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Abstract

Many computational problems in game theory, such as find-
ing Nash equilibria, are algorithmically hard to solve. This
limitation forces analysts to limit attention to restricted sub-
sets of the entire strategy space. We develop algorithms to
identify rationally closed subsets of the strategy space under
given size constraints. First, we modify an existing family of
algorithms for rational closure in two-player games to com-
pute a related rational closure concept, called formations, for
n-player games. We then extend these algorithms to apply in
cases where the utility function is partially specified, or there
is a bound on the size of the restricted profile space. Finally,
we evaluate the performance of these algorithms on a class of
random games.

Introduction

Researchers in multiagent systems often appeal to the frame-
work of game theory, attracted by its well understood so-
lution concepts and ability to model a wide variety of sce-
narios. However, many basic game-theoretic analysis oper-
ations, such as characterizing equilibria, are computation-
ally complex (PPAD-complete or NP-complete). Empir-
ical game-theoretic analysis (Wellman(2006)) inherits the
complexity of algorithmic game theory and, in addition,
concerns itself with the construction of game models from
(costly) high-fidelity simulation. Given the dependence of
computational cost on game size, reducing size—in particu-
lar by pruning strategies not relevant to analysis—can have a
large impact on feasibility. However, determining if a strat-
egy is irrelevant can itself be computationally complex, de-
pending on the type of analysis undertaken.

Our goal is to find a restricted game that is minimal in
size, yet conveys (approximately) the same relevant infor-
mation as the base game. Obviously, what information is
relevant depends on the exact type of strategic analysis, how-
ever one common vein in game-theoretic analysis is comput-
ing the regret of profiles. The regret computation is used to
identify equilibria and other approximately stable profiles.
In this context, we desire a restricted game such that the
regret of any profile with respect to the restricted game is
approximately the same as the regret of that profile with re-
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spect to the base game. This objective leads us to employ a
rational closure concept called formation, defined below.

It is important to acknowledge that when we prune strate-
gies, we lose the ability to calculate the regret of profiles not
within the restricted game. As analysts, we can determine
an acceptable tradeoff between this loss and the set of oper-
ations made feasible to us by the reduction.

Notation

A strategic game Γ = 〈N, (Si), (ui)〉 consists of a finite
set of players, N , of size n indexed by i; a non-empty
set of strategies Si for each player; and a utility function
ui : ×j∈NSj → R for each player. We use the symbol
ΓS↓X to denote a restricted game with respect to the base
game Γ, where each player i in ΓS↓X is restricted to playing
strategies in Xi ⊆ Si.

Each profile s is associated with the set of neighboring
profiles that can be reached through a unilateral deviation
by a player. The unilateral deviation set for player i and
profile s ∈ S is Di(s) = {(ŝi, s−i) : ŝi ∈ Si}, and the
corresponding set unspecified by player is

D(s) =
i∈N

Di(s).

Let ∆(·) represent the probability simplex over a set. A
mixed strategy σi is a probability distribution over strate-
gies in Si, with σi(si) denoting the probability player i will
play strategy si. The mixed strategy space for player i is
given by ∆i = ∆(Si). Similarly, ∆S = ×i∈N∆i is the
mixed profile space.

For a given player i, the best-response correspondence for
a given profile σ is the set of strategies which yield the max-
imum payoff, holding the other players’ strategies constant.
Formally, the player i best-response correspondence for
opponent profile σ−i ∈ ∆(S−i) is

Bi(σ−i) = argmax
σ̂i ∈ ∆i

ui(σ̂i , σ−i)

and for ∆ ⊆ ∆(S−i) is Bi(∆) = ∪σ
−i∈∆Bi(σ−i). The

overall best-response correspondence for profile σ ∈
∆(S) is B(σ) = ×i∈NBi(σ−i) and for ∆ ⊆ ∆(S) is
B(∆) = ∪σ∈∆B(σ).
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The symbols Bi(σ−i), Bi(∆), B(σ), and B(∆) cor-
respond to the pure-strategy variants of the best-response
correspondences—allowing for a slight abuse of notation:

Bi(σ−i) = Bi(σ−i) ∩ Si,
Bi(∆) = Bi(∆) ∩ Si,
B(σ) = ×i∈NBi(σ−i),
B(∆) = ∪σ∈∆B(σ).

We introduce symbols for the pure-strategy best-response to
a set of profiles X = ×i∈NXi where ∅ ⊂ Xi ⊆ Si:

Bi(X−i) = Bi ×j∈N\{i}∆(Xj) ,

B
†
i (X−i) = Bi (∆(X−i)) ,
B(X) = ×i∈NBi(X−i),

B
†(X) = ×i∈NB

†
i (X−i).

The best-response correspondences B(·) and B
†(·) have

differing independence assumptions on opponent mixtures
(Bernheim(1984)). Under B(·), each player’s strategies
are best responses to independent mixtures over opponent
strategies; whereas under B

†(·), the strategies are best re-
sponses to joint (correlated) mixtures over opponent strate-
gies.

The regret measures described in this section quantify the
stability of strategies and profiles, respectively. A player’s
regret, ǫi(σi | σ−i), for playing strategy σi ∈ ∆i against
opponent profile σ−i ∈ ∆(S−i) is

ǫi(σi | σ−i) = max
si∈Si

ui(si, σ−i)− ui(σi, σ−i).

Note that this can equivalently be formulated as
ui(σ̂i, σ−i) − ui(σi, σ−i) for any σ̂i ∈ Bi(σ−i). Given an
efficient method for calculating a best-response, the latter
formulation can speed up regret computations, especially if
player i’s strategy set is large or infinite.

Finally, we use the regret of the constituent strategies to
define the regret of a profile. The regret of profile σ ∈ ∆,
is the maximum gain from deviation from σ by any player.
Formally, ǫ(σ) = maxi∈N ǫi(σi | σ−i). A Nash equilib-
rium (NE) is a profile σ ∈ ∆S such that σ ∈ B(σ), therefore
ǫ(σ) = 0. (Nash(1951)) proved that such an equilibrium al-
ways exists for finite games.

Pruning Strategies

From a player’s perspective, the regret of playing a particular
strategy in a profile depends on the other available strategies
in the game. For a given profile, only the strategies that are
improving deviations give the player positive regret and thus
are relevant to the regret calculation. Suppose we can iden-
tify a joint strategy set such that, for each player and each
available profile in the restricted space, the player’s improv-
ing deviations are contained in the restricted set of strategies
for that player. Strategies outside that set are irrelevant from
the point of the regret analysis. The restricted game formed
from the joint strategy sets is closed, in the sense that a ratio-
nal player would not choose to play strategies outside those
of the restricted game, given knowledge that the other play-
ers choose strategies within their restricted strategy sets. On
that basis, we can prune these irrelevant strategies and re-
duce the size of the game.

Eliminating strategies can be used as a pre-processing
step to reduce the complexity of many game-theoretic al-
gorithms, such as finding equilibria. For instance, iter-
ated elimination of strictly dominated strategies (IESDS)
removes dominated strategies from the players’ strategy
sets. Dominated strategies are non-rationalizable (Bern-
heim(1984); Pearce(1984)), thus not contained in any equi-
librium. Another possibility is to compute all of the Nash
equilibria of the game and keep only the strategies partici-
pating in some equilibrium. However, if identifying equilib-
ria is the goal, then computing them as a preprocessing step
does not reduce the complexity of the analysis as a whole.

(Conitzer and Sandholm(2005)) introduce a general elim-
inability criterion for two-player games. The authors com-
pute whether a strategy is eliminable by solving a mixed in-
teger program, which implicitly considers the rationalizable
and NE solution concepts discussed so far. Whereas iterated
elimination using this criterion cannot rule out equilibrium
strategies in the base game, it may introduce NE in the re-
stricted game that are not equilibria in the base game. This
renders it difficult to identify NE of the base game directly
from equilibrium analysis of the restricted game.

Rational Closure

A restricted strategy set, X , is rationally closed if the set is
closed under a given best-response correspondence. In this
section, we review two formal definitions of rational closure
from prior literature.

Definition 1 ((Basu and Weibull(1991))). A set of profiles
X ⊆ S is

• closed under rational behavior (CURB) if B(X) ⊆ X .

• a minimal CURB set if no proper subset of X is CURB.

Definition 2 ((Harsanyi and Selten(1988))). A set of pro-
files X ⊆ S is

• a formation if B
†(X) ⊆ X .

• a minimal formation1 if no proper subset of X is a for-
mation.

The subtle distinction between these two concepts lies in
the use of different best-response correspondences: B

†(X)
comprises best responses to correlated opponent mixtures,
whereas strategies in B(X) are best responses to indepen-
dent mixtures.

Each formation contains at least one Nash equilibrium in
the base game. Moreover, the regret of a profile in a for-
mation, with respect to the restricted game defined by the
formation, is equal to the regret of the profile with respect to
the base game.

Fact 1. If X is a formation and σ ∈ ∆X , then ǫ(σ | Γ) =
ǫ(σ | ΓS↓X).

1(Harsanyi and Selten(1988)) call this a primitive formation,
but we use minimal to emphasize the parallel with minimal CURB
sets.
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Proof. By construction, for each player i ∈ N , Si ⊇ Xi ⊇
Bi(σ−i). Therefore,

ǫ(σ | Γ) = max
i∈N

max
si∈Si

ui(si, σ−i)− ui(σ)

= max
i∈N

max
si∈Bi(σ−i)

ui(si, σ−i)− ui(σ)

= max
i∈N

max
si∈Xi

ui(si, σ−i)− ui(σ)

= ǫ(σ | ΓS↓X).

(Benisch et al.(2006)Benisch, Davis, and Sandholm) in-
troduce a set of algorithms for efficiently finding CURB sets
in two-player games. In the following section, we describe
an extension of their algorithm for n-player games that iden-
tifies the minimal formation sets. Because B(X) ⊆ B

†(X),
minimal formations weakly contain minimal CURB sets.
Minimum formations are also closely related to saddle
points (Shapley(1964)). In fact, the set of strict mixed sad-
dles (Duggan and Le Breton(2001)) is equivalent to the set
of minimal formations. (Brandt et al.(2009)Brandt, Brill,
Fischer, and Harrenstein) show that the set of all strict mixed
saddles can be computed in time polynomial in |S|.

Finding Minimal Formations
In this section we describe a minimum-formation-finding
algorithm, called MCF, which is an n-player extension of
Min-Containing-CURB by (Benisch et al.(2006)Benisch,
Davis, and Sandholm). Given the equivalence of strict
mixed saddles and minimal formations, MCF turns out
to be identical to the minMGSP algorithm of (Brandt
et al.(2009)Brandt, Brill, Fischer, and Harrenstein). Rather
than describe the algorithms on the basis of dominance like
(Brandt et al.(2009)Brandt, Brill, Fischer, and Harrenstein),
we proceed on the basis of rationalizability to ease exposi-
tion in the subsequent sections, where we address partially-
specified games and approximate formations.

(Benisch et al.(2006)Benisch, Davis, and Sandholm) give
algorithms for finding all minimal CURB sets, a sample
minimal CURB set, and the smallest minimal CURB set. All
three algorithms rely on a subroutine that computes Bi(X)
for some X ⊆ S. The authors determine these strategies by
solving a feasibility problem, in essence checking whether
each strategy is a best response to some opponent mixture.
However, when players mix over strategies independently,
the feasibility problem is nonlinear for more than two play-
ers. Therefore, the authors restrict attention to two-player
games.

We describe an extension of their algorithms that is

instead based on the computation of B
†
i (X). Allow-

ing correlated opponent play (replacing CURB sets with
formations) restores the linearity of the feasibility prob-
lem. The Correlated-All-Rationalizable (CAR) algo-
rithm extends the All-Rationalizable algorithm (Benisch
et al.(2006)Benisch, Davis, and Sandholm) to n-player
games with correlated opponent play; correspondingly, the
Minimum-Containing-Formation (MCF) algorithm is the
extension of the two-player Min-Containing-CURB algo-
rithm. Like the two-player algorithm, MCF uses seed strate-
gies to generate a minimum formation containing the seed

Algorithm 1 CAR(Si, X−i, ui)

S∗
i ← ∅

for si ∈ Si do
if solution to this linear feasibility program exists
find σ−i such that

x
−i∈X

−i

σ−i(x−i) = 1

(∀x−i ∈ X−i) σ−i(x−i) ≥ 0
(∀ŝi ∈ Si) ui(si, σ−i) ≥ ui(ŝi, σ−i)

then
S∗

i ← S∗
i ∪ {si}

return S∗
i

Algorithm 2 MCF(s, 〈N, (Si), (ui)〉)

for j ∈ N do
S∗

j ← {sj}

converged← false
while ¬converged do

converged← true
for j ∈ N do

Ŝj ← CAR(Sj ,×k∈N\{j}S
∗
k , uj)

if Ŝj \ S∗
j 6= ∅ then

S∗
j ← S∗

j ∪ Ŝj

converged← false

return 〈S∗
1 , . . . , S∗

n, u〉

strategy. In many cases, the minimum formation is also the
minimum CURB set containing the seed strategies.

Algorithms for finding all minimal formations, a sample
minimal formation, and the smallest minimal formation are
constructed by substituting the MCF algorithm for the Min-
Containing-CURB algorithm in the respective CURB-set
procedure (Benisch et al.(2006)Benisch, Davis, and Sand-
holm). Seed strategies must be provided for n − 1 of the
players in the non-symmetric cases and one player in the
symmetric case. All algorithms have time complexity poly-
nomial in |S|.

In MCF, we see the connection between minimal for-
mations and strict mixed saddles. Where the MCF algo-
rithm computes correlated rationalizable strategies, the min-
MGSP algorithm computes strictly undominated strategies.
Under correlated opponent play, the set of rationalizable
strategies is equivalent to the set of strictly undominated
strategies; thus, the minMGSP algorithm is identical to
MCF.

We investigate extensions of the minimal formation al-
gorithms for settings that occur in empirical game-theoretic
analysis. These extensions modify the linear feasibility pro-
gram (LFP) of CAR. First, we extend the algorithms for the
case when the utility function is partially specified. Second,
we introduce algorithms to identify approximate formations
when we have a bound on the size of the game that can be
analyzed.
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Partially Specified Games

For a fully specified game Γ, the utility u(s) is defined for
every profile s ∈ S. In some contexts, for example when
inducing game models from empirical observations (Jordan
and Wellman(2009)), we may have only a partial game spec-
ification, where utility is evaluated for a strict subset of pro-
files. In this section, we explore methods of assigning utility
estimates to the missing profiles M , and the implications of
these methods for the minimal formation algorithms of the
previous section. We consider the domain of u(·) to be S\M
and, if M 6= ∅, we call u(·) a partially specified utility func-
tion (PSU).

The CAR algorithm uses the payoffs given by the util-
ity function u(·) to determine which strategies are best re-
sponses to mixtures over X−i. The algorithm assumes that
we have an estimate for the utility of each profile s ∈
Si ×X−i, however this may not be the case. First, consider
the use of a default utility ũ for s ∈M .

If s ∈ M , we use ũ, in place of ui(s), when solving the
feasibility problem in the CAR algorithm. This may give an
unduly pessimistic view of the relative utilities associated
with a strategy si ∈ Si, when determining if si is a best re-
sponse. This can occur in two ways for a given opponent
profile x−i ∈ X−i. First, (si, x−i) ∈ M and the actual
utility u(si, x−i) > ũ. Second, for some ŝi ∈ Si \ {si},
(ŝi, x−i) ∈ M and the actual utility u(ŝi, x−i) < ũ. Given
either of those scenarios, we could exclude si from S∗

i given
our current partially specified utility function u(·), only to
learn later that si is rationalizable for some mixture over
X−i once we have estimates for the associated utilities.
Therefore, once again, we could have a profile that is an
equilibrium in the restricted game, but not in the base.

We would like to eliminate as many strategies as our PSU
sanctions, but not at the expense of removing strategies in
the support of a minimal formation. One effect of erroneous
strategy elimination is the loss of the ability to make general
claims about NE using only the subset of the profile space
returned by the formation-finding algorithms. Notice that
we can straightforwardly check whether X ⊆ S is a for-
mation, if D(X) ∩M = ∅. However, restricting formation
analysis to subspaces with estimated utilities is too strong a
requirement.

Instead of using a default utility, if we make optimistic
assumptions on the utilities of missing profiles, we can still
guarantee the sets returned by any of the formation find-
ing algorithms are actually formations, albeit not necessar-
ily minimal formations. As in the consideration of default
utility values, we focus on the relative utilities of a strategy
si ∈ Si. Let [u−

i , u+
i ] be known bounds on the utility of

player i. In the algorithm, the utilities for player i of the
missing profiles are assigned to either u−

i or u+
i , according

to the following two rules:

• if (si, x−i) ∈M , then u+
i is used for ui(si, x−i);

• for ŝi ∈ Si \ {si}, if (ŝi, x−i) ∈ M , then u−
i is used for

ui(ŝi, x−i).

Let MCF-PSU be the extension of the MCF algorithm using
the previous rules for missing profiles.

Fact 2. If X is the set returned by MCF and XPSU is the
set returned by MCF-PSU for the same parameters, then
X ⊆ XPSU.

Proof. We use induction on the size of the missing pro-
file set. For the base case, let M = {s}. Assume that
X 6⊆ XPSU. Therefore for some player i, there is a strat-
egy s∗i ∈ Xi that is not in XPSU

i . Because s∗i ∈ Xi, there
is some iteration in MCF such that the LFP is satisfied for
s∗i in the CAR algorithm. Let p∗ be the probability vec-
tor that solves the LFP. Three cases can occur: (i) s is a
profile in the left-hand-side (LHS) of the utility-based con-
straints, (ii) s is a profile in the right-hand-size (RHS), (iii)
s is neither a profile in the LHS nor the RHS. In case (i),
ui(s) ≤ u+

i implies that the LHS constraints are weakly
greater under CAR-PSU, and p∗ satisfies the new LFP. In
case (ii), ui(s) ≥ u−

i implies that the RHS constraints are
weakly less under CAR-PSU, and p∗ satisfies the new LFP.
In case (iii) the CAR-PSU utilities are unchanged, so p∗

trivially satisfies the LFP. Therefore, the PSU-based LPF is
satisfied for s∗i under CAR-PSU and s∗i ∈ XPSU

i Hence, by

contradiction, we have X ⊆ XPSU.
For the inductive step, assume X ⊆ XPSU where Mk is

the missing profile set and |Mk| = |k|. We use the same
reasoning to conclude that under Mk + {s}, X ⊆ XPSU:
the LHS (RHS) constraints weakly increase (decrease) when
under Mk +{s}. Therefore, by induction, X ⊆ XPSU under
any countable M .

Under these rules, si can never be eliminated with the
optimistic partially specified utility function, when it would
not have been with the fully specified utility function. In
addition, si cannot support the elimination of another strat-
egy with the optimistic partially specified utility function,
when it would not have been supporting with the fully spec-
ified utility function. Therefore, each minimal formation is
weakly contained within some formation found using the
optimistic algorithm.

Approximate Formations

In empirical game-theoretic analysis, it may be feasible (due
to the cost of simulation) only to analyze a game of bounded
size. Given such a bound, we may endeavor to find a re-
stricted game that includes near-equilibrium profiles of the
base game, such that their regrets in the restricted and base
games are approximately the same. In this section, we de-
velop techniques for finding such strategy sets given a fully-
specified utility function, however these techniques can be
applied to scenarios where the utility function is partially
specified.

For instance, (Jordan et al.(2010)Jordan, Schvartzman,
and Wellman) describe the strategy exploration problem, in
which modelers attempt to determine a simulation sequence
for strategy sets. In this problem’s formulation, simulating a
set of strategies reveals the utilities of all supported profiles.
Thus, in the terminology of the previous section, the utility
function is partially specified, and at each step in the explo-
ration sequence the profiles whose utilities are revealed are
removed from the missing profile set. The modeler’s goal
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in the strategy exploration problem is to minimize the regret
(with respect to the base game) of the minimum-regret pro-
file in the restricted strategy space formed after the terminal
step. (Jordan et al.(2010)Jordan, Schvartzman, and Well-
man) found that strategy exploration policies that heuristi-
cally minimize the regret of the explored strategy set (de-
fined below) performed well. Algorithms that efficiently
compute approximate formations (strategy sets with mini-
mal regret) are critical to these policies. In this section, we
describe our approach to computing these approximate for-
mations given a bound on the size of the resulting strategy
set.

Let Ui be the function that specifies the best-response util-
ity of player i for each σ−i ∈ ∆(S−i) when player i’s strat-
egy set is limited to Xi. That is,

Ui(σ−i; Xi) = max
si∈Xi

ui(si, σ−i).

We extend the definition of regret to sets of strategies in the
following way. For ∅ ⊂ Xi ⊆ Si, the regret of player i for
having the restricted strategy set Xi against ∆(X−i) is

ǫi(Xi | X−i) = max
σ
−i∈∆(X

−i)
Ui(σ−i; Si)− Ui(σ−i; Xi).

In other words, ǫi(Xi | X−i) represents a bound on the
potential gain to player i for deviating from its restricted
set Xi, in the context where other agents are restricted to
X−i. We similarly define regret of a joint strategy set. For
∅ ⊂ X ⊆ S, the regret over all players for having restricted
joint strategy set X is ǫ(X) = maxi∈N ǫi(Xi | X−i). A set
of profiles X ⊆ P is an ǫ-formation if ǫ(X) ≤ ǫ. The set
X is said to be an ǫ-minimal formation if no proper subset
of X is an ǫ-formation.

We consider two general scenarios in which we minimize
ǫ(X). In the first scenario, we are interested in finding a set
of joint strategies with minimal regret (ǫ) under some budget
k on the size of the profile space. Such a situation can occur
when analysts are designing novel strategies from a set of
existing strategies (Jordan et al.(2007)Jordan, Kiekintveld,
and Wellman). In that work, new strategies are evaluated
against a set of promising existing strategies using NE re-
gret. To compute NE regret, modelers need estimates for the
utility of all the profiles in the joint strategy space as well as
the unilateral deviations to the new strategy. Modelers may
be limited in the number of observations they can make for
these new profiles, due to limited computational resources.
This implicitly bounds the size of the joint-strategy space
they consider. We formulate this optimization problem as
follows:

min ǫ(X)
s.t. |X | ≤ k.

(1)

For the second scenario, consider the central heuristic in
the formation-based strategy exploration policies given by
(Jordan et al.(2010)Jordan, Schvartzman, and Wellman). At
each step these policies determine a strategy to add into an
existing strategy space. Each profile in the new profile space
is simulated, causing the corresponding utilities to be re-
vealed. The formation-based policies heuristically select a
strategy that is a maximally beneficial deviation to a particu-
lar mixture over a minimum-regret formation in the explored

strategy space. Let the explored strategy space be given by
E ⊆ S. Thus, the first step in selecting the strategy involves
finding a minimum-regret formation by solving

min ǫ(X)
s.t. X ⊆ E.

(2)

In the remainder of the section, we develop heuristic algo-
rithms for solving (1), noting that solving (2) involves only
minor modifications to these algorithms.

In order to solve the optimization problem given by (1),
we need to efficiently compute ǫ(·), which in turn depends
on the calculation of ǫi(·). We calculate ǫi(Xi | X−i) by
determining the supporting strategies in Si \Xi. A strategy
si ∈ Si \Xi supports ǫ if the maximum gain in utility τ > 0
in the following linear program:

max τ
s.t. σ−i(x−i) = 1

(∀x−i ∈ X−i) σ−i(x−i) ≥ 0
(∀ŝi ∈ Xi) ui(si, σ−i)− τ ≥ ui(ŝi, σ−i).

(3)

Notice that the last set of constraints in the linear program
of (3) is slightly different than the set of constraints in the
linear feasibility program of Algorithm 1: ŝi ∈ Si in Algo-
rithm 1, whereas ŝi ∈ Xi in (3). This difference is due to the
fact that player i is constrained to playing strategies in Xi.

Let COMPUTE-TAU return the solution to the linear pro-
gram of (3). The pseudo-code for calculating ǫi(Xi | X−i)
is given in Algorithm 3. For each si ∈ Si\Xi, we determine
the maximum τ and set ǫ to the maximum of those values. If
τ ≤ 0, then si is covered by Xi. If τ > 0, then si supports
ǫi(Xi | X−i).

Algorithm 3 COMPUTE-REGRET(Xi, Si, X−i, ui(·))

ǫi ← 0
for si ∈ Si \Xi do

τ ← COMPUTE-TAU(Xi, si, X−i, ui(·)))
ǫi ← max(ǫi, τ)

return ǫi

Given an efficient algorithm for determining ǫ(·), we need
an efficient search algorithm for identifying the optimal re-
stricted game. Before discussing search algorithms, con-
sider some general observations regarding ǫ(·): ǫ is not
monotonic in the subset relation, ǫ is not transitive, ǫ is not
submodular or supermodular, and greedy selection of X is
not optimal. The first three observations provide no effective
bounds for branch-and-bound search. The fourth observa-
tion rules out a greedy search algorithm as optimal, however
it may be a reasonable heuristic search method. Below we
outline a simple algorithm to search over the join-semilattice
of restricted games.

Algorithm 4 uses two basic subroutines and a priority
queue with a maximum size of Q to determine the optimal
restricted game for the given bound k. The two enqueue sub-
routines, ENQUEUE-INITIAL-GAMES and ENQUEUE-
CHILD-GAMES, each present restricted games to the pri-
ority queue. The ENQUEUE-INITIAL-GAMES subroutine
generates all restricted games where each player has a single
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Algorithm 4 FIND-FORMATION(Γ, k, Q)

best← null
queue ← Empty priority queue with maximum size Q or-
dered by ǫ(·)
ENQUEUE-INITIAL-GAMES(queue, Γ, k)
while queue is not empty do

game← top(queue)
if best is null or ǫ(best) > ǫ(game) then

best← game

ENQUEUE-CHILD-GAMES(queue, game, k)

return best

strategy to choose from. The ENQUEUE-CHILD-GAMES
subroutine generates all of the restricted games where some
player has an additional strategy to choose from. For each
generated restricted game in the enqueue subroutines, the re-
gret of the game is calculated by the COMPUTE-EPSILON
subroutine. The priority queue orders each restricted game
by this calculated value.

Observe that the number of restricted games is exponen-
tial in the size of the players’ strategy sets, therefore a finite
(small) value for Q is required for even small values of k
and small games. Notice the special case of Q = 1, which
corresponds to simple greedy search. In the experiments be-
low, we vary Q and observe the effects on the regret of the
selected restricted game.

Experiments

The randomly generated games used in this section are clas-
sified into two distinct types generated by GAMUT (Nudel-
man et al.(2004)Nudelman, Wortman, Shoham, and Leyton-
Brown): random and covariant. The random class of games
has payoffs that are uniformly and independently distributed
in the range [-100,100]. The covariant class of games has
payoffs that are distributed Normal[0,1] with covariance r
between players in a profile. For experiments in this sec-
tion, we used a setting of r = − 1

2 for covariant games. We
generated 100 instances of each class with two players and
ten strategies per player. We compute the regret for each
pure-strategy profile in each instance.

The approximate-formation algorithm seeks to find a re-
stricted game whose regret is as small as possible for a given
constraint k on the size of the game, measured in number
of profiles. (Benisch et al.(2006)Benisch, Davis, and Sand-
holm) found experimentally that random games tend to have
small smallest CURB sets (pure strategy equilibria), while
covariant games have large smallest CURB sets (nearly all
strategies). While reviewing their findings, we make an-
other observation. For those random games which do not
have a pure-strategy NE, the smallest CURB sets tend to
be large. This implies that we are unlikely to find minimal
CURB sets for intermediate values of k unless there exists a
pure-strategy Nash equilibrium.

GAMUT generated games with PSNE around 58% of the
time for random games and 14% of the time for covariant
games. Therefore with the same frequency, we can find

minimal CURB sets where each player is selecting a single
strategy. Thus returning a restricted game consisting of the
minimum-regret pure-strategy profile is optimal in nearly
58% and 14% of these games, respectively. Computing the
minimum-regret profile is linear in the number of profiles
and thus can be accomplished efficiently.

The question remains as to what should be done in the
remaining 42% and 86% of respective cases when we are
bounded by an intermediate value for k. From Benisch et
al.’s results, we can conclude that it is unlikely that a mini-
mum CURB set, an ǫ-formation with ǫ = 0, is found when
k is much smaller than the size of the base game. However,
using our approximate formation algorithms, we can find ǫ-
formations with ǫ > 0 for any k.

The number of restricted games is exponential and we
have no known bounds relating the regret of different re-
stricted games. However, the Q parameter in Algorithm 4
allows us to explore some of the restricted games off of the
greedy path if Q > 1. Therefore, we remove instances from
the two classes where a PSNE exists. On the remaining
games, we run Algorithm 4 with two settings for Q and var-
ious settings for k. For each game, we run the algorithm for
each k, where k ∈ {i2 | 1 ≤ i ≤ 10}. Because the size
of the base game is 100, the algorithm should return a game
with ǫ = 0 when k = 100, even in the greedy case. We use
two settings for Q; a setting of Q = 1 corresponds to greedy
search, whereas Q = 1000 allows some non-greedy explo-
ration. Maintaining a maximum queue size of 1000 allows a
complete search of roughly the first two levels, or k ≤ 9 in
the generated instances.

Figure 1 shows the results of running Algorithm 4 on the
two classes of games, where the worst-case regret ratio is
fraction of regret of the restricted game found by the algo-
rithm when compared to the regret of the minimum-regret
profile. Both the greedy (Q = 1) and Q = 1000 found
restricted games with less regret than the minimum regret
profile. In fact, when considering the random and covariant
game classes, we can find a restricted game with worst-case
regret ratio of approximately 75% using only 9% of the base
game space on average.

Conclusion

Formations provide a useful basis for selecting restricted
games that capture relevant strategic information about the
base game. In particular, formations allow modelers to
be confident that the regret of any profile calculated in
the restricted game will be no larger when calculated in
the base game. We adapt the algorithms of (Benisch
et al.(2006)Benisch, Davis, and Sandholm) for calculating
minimal CURB sets in two-player games to finding minimal
formations in n-player games (constructing a set of algo-
rithms equivalent to the mixed-generalized-saddle-point al-
gorithms of (Brandt et al.(2009)Brandt, Brill, Fischer, and
Harrenstein)). This formation-based extension allows us to
derive techniques for identifying minimal formations when
utility functions are only partially specified, as in empirical
game-theoretic analysis when the strategy space is large and
sampling is costly. In addition, we provide a heuristic search
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(a) Random (b) Covariant

Figure 1: Worst-case regret ratio for random and covariant games.

algorithm that determines an optimal ǫ-formation given ei-
ther a bound on the size of the restricted strategy space or a
constraint on the strategies in the space itself. The latter is of
critical importance to the heuristic strategy exploration poli-
cies of (Jordan et al.(2010)Jordan, Schvartzman, and Well-
man). In an experiment on random games, we show that
the ǫ-formation finding algorithm is able to decrease regret
compared to min-regret profiles using relatively small strat-
egy spaces.
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