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Abstract

We consider risk-sensitive generalizations of Nash and cor-
related equilibria in noncooperative games. We prove that,
except for a class of degenerate games, unless a two-player
game has a pure Nash equilibrium, it does not have a risk-
sensitive Nash equilibrium. We also show that every game
has a risk-sensitive correlated equilibrium. The striking con-
trast between these existence results is due to the different
sources of randomization in Nash (private randomization)
and correlated equilibria (third-party randomization).

1 Introduction

The game-theoretic approach to modeling multi-agent inter-
action assumes that players in a game want to maximize their
expected utility. But in many settings, players instead often
want to maximize some more complicated function of their
utility. In this paper, we ask the following natural question:
Can we extend the familiar notions of Nash and correlated
equilibria to settings where players are sensitive to risk?

In a noncooperative game, the utility for each player de-
pends on the actions taken by all players. In a Nash equi-
librium of a game, each player chooses an action from a
distribution, called a strategy, that maximizes her expected
utility when she assumes the strategies of the other players
are held fixed. A correlated equilibrium (Aumann 1987)
is a well-known generalization of a Nash equilibrium. In a
correlated equilibrium, a third party draws actions for each
player from a joint distribution on actions, and each player
then decides deterministically whether to play their recom-
mended action or switch to another one; the joint distribution
is a correlated equilibrium if no player ever has an incentive
to switch. A Nash or correlated equilibrium is an inherently
stable state of the game, and thus serves as both a prescrip-
tive and descriptive characterization of the behavior of play-
ers in a multi-agent setting. It is well-known that every game
has at least one Nash equilibrium (Nash 1950), and therefore
also at least one correlated equilibrium.

The expected utility framework for games is obviously
very general, but it does exclude the possibility that play-
ers in the game have preferences that depend on the entire
distribution of utility, and not just on its expectation. For ex-
ample, if a player is sensitive to risk, her objective might be
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to choose a strategy that maximizes E[utility] — Var[utility].
Indeed, this is the recommendation of modern portfolio the-
ory, and a version of this mean-variance objective is widely
used by investors in financial markets. In general, we re-
fer to the objective maximized by a player as her preference
function.

In this paper, we define generalizations of Nash and cor-
related equilibria which permit players to maximize pref-
erence functions that may differ from expected utility. We
will later denote these generalized equilibrium concepts as
F'-Nash and F'-correlated equilibria, where F' represents the
players’ preference functions. In this more general setting,
the classical arguments for the existence of equilibria no
longer apply. So under what conditions can we guarantee
— or rule out — the existence of a F'-Nash or F'-correlated
equilibrium?

To address this question, we first note that there are two
major differences between the original definitions of Nash
and correlated equilibria. One is that a correlated equilib-
rium (as the name suggests) may induce correlations among
the actions chosen for the players, whereas all players’ ac-
tions are independent in a Nash equilibrium. The other dif-
ference is the source of randomization: In a Nash equilib-
rium, each player uses private randomization to choose an
action from her distribution, while in a correlated equilib-
rium the randomization is performed by a third party. The
first difference is the only salient one, while the latter differ-
ence is largely a matter of interpretation: a correlated equi-
librium in which there is no correlation among the players’
actions is, by definition, a Nash equilibrium.

These differences also exist between the definitions of F'-
Nash and F'-correlated equilibria, but in this case neither dif-
ference is superficial. Our results in this paper show that, for
a large and natural class of risk-sensitive preference func-
tions, the source of randomization has a dramatic impact on
the existence of F'-Nash and F'-correlated equilibria. Before
turning to a discussion of our main contributions, we review
the existing literature.

The question of existence of F'-Nash equilibria for alter-
native preference functions has long been studied. For ex-
ample, it is known from the work of (Debreu 1952) that
F'-Nash equilibria always exist if the preference function
for each player is continuous and concave in her strategy.
However, as first observed by (Crawford 1990), many natu-



ral choices for preference functions are convex in a player’s
strategy, especially those that encode some notion of risk-
sensitivity. This is unsurprising: A preference function that
is convex in a player’s strategy implies that, other things
being equal, the player dislikes increasing her randomiza-
tion, which is quite similar to saying that the player is risk-
sensitive.

Many authors (e.g., (Crawford 1990), (Dekel, Safra, and
Segal 1991), (Nowak 2005)) have shown that, for several
well-motivated convex preference functions, F'-Nash equi-
libria do not necessarily exist. These negative results are al-
most always obtained in the same way: by exhibiting, for
each preference function of interest, a specific game that
does not have an F'-Nash equilibrium for that preference
function. For example, (Nowak 2005) described a simple
2 x 2 game that does not have an F'-Nash equilibrium for the
mean-variance preference function described above. A ma-
jor weakness of this ‘counterexample’ type of result is that
it does not rule out the possibility that the counterexamples
are pathological cases. In other words, could it be that these
counterexamples comprise only finitely or countably many
games? If so, then for any game, one could randomly per-
turb the game by a tiny amount and thereby obtain a nearly
identical game that is guaranteed (with overwhelming prob-
ability) to have an F'-Nash equilibrium. If this were the case,
then current nonexistence results would have essentially no
practical importance.

The first contribution of this paper, in Section 5, is a sig-
nificant generalization of these negative results. We confine
our analysis to a large class of so-called mean-variance pref-
erence functions, which reward higher expected utility but
penalize higher variance of utility, and ask whether F'-Nash
equilibria exist in this case. Intuitively, we might expect
that in an F'-Nash equilibrium players will be disinclined
to choose their actions randomly since, other things being
equal, randomization increases variance. We show that this
intuition is not only correct but extremely general, and limits
the existence of F'-Nash equilibria to a very restricted class
of games — namely, those with either pure Nash equilibria,
or those in which the variance experienced by a player is al-
ready “saturated” by the randomization due to other players.
In fact, we prove that, in a two-player game, if each player’s
utility function is chosen randomly, then with probability 1
the game does not have an F'-Nash equilibrium in which
even a single player ¢ randomizes their choice of action.

Our second contribution, in Section 6, is to observe that an
F'-correlated equilibrium always exists in a game in which
each player has a convex preference function — a class
which includes mean-variance preference functions. We
explain that an F'-correlated equilibrium in a game with
convex preferences is actually a strict generalization of an
equilibrium in beliefs, whose existence was first proved by
(Crawford 1990). We show that, counterintuitively, an F'-
correlated equilibrium need not actually induce any corre-
lation among the behavior of the players — the existence
result is solely a consequence of the different source of ran-
domization. The intuition is that when a third party is re-
sponsible for the randomization, the players only react de-
terministically to the stochastic action proposed for them by
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this third party — in other words, the “variance lies else-
where” from the perspective of each player. We further show
that for some games with convex preference functions there
exists an F'-correlated equilibrium in which each player is
better off than in any equilibrium in beliefs.

2 Preliminaries

A game has n players, indexed i = 1,...,n. Let A; be the

(finite) set of actions available to player ¢. Let the cross-

product A = x}*_;.A; be the set of action profiles, and let
A2 Ay xees

XAifl XAiJrlX-"X.An

be the set of action profiles for all players but player ¢. If
a € A, then we write a; € A; for the ith component of a,
while a_; € A_; denotes dropping a; from a.

Let u; A — R be the utility function for player
i, where u;(a) is the utility to player ¢ under action pro-
file a. For convenience, u;(a) can be equivalently written
wi(ay,...,an) or u;(a;,a_;). We assume that utility func-
tions are bounded but otherwise allow them to be arbitrary.

Let P(S) be the set of distributions on a (finite) set S. A
distribution p € P(A) is called an action profile distribu-
tion, where p(a) is the probability assigned by p to action
profile a. Like utility functions, for convenience p(a) can
be equivalently written p(a1, ..., ay,) or p(a;,a—;)

Forany p € P(A), we write p; € P(A;) for the marginal
distribution of p on A;, while p_; € P(A_;) denotes the
marginal distribution of p on A_;.

If p € P(A) is a product distribution (ie. p(a) =
Hl 1 Pi(ai)), then we call p; the strategy for player i, and
p is the strategy profile for all players. Also, if p; is a de-
generate distribution concentrated on a single action, then
we say that p; is a pure strategy.

For any distribution p € P(A) and action a; € A; we
write p_;|a; for the conditional distribution on A_; given
that a ~ p and a; = a;. Note that if p is a product distribu-
tion, then p_; = p_;|a; for all a; € A;.

The support of p; € P(A;) is defined by supp(p;) =
{a; € A; : pi(a;) > 0}. Also define A(p;) = {p; €
P(A;) : supp(P;) = supp(p;)} to be set of all distributions
in P(.A;) which have the same support as p;.

For convenience, we will sometimes write a; to denote the
degenerate distribution in P(A;) which is concentrated on
the single action a; € A;. Context will make clear whether
a; 1s intended to refer to an action or a distribution.

A real-valued function f : R¥ — R is convex if for all
z,y € RFand \ € [0, 1],

fQz+ (1= Ny) <Af(x) + (1= A)f(y).

A function f is concave if — f is convex.

3 Preference Functions

Players in a game are usually assumed to be interested in
maximizing their expected utility. In order to generalize this
to other possible objectives, we allow the preference func-
tion F; : P(A;) x P(A—;) — R for player 7 to be an arbi-



trary continuous and bounded' function which encodes the
objective of player ¢ in the game. The preference function
depends on the distributions from which the players draw
their actions. For example, if player ¢’s action is drawn from
distribution p; € P(A;), and the other players’ action pro-
file is drawn from distribution p_; € P(A_;), and player ¢
wishes to maximize expected utility, then player ¢’s prefer-
ence function is

F; (pia 13—1') = EaiNPmaﬂ:NfLi [ul (ai’ a—i)]'

Note that F; is defined for all p; € P(A;) and p_; €
P(A_;). In other words, the distributions which are argu-
ments to a preference function can be completely unrelated.
However, as we will see in Section 4 when we define equilib-
ria, we are usually interested in cases where they are linked
in some way. For illustration, we have given examples be-
low of preference functions that have widespread use in risk-
sensitive optimization, particularly in financial markets. In
these expressions, o > 0 is a constant that controls the de-
gree of risk-sensitivity, and for notational compactness we
introduce the following definitions:

E; (pia 13—1') £ Eai"’pha—i"’f’—i [ui(ai’ a—i)]
‘/i(pi, f)fz) £ Va‘rai’\‘piya—i"‘f’—i [ui(aia afi)]

Pref. Function | F;(p;,D—i) = ...

Markovitz (I) | Ei(pi, p—i) — aVi(pi, P—i)
Markovitz (Il) | E; (pi, 13_1) — o/ Vvi(pi, 13_1')
Sharpe Ratio | E;(pi, P—i)/(1 + \/Vi(pi, P-i))

The first two preference functions are based on the
Markovitz criterion for portfolio optimization, while the
Sharpe ratio is another widely-used criterion in portfolio
theory.> Many other choices for financially-motivated pref-
erence functions are available, such as Roy’s ‘safety-first’
criterion. We also note that our use of these functions is
slightly atypical: Investors are usually interested in maxi-
mizing functions of their rate of return, a quantity that is
related to, but technically different from, utility.

3.1 Mean-Variance Preference Functions

Rather than proving our results for specific preference func-
tions, we will prove them for a class of risk-sensitive prefer-
ence functions which subsume the examples given above.

Definition 1. F; is a mean-variance preference function if

1. Fi(pi,Pi) = Gi(Ei(pi,Pi), Vi(pi, i) for some func-
tion G; that is nondecreasing in its first argument.

2. Fj is convex in its first argument.

'The continuity and boundedness assumptions for preference
functions are assumed throughout the paper, and for brevity will
not be repeated.

2We have introduced the constant 1 in the denominator of the
Sharpe ratio only to ensure that it is bounded.
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3. For any nonempty convex subset P C P(A;) and dis-
tribution p_; € P(A_;), if F;(-,p—i) is constant on P,
then both E;(-,p_;) and V;(-,p_;) are constant on P.

The second property is consistent with our desire that F;
encode a sensitivity to risk — if F} is convex in its first argu-
ment, then other things being equal, this implies that player
1 dislikes randomization (recall our comment to this effect
in Section 1).

The third property says that whenever a mean-variance
preference function is constant (with respect to its first argu-
ment) on some convex set, then expected utility and variance
of utility are also constant on that same set. While this prop-
erty may seem harder to justify, it is the case that all the
examples of risk-sensitive functions we gave above satisfy
all the conditions of the definition of a mean-variance pref-
erence function. Due to lack of space, we will only provide
a proof for the case of the Markovitz (I) preference function;
the derivation for the other functions is similar.

Claim 1. The Markovitz (I) preference function is a mean-
variance preference function.

Proof. Let F; be the Markovitz (I) preference function. Fix
any p_; € P(A_;) and nonempty convex subset P C
P(A;). Also choose p},p? € P, and let p} = Ap} +
(1 — \)p? be a point on the line segment connecting p;
and p?, for some A € [0,1]. We will only be concerned
with the behavior of F;(-,p_;) on this line segment, so
we overload notation and define F;(\) = F;(p},p—;) and
Ei(\) = Ei(p}, p—i) and V;(\) = V;(p}, b—s).

We now prove that F;(-,p—;) is convex in its first argu-
ment. Since a function is convex if and only if it is convex
on every line segment in its domain, and p;} and p? were
chosen arbitrarily, it suffices to prove that F;(\) is convex
on the interval [0,1]. A straightforward calculation shows
that ,

d°F;
T2 = 2(B(0) - Bi(1))? e

for A € (0,1). This quantity is nonnegative, implying that
F;(\) is a convex function on (0, 1), and by continuity F; ()
is convex on [0, 1].

Now suppose that F;(-, p—;) is constant on P. We wish to
prove that both F; (-, p—;) and V;(-, p—;) are constant on P.
Again, since p} and pf were chosen arbitrarily, it suffices to
show that F;(\) and V;(\) are constant on the interval [0, 1].

Since F;(\) is constant on the interval [0, 1], the expres-
sion in Eq. (1) must be equal to zero, which implies that
E;(0) = E;(1). Because E;(A) is a linear function, this
means that F;()\) is constant on [0, 1]. Now, by examining
the definition of the Markowitz (I) preference function, we
see that if both F;(\) and E;(\) are constant on some inter-
val, then V;(\) must be as well. O

4 Equilibrium Concepts

Usually, the definitions of Nash and correlated equilibrium
assume that each player wishes to maximize expected util-
ity, but these definitions can be easily generalized to admit
arbitrary preference functions.



The action profile distribution p € P(A) is an F-Nash
equilibrium (F-NE) if p is a product distribution and if for
all players 7

b €arg max Fi(pi, P-i)-

Similarly, an action profile distribution p € P(A) is an
F-correlated equilibrium (F'-CE) if for all players ¢ and ac-
tions a; € A;

a; € arg pig%f();i) Fi(pi, P—ilai).

These definitions are generalizations in the following
sense: If each Fj is the expected utility preference function,
then we recover the usual definitions of Nash and correlated
equilibrium.

We introduce additional terminology to distinguish inter-
esting cases of equilibria. If each player is using a mean-
variance preference function, we will refer to an F-NE
and F'-CE as an MV-Nash equilibrium (MV-NE) and MV-
correlated equilibrium (MV-CE), respectively. Also, if p is
an F-NE, we say it is a non-pure equilibrium if at least one
player in p is using a non-pure strategy.

Having defined F'-NE and F'-CE formally, let us discuss
how these concepts differ with respect to the source of ran-
domization. We momentarily set aside the possibility that
an F'-CE may induce correlations among the behavior of
the players, and consider a product distribution p. By ex-
amining the definitions above, we see that if p is to be an
F-NE, then each player ¢ must prefer the strategy p; at least
as much as any action. On the other hand, if p is to be an
F-CE, then each player ¢« must prefer an action drawn from
p: at least as much as any action. As we stated in Section
1, these are equivalent statements when the preference func-
tions are expected utility. But as we will see in the rest of
the paper, this is emphatically not the case more generally.

5 Sparsity of Mean-Variance Nash Equilibria

In this section, we prove our first main result. We show that
non-pure MV-Nash equilibria fail to exist in all two-player
games, except in degenerate cases. We characterize a “de-
generate” game in a probabilistic fashion, by showing that
if all the utility values in a two-player game are chosen ran-
domly and independently, then the probability that a non-
pure MV-Nash equilibrium exists is zero. Intuitively, it is not
surprising that non-pure MV-NE are so rare. We might even
guess a priori that a player using a mean-variance preference
function will generally not prefer to choose her actions ran-
domly, since this will tend to increase her variance. In fact,
if a player is randomizing her choice of action in an MV-NE,
we show that the variance experienced by that player must
already be “saturated” due to the behavior of the other play-
ers. Moreover, we prove that this saturation is essentially
a degenerate condition. The combination of these facts is
what makes non-pure MV-NE so rare.

We begin the proof of our main result with the following
lemma, which shows that whenever a preference function is
convex in its first argument and maximized at a non-pure
strategy, the preference function must have the same value
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for all strategies which share the support of the maximizing
strategy.

Lemma 1. If a preference function F; is convex in its first
argument, and P is an F-NE, then F;(-,p—;) is constant on
INGH)

Proof. The lemma holds trivially if p; is pure, so suppose
pi is not pure. For shorthand, let f;(-) = F;(-,p—;). Be-
cause A(D;) is a convex set, we know that f; is convex over
A(p;). Since p is an F-NE, we also know that p; is a maxi-
mum of f; on A(P;), and that p; is in the interior of A(p;),
by definition. Since P; is a maximum of f; on A(p;), the
gradient of f; must vanish at p;. And since f; is convex, this
implies that p; is also a minimum of f; on A(p;). This can
only happen if f; is constant on A(p;).

Lemma 1 has the following implication: Suppose each
F; is a mean-variance preference function. By Definition
1, if F; is constant on some convex set (with respect to its
first argument), then the variance of utility is constant on
that same set. So Lemma 1 says that a player in an MV-NE
uses a non-pure strategy only if randomization doesn’t add
to variance, i.e., the variance is already “saturated” for her
by the other players.

We are now ready to prove the sparsity of non-pure MV-
NE in two-player games.

Theorem 1. Consider a two-player game where, for each
player i € {1,2} and action profile a € A, the utility
u;(a) € R is drawn i.id. from an absolutely continuous
distribution (with respect to Lebesgue). Then with probabil-
ity I the game does not have a non-pure MV-NE.

Proof. Let p (P1,D2) be a strategy profile that is a
non-pure MV-NE. Without loss of generality, assume that
| supp(P1)| > |supp(p2)|- Let k& = |supp(p1)|, and note
that we must have £ > 1, or else p would be a pure strat-
egy profile. By Lemma 1, there is a constant C' such that
Fi(p1,p2) = C forall p; € A(P1). Therefore, by Defini-
tion 1, we have that for all actions a1, a} € supp(pP1)

E¢12~f)2 [u(ala aQ)] - E¢12Nf)2 [u(alla aQ)] =0 (2)
Varaz’vf)z [u(ala ag)] - Vara2~l32 [u(a/D ag)] =0 (3)
By the definition of variance
Varll2~f>2 [u(ah a2)] =
E¢12~f)2 [u(alaaQ)z] - E¢12~f)2 [u(alaaQ)]2 4)
and therefore Eq. (2)-(4) together imply
Ea2~f>2 [u(ah a2)2] - Ea2~f>2 [u(a/b a2)2] =0. (5

for all actions a1, a) € supp(p1).
The rest of the proof will be an application of the follow-
ing well-known mathematical facts:

1. If the entries of a matrix M € R(*—1** are drawn i.i.d.
from an absolutely continuous distribution, then for any
fixed vector ¢ € R¥, with probability 1, the rows of M
are linearly independent, and furthermore, the vector ¢
doesn’t belong to the linear span of the rows of M.



2. For any multivariate polynomial P(z1, ...,z ) thatis not
identically zero, if each z; is drawn i.i.d. from an abso-
lutely continuous distribution, then P(x1,...,x5) # 0
with probability 1 (the set of roots of P is an algebraic
variety and therefore has measure zero under a product
distribution of absolutely continuous random variables).

We now show that these two facts imply that, with prob-
ability 1, Eq. (2) and Eq. (5) are not true simultaneously.
Note that Eq. (2) and Eq. (5) each specify k — 1 equations.
Via a suitable renaming of variables, the ¢th equation spec-
ified by Eq. (2) has the form 2?21 Ajxzi; = 0, and the 7th
equation specified by Eq. (5) has the form Z?:l Ajyi; =0,
where each z;;,y;; € R is drawn i.i.d. from an absolutely
continuous distribution, and 25:1 Aj=1.

In other words, we have X\ = b and Y\ = b, where
X,Y € RFXE the last row of both X and Y is the all-
ones vector, and b = (0,0,0,...,0,1). Based on the first
fact above, both X and Y are invertible with probability 1,
so we have A = X~'b = Y ~1b. Now, based on Cramer’s
rule, we get that ((ifctt(())((b)) = ((ifctt((?)) , where X, (resp. Yp)
is the matrix X (resp. Y) when we replace its first column
by b. By simple algebra this is equivalent to demanding that
det(X) det(Yy) —det(Y") det(X;) = 0. Notice that the left-
hand side of this equation is a multivariate polynomial in the
x4;°s and y;;’s. It is easy to show that this polynomial is not
zero for at least one realization of the variables, and thus the
polynomial is not identically zero. Therefore, by the second
fact above, this equation is not satisfied with probability 1.

(]

The previous theorem essentially rules out non-pure MV-
NE, but says nothing about pure MV-NE. So how common
are pure MV-NE? Not any more common than pure Nash
equilibria, by the following theorem, whose proof is omitted
as it is entirely straightforward.

Theorem 2. If p is a pure MV-NE, then p is a pure Nash
equilibrium.

Summing up, we see that there are essentially two kinds
of MV-NE in two-player games: Those that that correspond
to pure Nash equilibria, and degenerate cases. We note that
this conclusion is particularly unexpected in the case of two-
player zero-sum games. In a zero-sum game, one player’s
utility is the negative of the other player’s utility. There-
fore, the variance of utility is always the same for both play-
ers. It is counterintuitive, but nonetheless true, that adding
the same term to both players’ preference functions destroys
nearly all the equilibria.

The preceding analysis suggests that non-pure MV-NE
might not ever exist. Below we give an example proving
otherwise: the well-known zero-sum game ‘Matching Pen-
nies’.

H T
H| +1,-1] —1,+1
T | —1,+1 | +1,—1

The unique Nash equilibrium of this game is a strategy
profile in which each player plays each action with equal
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probability. It is easy to check that this strategy profile is
also an MV-NE when each F; is the Markovitz (I) prefer-
ence function given in Section 3. In fact, under this strategy
profile, each player experiences a variance of 1, which is the
largest possible value for variance in this game — so here
we have an example of the “saturation” property discussed
earlier.

6 Existence of Mean-Variance CE

In the previous section, we showed that non-pure MV-Nash
equilibria are extremely uncommon in two-player games.
The proof hinged on the combination of two facts: (1) a
mean-variance preference function is convex in its first ar-
gument, which means, roughly, that it penalizes players who
play an action randomly; (2) in a non-pure MV-NE, at least
one player prefers randomizing over her actions at least as
much as playing any single action deterministically.

In this section, we prove that, in striking contrast to MV-
Nash equilibria, MV-correlated equilibria always exist. In-
terestingly, the reason is not that an MV-CE allows correla-
tions among the players’ action choices (although this does
have other advantages, as we will explain at the end of this
section). Intuitively, the reason is that an MV-CE does not
require each player to perform her own randomization. In-
stead, a third party is responsible for choosing an action ran-
domly, and the players only need to prefer the action chosen
for them at least as much as any other action. This condi-
tion is substantially easier to meet — essentially, the players
themselves do not pay a penalty for introducing variance,
because the “variance lies elsewhere”. Indeed, we prove
that an F'-CE exists whenever each preference function Fj
is convex in its first argument. The F-CE concept is a strict
generalization of a closely related concept in the economics
literature known as an equilibrium in beliefs, and the exis-
tence proof follows immediately from this relationship. This
proof was was first discovered by (Crawford 1990), but it is
simple and useful for our exposition, so we include it for
completeness.

We begin by stating a well-known extension of Nash’s
original result (Nash 1950) on the existence of Nash equi-
libria.

Theorem 3 (Nash (1950); Debreu (1952)). If each prefer-
ence function I is linear in its first argument, then an F'-NE
exists.

Note that Theorem 3 requires that the preference func-
tions be linear in their first argument, while the mean-
variance preference functions we described in Section 3 are
convex in their first argument. Nonetheless, we are able to
apply Theorem 3 by ‘linearizing’ each convex preference
function, and then observing that the two versions of each
preference function agree on any pure strategy.

Theorem 4. If each preference function F; is convex in its
first argument, then an F-CE equilibrium exists.

Proof. Define the linearization F; of F; to be the following:

Z pi(a:)Fi(ai, p—i) (6)

a; EA;

Fi(pi, P—i) =



Clearly F; is linear in its first argument. By Theorem 3,
there exists a product distribution p € P(.A) such that for
all players %

p; €arg max Fi(qi,D_i) (7

q.€P(A;)
Moreover, by Eq. (7) and the linearity of F; in its first ar-
gument, for any player ¢ and actions a;, a; € supp(p;), we
must have
Fi(ai, p-i) = Fi(aj, p—s) (8)
Now fix any player ¢, action a; € A; such that p;(a;) > 0,
and q; € P(A;), and consider

=
—
Q
=
T
L
~

Fi(ai, p—ilai)

<.

<.

e
o
|

VAW,
o)
L)
P

= Fi(qi, P—ila:)
where we used, in order: p is a product distribution; Eq. (6);
Eq. (8); Eq. (7); convexity of F; in its first argument; P is a
product distribution.

Comparing the first and last line in the chain above proves
that p is an F'-CE. o

Interestingly, although the definition of an F'-CE permits
correlations among the players’ actions, note that the proof
of Theorem 4 does not imply that such an equilibrium can
exist. It only establishes the existence of F'-CE that are prod-
uct distributions (note that, in general, an F'-CE can be a
product distribution without being an F'-NE, unlike the situ-
ation for CE and NE).

We now discuss an example which illustrates that a F'-CE
need not be a product distribution. Moreover, our example
will show that it is possible for all players in a game to bene-
fit from correlating their actions. Taken together, these facts
demonstrate that an F'-CE is a strictly more general — and
potentially more useful — equilibrium concept than an equi-
librium in beliefs.

Consider the well-known ‘Chicken’ game:

C | D
C[6,6]27
D|7,2(0,0

This game has the following interpretation: The players
are driving two cars which are headed towards each other. If
a player swerves, she is a ‘chicken’; otherwise she ‘dares’.
The best outcome for a player is to dare while the other
player chickens. If both players dare, they collide head-on.

This game has three Nash equilibria, including two pure
Nash equilibria. The pure Nash equilibria occur when one
player ‘dares’ and the other ‘chickens’. In the non-pure Nash
equilibrium, each player ‘dares’ with probability 1/3. For
ease of comparison, let us write out the distribution on action
profiles induced by this non-pure equilibrium:

pVF(C,0) =4/9 pV*(C,D) =2/9
ﬁNE(D’C):2/9 ISNE(D’D):l/g
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Now suppose each player is using the Markovitz (I) prefer-
ence function. It can be shown that this game has no non-
pure MV-NE (indeed, even if it did, we know from our re-
sults in Section 5 that a small perturbation of the utilities
would cause all non-pure MV-NE to disappear).

For a suitable choice of the risk parameter «, a product
distribution that is an MV-CE for this game is one in which
each player ‘dares’ with probability 1/4:
pMV P, ) =9/16 pMVPH(C, D) =3/16
pMV =P (D,0) =3/16 MV FH(D,D)=1/16
Note that each player places less weight on ‘dare’ in this
equilibrium, because doing so is helpful for reducing the
variance they experience. However, the Markovitz (I) ob-
jective can be improved even more by correlating the play-

ers’ actions to ensure that both players never dare simulta-
neously:

BMY-CE2(C,C) = 3/5
ijV—CE—Q(D, C) _ 1/5

ﬁNIV_CE_2(C,D) — 1/5
ﬁNIV_CE_2(D,D) — 0/5

7 Conclusion and Future Work

We have studied the existence of risk-sensitive generaliza-
tions of Nash and correlated equilibria. In marked contrast
to classical results, we have shown risk-sensitive Nash equi-
libria seldom exist, while risk-sensitive correlated equilib-
ria always do. We argued that this dichotomy is due to the
differing sources of randomization for each type of equilib-
rium.

While we have shown that risk-sensitive Nash equilibria
seldom exist, we have not yet ruled out the possibility that
an approximate equilibrium always exists; we leave this for
future work. Also, we speculate that it may be possible to
compute a risk-sensitive correlated equilibrium in polyno-
mial time.
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