
Approximate Coalition Structure Generation

Travis C. Service and Julie A. Adams
Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA

{travis.c.service,julie.a.adams}@vanderbilt.edu

Abstract

Coalition formation is a fundamental problem in multi-agent
systems. In characteristic function games (CFGs), each coali-
tion C of agents is assigned a value indicating the joint utility
those agents will receive if C is formed. CFGs are an im-
portant class of cooperative games; however, determining the
optimal coalition structure, partitioning of the agents into a
set of coalitions that maximizes the social welfare, currently
requires O(3n) time for n agents.

In light of the high computational complexity of the coali-
tion structure generation problem, a natural approach is to
relax the optimality requirement and attempt to find an ap-
proximate solution that is guaranteed to be close to optimal.
Unfortunately, it has been shown that guaranteeing a solution
within any factor of the optimal requires Ω(2n) time. Thus,
the best that can be hoped for is to find an algorithm that
returns solutions that are guaranteed to be as close to the op-
timal as possible, in as close to O(2n) time as possible.

This paper contributes to the state-of-the-art by presenting an
algorithm that achieves better quality guarantees with lower
worst case running times than all currently existing algo-
rithms. For example, our algorithm improves the previous
best approximation ratio of 1

2
obtainable in O(

√
n2.83n)

time to 2

3
and obtains a 1

2
approximation in O(

√
n2.59n).

Our approach is also the first algorithm to guarantee a con-
stant factor approximation ratio, 1

8
, in the optimal time of

O(2n). The previous best ratio obtainable in O(2n) was 2

n
.

Introduction
Coalition formation is a central issue in systems with co-
operating agents (Sandholm et al. 1999; Rahwan et al.
2009). Coalition formation is often studied in characteristic
function games (CFG), a class of cooperative games, where
each coalition is assigned a value indicating the joint util-
ity those agents will receive if they form a coalition. Given
a set of agents N , a CFG is defined on N by a function
ν : N → R≥0. For a coalition C ⊆ N , ν(C) is interpreted
as the utility the members of C will receive if C forms. The
coalition structure generation problem is then to find a par-
titioning of N , or a coalition structure, CS that maximizes:

∑

C∈CS

ν(C).

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Much prior work has investigated algorithmic aspects of
the coalition structure generation problem (Sandholm et al.
1999; Rahwan et al. 2009; Rahwan and Jennings 2008a;
2008b; Larson and Sandholm 2000; Dang and Jennings
2004). Roughly speaking, most recent coalition structure
generation algorithmic work can be partitioned into two cat-
egories: design-to-time algorithms and anytime algorithms.

Design-to-time algorithms are guaranteed to find the op-
timal solution, but must be run to completion to do so. The
best design-to-time algorithms, which are based on dynamic
programming, have the current fastest worst case run time
(O(3n) for n agents) of all coalition structure generation
algorithms. However, for large collections of agents there
may not be sufficient time to run the design-to-time algo-
rithms to completion (Sandholm et al. 1999; Yeh 1986;
Rahwan and Jennings 2008b).

Anytime algorithms are capable of returning approxima-
tion solutions, along with guarantees on the quality of the so-
lution, without running to completion. Anytime algorithms
can quickly return approximate solutions; however, in the
worst case most current anytime algorithms require O(nn)
time to find the optimal solution, far worse than the best
design-to-time algorithms. Among the current state-of-the-
art are Rahwan et al’s. (Rahwan et al. 2009) Integer Partition
algorithm and our previous anytime dynamic programming
algorithm (Service and Adams 2010).

In light of the high computational complexity of con-
structing the optimal coalition structure, a natural approach
is to relax the optimality requirement and attempt to identify
an approximate solution that is guaranteed to be within some
constant factor of the optimal. Unfortunately, Sandholm et
al. (Sandholm et al. 1999) show that in order to make any
guarantee on the quality of the solution returned, in the worst
case, any algorithm must examine the value of each of the
O(2n) possible coalitions. Thus, the runtime of any coali-
tion structure generation algorithm that provides guarantees
on the quality of the solutions it produces must be Ω(2n).
The best that can be hoped for is to find an algorithm that
returns solutions that are guaranteed to be as close to the op-
timal as possible (i.e., factors close to 1) in as close to O(2n)
time as possible.

Recently we developed an algorithm that is able to
guarantee constant factor approximation ratios in less than
O(3n) time (Service and Adams 2010). However, our previ-

854

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

ous algorithm is only capable of guaranteeing solution qual-
ities of up to 1

2 of the optimal.
This paper contributes to the state-of-the-art by present-

ing an algorithm that achieves better quality guarantees with
lower worst case running times than all currently existing
algorithms. In particular, our technique is capable of gen-
erating a solution with 2

3 of the optimal in O(
√

n2.83n)

time and a solution with value within 1
2 of the optimal in

O(
√

n2.59n) time, improving upon the ratio’s obtainable in
our previous work. Our new algorithm is also the first to
be capable of guaranteeing a constant factor approximation
ratio in the optimal time of O(2n). Our algorithm is able
to guarantee a solution with a value within 1

8 of the optimal
in O(2n) time. This result greatly improves the previous
best guarantee obtainable in general characteristic function
games in O(2n) of 2

n
(Sandholm et al. 1999).

Our approach to approximate coalition structure gener-
ation is similar to our previous work, but is based on an
entirely different principle. Like our previous algorithm,
our new technique works by extracting approximate solu-
tions from partially completed dynamic programming ta-
bles. However, our new approach is capable of generating
better quality guarantees than our previous algorithm in the
same amount of time.

Approximation Technique

The presented approach to obtaining constant factor approx-
imations of the optimal coalition structure in an arbitrary
characteristic function ν requires applying two transforma-
tions to ν, one after the other, to obtain new characteristic
functions ν′ and ν′′ such that:

1. the values of the optimal solutions in ν, ν′ and ν′′ are the
same,

2. given a coalition structure, not necessarily optimal, in ν′

or ν′′, a coalition structure of equal, or greater, value can
be constructed in ν in polynomial time, and

3. ν′ and ν′′ both have optimal solutions consisting of a con-
stant number, m, of coalitions.

Since ν′ has an optimal solution consisting of m coalitions,
the highest valued coalition, C, in ν′ will have value at least
1
m

times the value of the optimal solution to ν′, as C has
value at least as great as all coalitions in the optimal solution
to ν′. Likewise, the sum of the values in ν′′ of two disjoint
coalitions, C1 and C2 that maximize ν′′(C1) + ν′′(C2) will
be at least 2

m
times the value of the optimal solution to ν′′, as

C1 and C2 will have a combined value no less than the two
highest valued coalitions in the optimal solution to ν′′. We
show how to extract the largest valued (two largest valued)
coalitions from ν′ (ν′′) in O(2n) (O(n2n)) time.

Our approximation technique employs the standard dy-
namic programming algorithm for coalition structure gen-
eration (Sandholm et al. 1999; Yeh 1986). The dynamic
programming algorithm is based on the observation that if
C is a coalition in an optimal solution CS to a subproblem
N ′ ⊆ N , then CS − {C} is an optimal solution to the sub-
problem N ′ − C. Observe that if there was a higher valued
solution CS′ to N ′ − C, then CS′ ∪ {C} would be a better

solution to the subproblem N ′ than CS, contradicting the
fact that CS was an optimal solution to N ′.

The dynamic programming algorithm works by iteratively
constructing the optimal solution to each subproblem (sub-
set of agents) in the order of increasing size. Prior to con-
structing the solution to a subproblem N ′ ⊆ N , the optimal
solution for each subproblem of N ′ has to be determined.
Let optν(S) be the optimal solution to the subproblem S.
That is, for each S ⊆ N , optν(S) is a partitioning of S that
maximizes:

∑

C∈optν(S)

ν(C)

over all partitionings of S. When determining the optimal
solution to the subproblem N ′, the dynamic programming
algorithm considers each coalition in N ′ for possible inclu-
sion in the solution to N ′. Given a coalition C ⊆ N ′, the
highest valued solution to the subproblem N ′ to which C is a
member is simply {C}∪optν(N ′−C). Taking a maximum

over all subsets of N ′ requires O(2|N
′|) time and results in

the optimal solution to N ′. Along with the value of the opti-
mal solution to N ′, pointers are stored to both C and N ′−C
(if the coalition N ′ is itself an optimal solution to the sub-
problem N ′ then a single pointer to itself is stored.) After all
subproblems have been solved, the algorithm simply walks
through the stored pointers to construct the optimal solution
to the original problem.

The following definitions are used in the description of
our algorithm.

Definition 1. A characteristic function ν is monotonic iff for
all C, S ⊆ N such that C ⊆ S, ν(C) ≤ ν(S).

Intuitively, a characteristic function is monotonic if
adding an agent to a coalition can never harm the coalition
members.

Definition 2. A characteristic function ν is k-superadditive
iff for all C, S ⊆ N such that

1. C ∩ S = ∅ and

2. |C ∪ S| ≤ k,

then ν(C) + ν(S) ≤ ν(C ∪ S).

If ν is n-superadditive then it is superadditive. Superad-
ditivity is a common assumption on the basis that if two
disjoint coalitions C1 and C2 merge into C1 ∪ C2, then at
the very least the members of C1 and C2 can behave as if
the merger did not take place and receive at least ν(C1) and
ν(C2) respectively. Note that if ν is superadditive and non-
negative (i.e., ν(C) ≥ 0, for all C ⊆ N), then it is mono-
tonic; however, the reverse is not necessarily true. If ν is
k-superadditive then for any C ⊆ N such that |C| ≤ k and
any partitioning P of C:

ν(C) ≥
∑

S∈P

ν(S).

Our main result is now stated:

Theorem 1. If ν is n
r

-superadditive, then ν has an optimal
solution that consists of at most 2r − 1 coalitions.

We make use of the following lemma in the proof of The-
orem 1.

855

Lemma 1. Let r and j be positive integers such that 0 ≤
j

r
≤ 1 (r 6= 0) and let x1, · · · , xm be m arbitrary real

numbers such that:

1. x1 + x2 + · · ·+ xm ≤ j
r

2. 1
r
≥ x1 ≥ x2 ≥ ... ≥ xm > 0

then x1, · · · , xm can be partitioned into 2j − 1 sets,
P1, · · · , P2j−1, such that the sum of the numbers in each

set is at most 1
r

.

Proof of Lemma 1. For each 1 ≤ i ≤ j − 1, let Pi = {xi}
and for each j ≤ i ≤ 2j − 1 let:

Pi = {xk : k = i + lj for l ≥ 0}.

For example, for r = 3, j = 3, and m = 15 the sets
P1, · · · , P5 are:

1. P1 = {x1}
2. P2 = {x2}
3. P3 = {x3, x6, x9, x12, x15}
4. P4 = {x4, x7, x10, x13}
5. P5 = {x5, x8, x11, x14},

and for r = 3, j = 2 and m = 10 the sets P1, · · · , P3 are:

1. P1 = {x1}
2. P2 = {x2, x4, x6, x8, x10}
3. P3 = {x3, x5, x7, x9}.

For each Pi let Vi be the sum of the elements in Pi. Since
each xi is no more than 1

r
, clearly:

V1, · · · , Vj−1 ≤
1

r
.

Note that, by construction, for k > i ≥ j we have the fol-
lowing:

1. 0 ≤ |Pi| − |Pk| ≤ 1

2. Vi ≥ Vk.

Thus, it suffices to show that Vj ≤ 1
r

.

We proceed by way of contradiction. Thus, assume to the
contrary that Vj > 1

r
.

Let xi ∈ Pj . By construction, for each 0 < l < j, xi−l 6∈
Pj . Consider the sum:

m
∑

i=0

xi =
∑

xi∈Pj

xi +
∑

0<l<j

xi−l

 ≥ j ·
∑

xi∈Pj

xi >
j

r
.

This result contradicts the fact that the sum of the m num-
bers is less than j

r
. Thus, Vj ≤ 1

r
and the lemma is true.

We now prove Theorem 1.

Proof of Theorem 1. Let ν be an n
r

-superadditive character-
istic function. Let CS be any optimal coalition structure
in ν. If CS contains 2r − 1 or fewer coalitions then the
Theorem is true. Thus, assume that CS contains more than
2r − 1 coalitions. Let j be the number of coalitions in CS
that consist of more than n

r
agents and let m be the num-

ber of coalitions in CS that contain no more than n
r

agents.
Thus, j < r.

Let C1, · · · , Cm be the m coalitions in CS that consist of
no more than n

r
agents. Let x1, · · · , xm be the sizes of the

m coalitions, represented as fractions of the total number of

agents they contain (i.e., xi = |Ci|
n

). Assume w.l.o.g. that

x1 ≥ x2 ≥ · · · ≥ xm. Clearly, x1 + x2 + · · ·+ xm ≤ r−j
r

.
By Lemma 1, x1, · · · , xm can be partitioned into 2(r−j)−1
sets P1, · · · , P2(r−j)−1 such that the sum of the numbers in

each set Pi is no more than 1
r

. For each Pi, let P ′
i be the set

of agents defined by P ′
i =

⋃

xl∈Pi
Cl. Since the sum of the

numbers in Pi is less than 1
r

, the number of agents in P ′
i is

less than n
r

. Since ν is n
r

-superadditive:

ν(P ′
i) ≥

∑

xl∈P ′

i

ν(Cl).

Thus, a new coalition structure CS′ can be formed by sub-
stituting P ′

i for {Cl : xl ∈ Pi} in CS that has value no less
than CS. Since there are j coalitions consisting of greater
than n

r
agents and the remaining coalitions consisting of no

more than n
r

agents can be reduced to at most 2(r − j) − 1
coalitions, CS′ consists of at most 2(r − j) − 1 + j =
2r− j − 1 coalitions. Since j ≥ 0 the theorem follows.

The following is an immediate corollary of Theorem 1:

Corollary 2. If ν is 2n
2r−1 -superadditive, then ν has an opti-

mal solution that consists of 2r − 2 coalitions.

Proof. Since 2n
2r−1 > n

r
, ν is also n

r
-superadditive and by

Theorem 1 has an optimal solution that consists of at most
2r−1 coalitions. If ν contains an optimal solution on 2r−2
or fewer coalitions, then the proof is complete. Thus, as-
sume the smallest optimal solution, CS, in ν consists of ex-
actly 2r − 1 coalitions.

Let C1 and C2 be the smallest two coalitions in CS and
assume that |C1∪C2| > 2n

2r−1 . Thus, at least one of C1 or C2

must contain more than n
2r−1 agents. Since C1 and C2 are

the two smallest coalitions in CS, all remaining coalitions
must also contain more than n

2r−1 agents. As there are 2r−3
coalitions in CS, other than C1 and C2, the total number of
agents is bounded below by:

n > (2r − 3) · n

2r − 1
+

2n

2r − 1
= n,

a contradiction. Thus |C1 ∪C2| ≤ 2n
2r−1 . Define CS′ as:

CS′ = CS ∪ {C1 ∪ C2} − {C1, C2}.
Since ν is 2n

2r−1 -superadditive, ν(C1∪C2) ≥ ν(C1)+ν(C2).

Thus, ν(CS′) = ν(CS) (since CS was optimal). However,
CS′ contains one less coalition than CS, contradicting the
assumption that the smallest optimal solution in ν consisted
of 2r − 1 coalitions.

856

Definition 3. Let k and r be positive integers. Define ν k
r

as:

ν k
r
(C) =

{

ν(optν(C)) if |C| ≤ kn
r

ν(C) otherwise.

The following theorem is an immediate observation.

Theorem 3. ν k
r

is kn
r

-superadditive.

Proof. The theorem is clearly true, since for any C, S ⊆ N
such that C∩S = ∅ and |C∪S| ≤ kn

r
, optν(C)∪optν (S) is

a coalition structure over C ∪S with value ν k
r
(C) + ν k

r
(S).

Algorithm 1 Constructing ν k
r

1: for i = 1 to kn
r

do
2: for C ⊆ N , |C| = i do
3: ν k

r
(C)← ν(C)

4: for C′ ⊂ C do
5: if ν k

r
(C′) + ν k

r
(C − C′) > ν k

r
(C) then

6: ν k
r
(C)← ν k

r
(C′) + ν k

r
(C − C′)

7: end if
8: end for
9: end for

10: end for
11: ν k

r
(C) = ν(C) for all C such that |C| > kn

r

Algorithm 1 provides pseudo-code for the construction of
ν k

r
. Intuitively, Algorithm 1 runs the dynamic programming

algorithm for only those coalitions consisting of kn
r

or fewer
agents. For clarity, the code for maintaining pointers from
each subproblem N ′ to subproblems C and N ′−C for con-
structing an optimal solution is not provided.

Note that every optimal solution to ν is also an optimal
solution to ν k

r
, since if C is in an optimal solution to ν then

optν(C) = {C}. Given a solution CSν k
r

to ν k
r

, a solution

CSν to ν of equal value can be constructed as follows, as-
suming CSν is initially empty:

1. for C ∈ CSν k
r

s.t. |C| > k
r

, let CSν ← CSν ∪ {C}, and

2. for C ∈ CSν k
r

s.t. |C| ≤ k
r

, let CSν ← CSν ∪ optν(C).

The runtime of Algorithm 1 is provided in Theorem 4

Theorem 4. Algorithm 1 computes ν k
r

, for k < r
2 and r ≥

2, in:

O

(√
nrn2

kn
r

k
kn
r (r − k)

(r−k)n
r

)

time.

Proof. Algorithm 1 determines the optimal solution to each
subproblem of N consisting of kn

r
or fewer agents. For a

subproblem of size n′, 2n′

time is required. The total run-
time is bounded above by:

∑

0<i≤ kn
r

(

n

i

)

2i ≤ kn

r

(

n
kn
r

)

2
kn
r =

kn

r

n! · 2 kn
r

kn
r

!(n− kn
r

)!
.

Recall that Stirling’s approximation states:

n! =
√

2πn
(n

e

)n

(1 + o(1)),

where e is the natural number.
Ignoring constant factors, the runtime of Algorithm 1 can

be bounded from above by:

kn

r

n! · 2 kn
r

kn
r

!(n− kn
r

)!

=

√

k2n3

r2 kn
r

(n− kn
r

)
·

(n
e
)n2

kn
r

(

(kn
r

)

e

)
kn
r ·
(

(n− kn
r

)

e

)(n− kn
r

)

=

√

kn

(r − k)
·
(

nn2
kn
r

(kn
r

)
kn
r · (n− kn

r
)(n−

kn
r

)

)

=

√

kn

(r − k)
·
(

rn2
kn
r

k
kn
r (r − k)

(r−k)n
r

)

= O

(√
nrn2

kn
r

k
kn
r (r − k)

(r−k)n
r

)

,

where the last equality holds since k < r
2 .

After ν 1
r

is constructed, the highest valued coalition can

be extracted in O(2n) time by looping through all subsets of
N . Since ν 1

r
has an optimal solution consisting of 2r− 1 or

fewer coalitions, the highest valued coalition is at least 1
2r−1

times the value of the optimal solution. A 1
8 approximate

solution can be obtained in O(2n) time by constructing ν 2
9

and then extracting the highest valued coalition.
We now show how to extract two coalitions, C1 and C2,

from an arbitrary ν that maximize ν(C1)+ν(C2) in O(n2n).

Definition 4. Define νmax as:

νmax(C) = max
S⊆C

ν(S).

Intuitively, νmax(C) represents the highest valued coali-
tion that consists of only members in C. Algorithm 2 pro-
vides pseudo-code for constructing νmax given ν. Algo-
rithm 2 is based on the observation that maxS⊆C ν(S) is
either equal to ν(C) or is equal to maxS⊆C−{a} ν(S) for
some a ∈ C. Since Algorithm 2 constructs νmax in the or-
der of increasing coalition size, when computing νmax(C)
Algorithm 2 takes the maximum over |C| + 1 values (i.e.,
ν(C) and νmax(C − {a}) for each a ∈ C).

During the construction of νmax, for each S ⊆ N , in
addition to storing the value of the largest subset of S in
νmax(S), a pointer from S to argmaxC⊆S ν(C) is stored as
well. Given a solution CSνmax

to νmax, a solution CSν to
ν, of equal or greater value, can be constructed as follows.
Assume CSν to be initially empty,

for C ∈ CSvmax
, let CSν ← CSν ∪ {argmax

S⊆C

ν(S)}.

Note that this procedure may not result in a partitioning of
the agents (i.e., some agents may not appear in any of the

857

Algorithm 2 Constructing νmax

1: for k = 1 to n do
2: for C ⊆ N , |C| = k do
3: νmax(C)← ν(C)
4: for a ∈ C do
5: if νmax(C − {a}) > νmax(C) then
6: νmax(C)← νmax(C − {a})
7: end if
8: end for
9: end for

10: end for

coalitions in CSν). In this case, CSν can be extended to
a partitioning of N by adding to CSν the coalition C that
contains all agents that do not appear in some coalition in
CSν .

For clarity pseudo-code for storing such pointers is omit-
ted from Algorithm 2. The runtime of Algorithm 2 is pro-
vided in Theorem 5.

Theorem 5. Algorithm 2 computes νmax in O(n2n) time.

Proof. See (Service and Adams 2010).

Algorithm 3 provides pseudo-code for extracting two
disjoint coalitions, C1 and C2, from N that maximize
νmax(C1) + νmax(C2). Algorithm 3 takes the maximum
of νmax(C) + νmax(N −C) for C ⊆ N . This results in an
optimal partitioning of N into two sets. By the definition of
νmax, Algorithm 3 clearly results in an optimal partitioning
of N into two sets. Since Algorithm 3 computes

argmax
C1∩C2=∅

(νmax(C1) + νmax(C2))

by a single loop through all subsets of N , it runs in O(2n)
time.

Algorithm 3 Computing argmax
C1∩C2=∅

(νmax(C1) + νmax(C2))

1: C1 = N
2: C2 = ∅
3: for C ⊆ N do
4: if νmax(C)+νmax(N−C) > νmax(C1)+νmax(C2)

then
5: C1 = C
6: C2 = N − C
7: end if
8: end for

Given ν, the overall approximation technique works as
follows:

1. construct ν k
r

from ν, using Algorithm 1,

2. construct νmax from ν k
r

, using Algorithm 2,

3. extract the optimal partitioning of N into two sets from
νmax, using Algorithm 3,

4. convert the extracted solution to νmax to a solution to ν k
r

and then to a solution to ν.

The runtime of this procedure is the maximum of

O

(√
nrn2

kn
r

k
kn
r (r−k)

(r−k)n
r

)

and O(n2n), the times required to

compute ν k
r

and νmax, respectively. However, this runtime

can be reduced to the maximum of O

(√
nrn2

kn
r

k
kn
r (r−k)

(r−k)n
r

)

and O(2n), at the cost of a reduced approximation ratio,
by simply computing ν k

r
and extracting the highest valued

coalition from ν k
r

by a single O(2n) time loop through all

subsets of N .
For example, given a CFG ν, an approximate solution that

is within 2
3 of the optimal can be obtained in O(

√
n2.83n)

by first constructing ν 1
2

from ν, then constructing νmax from

ν 1
2

and finally extracting the optimal partitioning of N into

two sets from νmax and converting that to a solution to ν.
Similarly, a 1

8 approximation solution to ν can be obtained
in O(2n) time by constructing ν 2

9
, which requires less than

O(2n) time, and then extracting the highest valued coalition
from ν 2

9
and converting it to a solution to ν.

Empirical Study

We compare our new approximate technique against the
only other existing algorithm in the literature, our previous
approximation technique (Service and Adams 2010), capa-
ble of guaranteeing constant factor approximation ratios in
less than O(3n) time. The experiments incorporated prob-
lems consisting of 25 agents and are averaged over 20 inde-
pendent runs. The performance of our new algorithm and
our prior algorithm (referred to as Service and Adams’ algo-
rithm) are compared on two distributions:

1. normal distribution, the value of each coalition C is drawn
from a normal distribution with mean 15

4 and variance 1
16 .

2. modified uniform, each coalition C is assigned a value
drawn uniformly between 0 and 10 · |C|; however, each
coalition’s value is increased by a random number drawn
uniformly between 0 and 50 with 20% probability.

Both algorithms are compared over a number of different
approximation ratio guarantees.

Table 1 shows the performance of both algorithms on
problems drawn from the modified uniform and normal dis-
tributions. While the performance of both algorithms greatly
surpassed their respective theoretical guarantees, our algo-
rithm generates the same performance guarantees, and the
same empirical performance, far quicker than Service and
Adams’ algorithm. For example, in both cases our 1

2 ap-
proximation ratio algorithm terminated in under 5 minutes,
as opposed to Service and Adam’s algorithm that required
over 7 times longer. In the same amount of time required by
Service and Adams’ 1

2 approximation ratio algorithm, our 2
3

approximation ratio algorithm ran to completion.
Moreover, our 2

3 factor algorithm always generated the
optimal solution under the normal distribution and generated
a solution, on average, within 99.5% of the optimal under
the modified uniform distribution. Constructing the optimal
solution with the standard dynamic programming algorithm
required over 10 hours. This result shows that when time is

858

Table 1: The performances of the presented algorithm and Service and Adams’ algorithm on the modified uniform and normal
distribution, as a percentage of the optimal value. The time, in seconds, for each algorithm and each approximation ratio is given
in parenthesis. Entries in the table are marked N/A for approximation ratios unobtainable by Service and Adam’s algorithm.

Approximation Ratio 2/3 1/2 2/5 1/3

Modified Our Algorithm 99.5% (1773.6) 88.1% (246.0) 73.8% (37.3) 70.0% (24.3)
Uniform Service and Adams’ Algorithm N/A 82.8% (1727.6) N/A 72.1% (32.3)

Normal
Our Algorithm 100% (1748.1) 84.88% (245.3) 74.4% (37.0) 71.8% (24.1)

Service and Adams’ Algorithm N/A 81.1% (1739.7) N/A 74.4% (32.7)

an issue and a close to optimal solution is required, our al-
gorithm is a significant practical improvement over the stan-
dard dynamic programming algorithm, as it is capable of
generating near optimal solutions in an order of magnitude
less time.

Conclusions

This paper presented a new algorithm for approximate coali-
tion structure generation that provides better quality guaran-
tees with lower worst case time than all known algorithms.
Our approach is based on extracting approximate solutions
from partially completed dynamic programming tables. We
prove that after the standard dynamic programming algo-
rithm for coalition structure generation has computed the op-
timal solution to all subproblems consisting of n

r
and fewer

agents, then approximate solutions that are within a factor of
1
r

and 2
2r−1 of the optimal can be constructed in O(2n) and

O(n2n) time, respectively. Our approach allows for con-
stant factor approximations in less than O(3n) time. In par-
ticular, our approach can generate a 2

3 approximate solution

in O(
√

n2.83n) time and a 1
8 approximate solution in O(2n)

time.
Apart from the improvement over current existing con-

stant factor approximation algorithms, we believe that The-
orem 1 and its corollaries may be of independent interest. In
particular, these results may prove useful in the analysis of
other existing dynamic programming based algorithms or al-
gorithms that use dynamic programming as a preprocessing
phase, such as Rahwan and Jennings IDP-IP algorithm (Rah-
wan and Jennings 2008a).

Our approximation technique has the potential to be used
as an anytime algorithm, that would be guaranteed to return
the optimal solution in O(3n) time, similar to Service and
Adams (Service and Adams 2010). The primary difference
between the presented algorithm and Service and Adam’s
algorithm is that our algorithm incurs an overhead during
the extraction of a solution rather than in a preprocessing
phase. Thus, while guarantees on the quality of the solution
are known at any point during the search, the actual value of
the approximation solution will not be known until the ex-
traction phase completes; making the determination of the
exact value of the approximate solution capable of being ex-
tracted at each point in the search somewhat costly. Future
work will determine the viability of the new approximation
technique as an anytime algorithm.

References

Dang, V. D., and Jennings, N. 2004. Generating coalition
structures with finite bound from the optimal guarantees. In
Proceedings of the Third International Joint Conference on
Autonomous Agents and MultiAgent Systems, 564–571.

Larson, K., and Sandholm, T. 2000. Anytime Coalition
Structure Generation: An Average Case Study. Journal of
Experimental and Theoretical AI 12:40–47.

Rahwan, T., and Jennings, N. 2008a. Coalition Structure
Generation: Dynamic Programming Meets Anytime Opti-
misation. In Proceedings of the 23rd Conference on Artifi-
cial Intelligence (AAAI), 156–161.

Rahwan, T., and Jennings, N. 2008b. An Improved Dyanmic
Programming Algorithm for Coalition Structure Generation.
In Proceedings of the 7th International Conference on Au-
tonomous Agents and Multi-Agent Systems, 1417–1420.

Rahwan, T.; Ramchurn, S.; Jennings, N.; and Giovannucci,
A. 2009. An Anytime Algorithm for Optimal Coalition
Structure Generation. Journal of Artificial Intelligence Re-
search 34:521–567.

Sandholm, T.; Larson, K.; Anderson, M.; Shehory, O.; and
Tohmé, F. 1999. Coalition Structure Generation with Worst
Case Guarantees. Artificial Intelligence 111(1-2):209–238.

Service, T. C., and Adams, J. A. 2010. Constant Factor Ap-
proximation Algorithms for Coalition Structure Generation.
Autonomous Agents and Multi-Agent Systems. In Press.

Yeh, Y. 1986. A Dynamic Programming Approach to the
Complete Set Partitioning Problem. BIT Numerical Mathe-
matics 26(4):467–474.

859

