) (for the economies with GS)
and by (Sun and Yang 2009) (for the economies with GSC).
However, none of these procedure is polynomial. In this
paper, we present a dynamic auction procedure to discover
Walrasian equilibria for any GSC economy in polynomial
time.

The paper is organized as follows: the next section intro-
duces the basic concepts and problems of the market model
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and show the problem of dynamic auction in general is NP-
complete. Section 3 presents two key results on GSC: a
demand correspondence under GSC is the base of a ma-
troid. Sections 4&5 present a combinatorial optimization
algorithm, which can be used to solve the problems of ef-
ficient allocation and price adjustment. Section 5 presents
our auction algorithm and prove its correctness and conver-
gency. Finally we conclude the work with a short remark on
the related work.

The market model

Consider a market situation where a seller wishes to sell a
finite set of indivisible items to a finite number of buyers.
Each buyer has a private value over each bundle of items.
Formally, let E = (N ∪ {0}, X, {ui}i∈N) be an economy,
where N = {1, 2, · · · , n} is the set of buyers, 0 represents
the seller, X is the set of items and ui the buyer i’s value
function. We assume that the seller values each bundle of
items at zero. Any subset A of items, i.e., A ⊆ X , is called
a bundle. We use |Y | to denote the number of elements in
the set Y .

A price vector p is a function p : X → R
+ that assigns

a non-negative real number to each item in X . For each
a ∈ X , we write pa, instead of p(a), to indicate the price of
item a under the price vector p.

Bidder’s valuation

We assume that each buyer i has an integer value function,
i.e., ui : 2X → Z

+, which assigns each bundle A of items an
integer ui(A) (in the unit of money) as the buyer’s valuation
to the bundle with ui(∅) = 0. Following (Gul and Stacchetti
2000), we assume that each buyer has a quasilinear prefer-
ence. We also assume that each buyer’s value function is
monotonic, i.e., for all A ⊆ B ⊆ X , ui(A) ≤ ui(B).

In addition, the following standard notions will be used
throughout the paper (Gul and Stacchetti 2000; Ausubel
2006; Sun and Yang 2009):

• Indirect utility: Vi(p) = max
A⊆X

(ui(A) −
∑

a∈A pa).

• Demand correspondence: Di(p) = arg max
A⊆X

(ui(A) −
∑

a∈A pa).

• Minimum demand correspondence: D∗
i (p) = {A ∈

Di(p) : |A| ≤ |B| for all B ∈ Di(p)}.

• Lyapunov function: L(p) =
∑

a∈X

pa +
∑

i∈N

Vi(p).

In the sequent, whenever we consider a single buyer, we
drop the subscript of the buyer from all the notations we
introduced above for the sake of simplicity.

Efficient allocations and Walrasian equilibria

Given an economy E = (N∪{0}, X, {ui}i∈N), the purpose
of auction is to allocate the items in X to the buyers. An
allocation of X is a function π : N ∪ {0} → 2X such
that π(i) ∩ π(j) = ∅ for all i, j ∈ N ∪ {0}, i 6= j and
⋃

i∈N∪{0} π(i) = X . Note that π(0) represents the unsold

items. We say an allocation π∗ of X is efficient if π∗(0) = ∅

and
∑

i∈N ui(π
∗(i)) ≥

∑

i∈N ui(π(i)) for every allocation

π of X . We let R(N) =
∑

i∈N ui(π
∗(i)).

Definition 1 A Walrasian equilibrium of the economy E is a
pair (p, π), where p is a price vector and π is an allocation
of X such that π(0) = ∅ and π(i) ∈ Di(p) for all i ∈ N .

If (p, π) is a Walrasian equilibrium of E, we call p an
equilibrium price vector and π an equilibrium allocation.
Obviously any Walrasian equilibrium allocation is efficient.

Dynamic auction: an informal discription

Assume that a seller sells a set of indivisible items to a num-
ber of buyers using the following procedure.

(1) Initially set the price vector p to a starting price vector
p

0.

(2) Ask each buyer i to report her demand Di(p).

(3) The seller makes a decision to the following problems:

i). determine if an efficient allocation exists. If yes, stop.

ii). determine which items have excess demand (positive or
negative). Reset the prices of the items and go to (2).

Obviously the complexity of the above procedure mainly
lies in two decision-making problems in step (3), which are
referred to as the Efficient Allocation Problem (EAP) and the
Price Adjustment Problem (PAP), respectively.

Proposition 1 The efficient allocation problem is NP-
complete.

With respect to PAP, the following result is given by (Sun
and Yang 2009).

Proposition 2 (Sun and Yang 2009) Given an economy E,
p is a Walrasian equilibrium price vector if and only if it is
a minimizer of the Lyapunov function L with its value L(p)
equal to R(N).

According to Gul and Stacchetti (1999, Lemma 6) and the
above Proposition 1, minimizing Lyapunov function is also
an NP-hard problem.

Gross substitutes and complements condition

As we have mentioned in the introduction, even if we
would have devised a tractable procedure for dynamic auc-
tions, we cannot guarantee that the procedure converges
to a Walrasian equilibrium without restrictions on buyers’
value functions (Gul and Stacchetti 1999). However, Gul
and Stacchetti (2000) showed that if an economy satisfies
Gross Substitutes (GS), then a Walrasian equilibrium ex-
ists. Note that under GS, no complementarity among items
is allowed1. The problem of designing dynamic auction
mechanisms for economies with complementarities has been
a major challenge in auction theory (Sun and Yang 2006;
2009). A large amount of real-world problems, such as the
sale of computers and software packages to customers, the
allocation of workers and machines to firms, the assignment
of takeoff and landing slots to airlines, and so on, require

1Roughly speaking, two items are substitutable to a buyer if the
combination of two does not give her extra value; otherwise, they
are complementary.
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such a mechanism. To solve the problem, Sun and Yang
(2006) extended GS into the following condition.

Definition 2 (Sun and Yang 2006)2 A value function u of a
buyer satisfies the condition of gross substitutes and comple-
ments (GSC) w.r.t. a partition (X1, X2) of X if for any price
vectors p and q with pa ≤ qa for all a ∈ Xj (j = 1 or 2)
and pa ≥ qa for all a ∈ (Xj)c, and any bundle A ∈ D(p),
there exists a bundle B ∈ D(q) such that {a ∈ A ∩ Xj :
qa = pa} ⊆ B and {a ∈ Ac ∩ (Xj)c : qa = pa} ⊆ Bc.
Here Ac represents the complement of A.

It is easy to see that GS is a special case of GSC when
either X1 or X2 is empty. To understand GSC, it is better to
gain an intuition of GS. GS means that if the prices of items
were increased, the buyer would still want to buy the items
the prices of which have not increased. GSC then says that
if all the selling items can be divided into two categories,
say software and hardware, increasing the prices of items in
one category and decreasing the prices of items in the other
category would not affect the demand of other items which
prices remain the same.

We say an economy E = (N ∪ {0}, X, {ui}i∈N ) has
the GSC property w.r.t. a partition (X1, X2) of X if each
buyer’s value function satisfies GSC w.r.t. (X1, X2).

Sun and Yang (2009) shows that any economy that sat-
isfies GSC has a Walrasian equilibrium. In addition, Sun
and Yang devised a dynamic auction procedure with dou-
ble tracks (prices of the items in X1 increase and prices
of the items in X2 decrease), which can discovery a Wal-
rasian equilibrium. Unfortunately the procedure is not poly-
nomial. In this paper we will propose a new dynamic proce-
dure which is polynomial and also guarantees to converge to
a Walrasian equilibrium. Before we proceed, let us present
a few technique lemmas.

Lemma 1 Suppose u has the GSC property and fix a price
vector p. For any A ∈ D(p), B ∈ D∗(p), if U ⊆ B \ A,
there exists a bundle T ⊆ A \ B such that (B \ U) ∪ T ∈
D∗(p).

Gul and Stacchetti (2000) showed that if an economy sat-
isfies GS, then a Walrasian equilibrium exists. The key tech-
nique they used is matroid theory (Schrijver 2004). We will
use the same technique to develop our algorithm.

A matroid is a pair (X, I) where X is a finite set and I is
a set of subsets of X such that (i). ∅ ∈ I , (ii) A ⊆ B ∈ I
implies A ∈ I , and (iii) A, B ∈ I and |A| < |B| implies
that there is an a ∈ B \ A such that A ∪ {a} ∈ I . A set
A ∈ I is called a base if A is maximal in I with respect to
set inclusion. See (Schrijver 2004) for more details.

Lemma 2 Suppose u has the GSC property. For any price
vector p, the pair (X,

⋃

B∈D∗(p) 2B) is a matroid, where

2B is the power set of B. Moreover, the set of bases of the
matroid is D∗(p).

One of the important properties of a matroid we will fre-
quently use is: for any A, B ∈ D∗(p), if a ∈ A \ B, then
(A \ {a}) ∪ {b} ∈ D∗(p) for some b ∈ B \ A ((Schrijver
2004) Theorem 39.6).

2In (Sun and Yang 2006), GSC was stated in a different way
which is equivalent to this form (Sun and Yang 2009).

Graph representation of demand situations

In this section, we show that the problem of finding efficient
allocations can be converted into a pure combinatorial opti-
mization problem.

Demand situations and NX graphs

Given an economy E = (N ∪ {0}, X, {ui}i∈N ), we call
D = (Di)i∈N a demand situation of E if Di ⊆ 2X for all
i ∈ N . Obviously for any price vector p, (Di(p))i∈N is a
demand situation of E.

We can represent a demand situation with a bipartite. Let
GNX = (N ∪X, ENX) be a graph where ENX = {(i, a) :
i ∈ N and a ∈ A for some A ∈ Di}. We call GNX the NX
graph of the demand situation.

Example 1 Let N = {1, 2, 3} and X = {a, b, c, d}. The
demand correspondences of the buyers at price p are D1 =
{{a}, {b, c}}, D2 = {{a, b}, {c}}, D3 = {{c}, {c, d}}.

One may think that it would be “more accurate” if we rep-
resent a demand situation by using an AND-OR graph be-
cause obviously an NX graph cannot represent the full infor-
mation of its corresponded demand situation (for instance,
the graph does not recognize the difference between D1 and
D2). However, we will find that the NX graph representa-
tion is more convenient and useful if the demand situation is
a collection of matroids.

Quasi-matching

Let GNX = (N ∪ X, ENX) be the NX graph of a demand
situation D = (Di)i∈N . A set M of edges in GNX is a
matching if all edges in M are pairwise disjoint (no endpoint
in common). M is said to be a quasi-matching in D if

1. for any (i, a), (j, b) ∈ M , a = b implies i = j, that is, no
endpoint in X is in common.

2. for each i ∈ N , there is a B ∈ Di such that {a ∈ X :
(i, a) ∈ M} ⊆ B.

It is not hard to see that a quasi-matching determines an
allocation of X . We write πM to denote the allocation that
is determined by M , that is,

πM (i) = {a ∈ X : (i, a) ∈ M} for all i ∈ N ,

πM (0) = X \
⋃

i∈N πM (i).

Example 2 Consider the demand situation in Example 1
again. The bold lines in the graph shows a quasi-matching,
determines the allocation: π(0) = ∅, π(1) = {a}, π(2) =
{b} and π(3) = {c, d}.

A quasi-matching M is said to be maximum if (i) it con-
tains a maximum cardinality matching of GNX and (ii) if
M ′ is a quasi-matching, M ⊆ M ′ implies M = M ′. Note
that condition (i) will play an important role, which guaran-
tees that each buyer can be allocated at least one item if it is
possible meanwhile there is a demand from this buyer.
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Maximum quasi-matching algorithm

In this section, we develop a polynomial algorithm to solve
the problem of efficient allocation. We will see also in the
next section that with this algorithm the problem of price
adjustment can also be solved in polynomial time.

The standard technique in graph theory to find maximum
matchings is augmenting. We will use the same technique to
find a maximum quasi-maching. In stead of finding alternat-
ing paths in the NX graph, we need to extend the NX graph
into a directed graph to specify alternating paths.

Extended NX graph

Given a demand situation D = (Di)i∈N and a buyer i, we
say that x is substitutable by y w.r.t. A, denoted by [A, x, y]i,
if x ∈ A, y ∈ X \A and there is a bundle B ∈ Di such that
A \ {x} ∪ {y} ⊆ B.

Let M be a quasi-matching in the NX graph GNX =
(N ∪ X, ENX). We extend GNX into a digraph GM =
(N ∪X, ENX ∪ (

⋃

i∈N EM
i )) by adding the following arcs

(directed edges) to GNX :

EM
i = {(a, b) : a ∈ πM (i), b ∈ X\πM(i) and [πM (i), a, b]i}

Meanwhile, each edge (i, a) ∈ ENX is converted to a di-
rected edge with the direction from N to X .

Example 3 Let N = {1, 2} and X = {a, b, c, d}. Con-
sider a demand situation D = (Di)i∈N where D1 =
{{a}, {b}, {c}} and D2 = {{b, c, d}}. Assume that M =
{(1, c), (2, b), (2, d)}.

The figure shows the extended NX graph of the demand sit-
uation w.r.t. M (bold arrows represent the quasi-matching,
shaded nodes stand for the allocated items and dotted arrows
show the extended arcs).

For the readers who are familiar with matroid theory, it is
easy to find the similarity between the extended NX graphs
and the graphs of matroid union (see (Schrijver 2004) Sec-
tion 42.3). However, augmenting a quasi-matching is more
complicated than augmenting a matroid union.

A path P = (a0, a1, · · · , ak) in the extended NX graph
GM is called an M-augmenting path if

1. aj ∈ X for all j = 0, 1, · · · , k.

2. there is an i0 ∈ N such that πM (i0)∪{a0} ⊆ B for some
B ∈ Di0 .

3. ak ∈ πM (0).

We then augment M along P via the following procedure:

1. Set M ′ := M .

2. For each j = k, · · · , 1, set

M ′ := (M ′ \ {(ij , aj−1)}) ∪ {(ij, aj)}

where ij is the unique buyer such that aj−1 ∈ πM ′

(ij).

3. M ′ := M ′ ∪ {(i0, a0)}.

The outcome M ′ of the augmenting process is denoted by
M ⊲⊳ P .

Note that the key difference between augmenting a quasi-
matching and augmenting a matroid union is that to aug-
ment a matroid union, we only need to find a new element
that can be added to the union while to augment a quasi-
matching, we not only need to allocate an unallocated item
but also have to redirect the existing allocation to swap items
between different bundles in a demand correspondence. The
idea of the above procedure is: in order to allocate a unal-
located item ak, if all buyers who demand this item have
received a full bundle, we rearrange the allocation through a
sequence of swapping so that a buyer who has not received
a full bundle can get an item after a few swaps. This proce-
dure is done backward along the augmenting path. Note that
the special property of matroid allows us to switch between
different bundles in a demand correspondence by swapping
a single element (see (Schrijver 2004) Section 39.5).

Consider the demand situation and the quasi-matching in
Example 3. There is an M-augmenting path P = (c, a). Af-
ter the M-augmentation by P , the quasi-matching becomes
{(1, a), (2, c), (2, b), (2, d)}, which determines an efficient
allocation.

Theorem 1 Let D = (Di)i∈N be a demand situation such
that for all i ∈ N , Di is the set of bases of a matroid on X .
For any quasi-matching M and any M-augmenting path P ,
M ⊲⊳ P is a quasi-matching and |M ⊲⊳ P | = |M | + 1.

The algorithm

After the standard setting of the augmenting technique, we
are now ready to present our algorithm of calculating a
maximum quasi-matching in an NX graph.

MAXIMUM QUASI-MATCHING ALGORITHM

Input: A demand situation D = (Di)i∈N .
Output: A maximum quasi-matching M .

(1) Construct the NX graph GNX of D.

(2) Calculate a maximum matching M0 in GNX and set
M := M0.

(3) Set SM := S1 ∪ · · · ∪ Sn; TM := πM (0), where

Si := {a ∈ X \ πM (i) : πM (i)∪ {a} ⊆ A for some A ∈ Di}

(4) Generate the extend NX graph GM as specified above.

(5) For each a ∈ TM , apply BFS to find a shortest M-
augmenting P from SM to a in GM . If none exists, stop.

(6) Set M := M ⊲⊳ P and go to step (3).

The algorithm is a combination of the algorithm for car-
dinality bipartite matching and the algorithm for maximum
matroid union (see (Schrijver 2004) Chapters 16 & 42). The
complexity of computing maximal bipartite matching in the
NX graph is in O(|N ∪X |2) or even less. The complexity of
computing maximum matroid union is in O(|N ∪D∪X |3),
where D =

⋃

i∈N Di. Therefore the complexity of calculat-

ing maximum quasi-matching is in O(|N ∪D ∪X |3). The
reader is invited to practice the algorithm using Example 3.
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Note that if SM ∩ TM 6= ∅, each element in the intersection
is a shortest path.

The following theorem shows the correctness of the algo-
rithm.

Theorem 2 Let D = (Di)i∈N be a demand situation such
that for all i ∈ N , Di is the set of bases of a matroid on X .
M is a maximum quasi-matching if and only if there is no
M-augmenting path from SM to TM in GM .

The algorithm for dynamic auctions

In this section, we present an algorithm for dynamic auction
under GSC. Our algorithm is designed in spirit of (Sun
and Yang 2009)’s double track auction (DTA) procedure.
However, it is more general than DTA because it can be
used for ascending or descending with or without comple-
mentarities. The difference is that our algorithm converges
to any Walrasian equilibrium price vector, not necessarily
the smallest one.

DOUBLE-DIRECTION AUCTION (DDA) ALGORITHM

(1) Announce an initial price vector p
0.

(2) At round t, invite each buyer i to submit her demand
correspondence Di(p

t).

(3) Calculate a maximum quasi-matching M in the ex-
tended NX graph of the current demand situation. Let
πM be the allocation determined by M .

(4) If πM is a Walrasian equilibrium allocation, stop; other-
wise, adjust price vector p

t+1 as follows:

pt+1
a :=







pt
a + 1, if a ∈ U ;

pt
a − 1, if a ∈ V ;

pt
a, otherwise,

where

U =
⋃

{πM (j) : j ∈ N&
⋃

B∈Dj(pt) B ⊆ X \ πM (0)}

V = πM (0) \
⋃

i∈N

⋃

B∈Di(pt)

B,

(5) Got to step (2) for next round.

To understand the price adjustment mechanism (step (4)),
notice that

⋃

B∈Di(p) B represents all the items that buyer

i has expressed interest to buy. X \ πM (0) represents the
items that have been allocated by M . So

⋃

B∈Di(pt) B ⊆

X \ πM (0) means that all the items buyer i is interested in
have been allocated. As a result, all the items in the set U
are demanded and already allocated. Most importantly, as
we will shown in the following theorem, if M does not lead
to an efficient allocation, the set U is non-empty, which in-
dicates a positive excess demand. One the other hand, since
πM (0) contains all the items that have not been allocated by
M , the set V specifies the items that have not been allocated
and no buyer is interested to buy. The pricing policy is then
increasing the prices of all the items in U and decreasing the
prices of the items in V .

Theorem 3 Suppose that E = (N ∪ {0}, X, {ui}i∈N) is
an economy that has the GSC property w.r.t. the common
partition (X1, X2) of X . Set the initial price vector p

0 as

follows:

p0
a :=

{

0, if a ∈ X1;
M, if a ∈ X2.

where M > max
i∈N

ui(X). Then the above double-direction

auction procedure converges to a Walrasian equilibrium in
finite rounds. The overall complexity of the procedure is in
O(|N ∪ D ∪ X |4), where D = max

t

⋃

i∈N Di(p
t).

Note that GSC plays the most important role in the result be-
cause it guarantees that the minimization of Lyapunov func-
tion has integer solutions.

Conclusion and related work

We have presented a dynamic auction procedure for discov-
ering Walrasian equilibrium in an economy that satisfies the
GSC property. The computational issues on dynamic auc-
tions are discussed. Firstly, we have shown that the efficient
allocation problem in dynamic auction in general is NP-
complete. Secondly, we have developed an algorithm cal-
culating a maximum quasi-matching. The algorithm solves
both of the problems of efficient allocation and price ad-
justment in polynomial time. Finally, we have introduced a
double-direction auction algorithm and have shown that the
algorithm converges to a Walrasian equilibrium with GSC
economy also in polynomial time.

Computational issues on combinatorial auctions have
been studies intensively in the AI literature. Most of the
existing results can be found in (Cramton et al. 2006). The
term of dynamic auction has been used in the literature for
different settings. The background related to our setting can
be found in (Milgrom 2004; Ausubel 2006). Specifically,
Lehmann et al. (2006) discussed the computational issues
of dynamic auctions with GS and submodular economies.
To the best of our knowledge, the computational issues of
dynamic auction in the economies with complementarities
have not been sufficiently explored.

Appendix: Proof of Theorems

(Due to space limitation, we omitted the proof of two lemmas.)

Proof of Proposition 1: To show that the problem EAP is in NP,
pick up a bundle Bi from each buyer’s demand correspondence and
check if it is an allocation of X.

To show that EAP is NP-complete, we prove that EXACT
COVER, one of Karp’s 21 NP-complete problems, polynomially
transforms to EAP. Given a collection S of subsets of X, we
duplicate S as the demand correspondence of each buyer, i.e.,
Di(p) = S for all i ∈ N . If there is an exact cover S∗ ⊆ S
such that |S∗| = n, it is an efficient allocation of the economy. By
varying n from 1 to |X|, we can discover an exact cover if it exists.
�

Proof of Theorem 1: We prove the statement by induction on the
length of P . In the case when P is a single point {a0}, by the
definition of M-augmenting path, there is a bundle B ⊆ Di0

such

that πM (i0)∪{a0} ⊆ B. It implies that after the augmentation by

P , πM
′

(i0) ⊆ B. On the other hand, we know a0 ∈ πM (0). After

removing a0 from πM (0) to πM (i0), the allocation is still valid.
Therefore M ′ is a quasi-matching. Obviously |M ′| = |M |+ 1 for
(i0, a0) 6∈ M .
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Now assume that the statement holds for any M-augmenting
path which length is no more than k − 1. Consider an M-
augmenting path P = (a0, a1, · · · , ak). Since there is an arc from
a0 to a1, by the construction of the extended NX graph, there is a
unique buyer i1 ∈ N such that a0 ∈ πM (i1), a1 ∈ X \ πM (i1)
and [πM (i1), a0, a1]i1 . Consequently, there is a bundle B ∈ Di1

such that (πM (i1) \ {a0}) ∪ {a1} ⊆ B. Since a0 ∈ πM (i1),

(i1, a0) ∈ M . We let M̂ = M \{(i1, a0)} and P̂ = (a1, · · · , ak).

Then P̂ is an M̂ -augmenting path in GM̂ (note that the only

differences between GM and GM̂ are the arcs that related to node
a0). By the inductive assumption, M̂ ⊲⊳ P̂ is a quasi-matching

and |M̂ ⊲⊳ P̂ | = |M̂ | + 1 = |M |. Let M̂ ′ = M̂ ⊲⊳ P̂ and

M ′ = M ⊲⊳ P . Because a0 is not in path P̂ , the first k − 1 steps

in the constructions of M̂ ′ and M ′ are exactly the same. At the

last step of the construction of M̂ ′, we have (i1, a1) ∈ M̂ ′ (if it
is not the case, we can enforce it to be true). Since (i1, a0) has

be removed from M̂ , the only difference between M̂ ′ and M ′ is
(i0, a0), which belongs to M ′ not the other. Obviously M ′ is still
a quasi-matching because there is a bundle B ∈ Di0

such that

πM (i0) ∪ {a0} ⊆ B. It implies that πM
′

(i0) ⊆ B. Meanwhile

we have |M ′| = |M̂ ′| + 1 = |M | + 1. �

Proof of Theorem 2: To show sufficiency, assume that there is
an M-augementing path P from SM to TM in GM . By Theorem
1, M ⊲⊳ P is a quasi-matching and |M ⊲⊳ P | > |M |. Accord-
ing to the augmentation procedure, M ⊲⊳ P contains a maximal
matching in the NX graph if M does. Thus M is not maximal, a
contradiction.

To show necessity, let (X, I) be the union of the matroids
{(X, D̄i)}i∈N (see Lemma 2). For any maximal quasi-matching

M , let πM be the allocation determined by M . It turns out
that I =

i∈N
πM (i) ∈ I. If I is not maximal in I, there is

a ∈ πM (0) and i ∈ N such that πM (i) ∪ {a} ⊆ D̄i. This
means that M ∪ {(i, a} is a quasi-matching, which contradicts
the fact that M is maximal. This is to say that any maximal
quasi-matching determines a maximal matroid union. According
to Theorem 42.4 (Schrijver 2004), for any b ∈ TM , there is no
augmenting path from SM to b in the matroid union graph. Since
an augment path in the matroid union graph uniquely corresponds
to an M-augmenting path in the extended NX graph, we conclude
that there does not exist an M-augmenting path from SM to TM in
GM . �

Proof Theorem 3: Suppose that the auction procedure proceeds
to a stage at which a Walrasian equilibrium has not been reached.
Let p

t be the price vector at round t and p
t+1 the updated price

vector as specified at step (4) of the above algorithm. According to
(Sun and Yang 2009), the difference of Lyapunov function values
at prices p

t and p
t+1 is:

L(pt)−L(pt+1) =
i∈N

( min
B∈Di(p

t)
a∈B

(pt+1
a −p

t

a))−
a∈X

(pt+1
a −p

t

a)

(1)
According to the price adjustment mechanism (step (4) in the algo-
rithm), the above equation leads to:

L(pt) − L(pt+1)
= (

i∈N

min
B∈Di(p

t)
(|B ∩ U | − |B ∩ V |)) − (|U | − |V |)

= (
i∈N

min
B∈Di(p

t)
|B ∩ U |) − (|U | − |V |)

= (
i∈N

min
B∈Di(p

t)
|B ∩ U | − |U |) + |V |

If U = ∅ but V 6= ∅, the Lyapunov function has a positive
reduction after the price adjustment, i.e., L(pt) − L(pt+1) > 0.

Next we prove that if V = ∅ and M does not determine an

equilibrium allocation, then U 6= ∅. Let M be the current max-
imum quasi-matching. We say M to be saturated to buyer i if
πM (i) ∈ Di(p

t). M is saturated if it is saturated to all i ∈ N .
Since M does not lead to an equilibrium allocation, there is at least
one buyer to whom M is not saturated, that is M is not saturated.
If U is empty, for all i ∈ N there is B ∈ D(pt) and b ∈ B

such that b ∈ πM (0). In such a case, M must be saturated to i
because otherwise (i, b) can be added to M through augmentation.
Therefore M is saturated, which is a contradiction.

Finally we prove that if U 6= ∅, then

i∈N

min
B∈Di(p

t)
|B ∩ U | − |U | > 0 (2)

To this end, let N ′ = {i ∈ N :
B∈Di(p

t) B ⊆
i∈N

πM (i)}.

It turns out that U =
i∈N′ πM (i). Furthermore, we have

i∈N

min
B∈Di(p

t)
|B ∩ U | ≥

i∈N′

min
B∈Di(p)

|B ∩ U | =

i∈N′

min
B∈Di(p

t)
|B| >

i∈N′

|πM (i)|.

The last inequality is due to M is not saturated to at least one
buyer in N ′. We conclude that equation (2) holds, which im-
plies that the Lyapunov function has a positive reduction after the
price adjustment. Since the Lyapunov function is bounded and
its solutions of minimization are integer vectors ((Sun and Yang
2009) Theorem 3), the algorithm converges to its minimizer no
more than m|X| rounds, where m = maxi∈N ui(X). Since the
complexity for solving EAP and PAP is O(|N ∪ D ∪ X|3), and
O(|N ∪D∪X|2) respectively, the overall complexity of the algo-
rithm is in O(|N ∪ D ∪ X|4) (assume that m is a constant). �

References
Lawrence M. Ausubel. An efficient dynamic auction for heteroge-
neous. American Economic Review, 96(3):602–629, June 2006.

Peter Cramton, Yoav Shoham, and Richard Steinberg. Combinato-
rial Auctions. The MIT Press, 2006.

Faruk Gul and Ennio Stacchetti. Walrasian equilibrium with gross
substitutes. Journal of Economic Theory, 87(1):95–124, July 1999.

Faruk Gul and Ennio Stacchetti. The english auction with differ-
entiated commodities. Journal of Economic Theory, 92(1):66–95,
May 2000.

Jr Kelso, Alexander S and Vincent P Crawford. Job match-
ing, coalition formation, and gross substitutes. Econometrica,
50(6):1483–1504, November 1982.

Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinato-
rial auctions with decreasing marginal utilities. Games and Eco-
nomic Behavior, 55(2):270–296, May 2006.

Paul Milgrom. Putting auction theory to work. Cambridge Univer-
sity Press, 2004.

Michael H. Rothkopf, Aleksandar Pekeč, and Ronald M. Harstad.
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