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Abstract

Due to the non-stationary environment, learning in
multi-agent systems is a challenging problem. This pa-
per first introduces a new gradient-based learning algo-
rithm, augmenting the basic gradient ascent approach
with policy prediction. We prove that this augmenta-
tion results in a stronger notion of convergence than the
basic gradient ascent, that is, strategies converge to a
Nash equilibrium within a restricted class of iterated
games. Motivated by this augmentation, we then pro-
pose a new practical multi-agent reinforcement learning
(MARL) algorithm exploiting approximate policy pre-
diction. Empirical results show that it converges faster
and in a wider variety of situations than state-of-the-art
MARL algorithms.

Introduction

Learning is a key component of multi-agent systems (MAS),
which allows an agent to adapt to the dynamics of other
agents and the environment and improves the agent perfor-
mance or the system performance (for cooperative MAS).
However, due to the non-stationary environment where mul-
tiple interacting agents are learning simultaneously, single-
agent reinforcement learning techniques are not guaranteed
to converge in multi-agent settings.

Several multi-agent reinforcement learning (MARL) al-
gorithms have been proposed and studied (Singh, Kearns,
and Mansour 2000; Bowling and Veloso 2002; Hu and Well-
man 2003; Bowling 2005; Conitzer and Sandholm 2007;
Banerjee and Peng 2007), all of which have some theoretical
results of convergence in general-sum games. A common
assumption of these algorithms is that an agent (or player)
knows its own payoff matrix. To guarantee convergence,
each algorithm has its own additional assumptions, such as
requiring an agent to know a Nash Equilibrium (NE) and
the strategy of the other players(Bowling and Veloso 2002;
Banerjee and Peng 2007; Conitzer and Sandholm 2007), or
observe what actions other agents executed and what re-
wards they received (Hu and Wellman 2003; Conitzer and
Sandholm 2007). For practical applications, these assump-
tions are very constraining and unlikely to hold, and, instead,
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an agent can only observe the immediate reward after select-
ing and performing an action.

In this paper, we first propose a new gradient-based algo-
rithm that augments a basic gradient ascent algorithm with
policy prediction. The key idea behind this algorithm is that
a player adjusts its strategy in response to forecasted strate-
gies of the other players, instead of their current ones. We
analyze this algorithm in two-person, two-action, general-
sum iterated game and prove that if at least one player uses
this algorithm (if not both, assume the other player uses the
standard gradient ascent algorithm), then players’ strategies
will converge to a Nash equilibrium. Like other MARL al-
gorithms, besides the common assumption, this algorithm
also has additional requirements that a player knows the
other player’s strategy and current strategy gradient (or pay-
off matrix) so that it can forecast the other player’s strategy.

Motivated by our theoretical convergence analysis, we
then propose a new practical MARL algorithm exploiting
the idea of policy prediction. Our practical algorithm only
requires an agent to observe its reward when choosing a
given action. We show that our practical algorithm can learn
an optimal policy when other players use stationary policies.
Empirical results show that it converges in more situations
than that covered by our formal analysis. Compared to state-
of-the-art MARL algorithms, WPL (Abdallah and Lesser
2008), WoLF-PHC (Bowling and Veloso 2002) and GIGA-
WoLF (Bowling 2005), it empirically converges faster and
in a wider variety of situations.

In the remainder of this paper, we first review the basic
gradient ascent algorithm and then introduce our gradient-
based algorithm with policy prediction followed by its the-
oretical analysis. We then describe a new practical MARL
algorithm and evaluate it in benchmark games, distributed
task allocation problem and network routing.

Notation

- ∆ denotes the valid strategy space, i.e., [0, 1].

- Π∆ : ℜ → ∆ denotes the projection to the valid space,

Π∆[x] = argminz∈∆|x− z|.
- P∆(x, v) denotes the projection of a vector v on x ∈ ∆,

P∆(x, v) = lim
η→0

Π∆(x + ηv)− x

η
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Gradient Ascent

We begin with a brief overview of normal-form games and
then review the basic gradient ascent algorithm.

Normal-Form Games

A two-player, two-action, general-sum normal-form game is
defined by a pair of matrices

R =

[

r11 r12

r21 r22

]

and C =

[

c11 c12

c21 c22

]

specifying the payoffs for the row player and the column
player, respectively. The players simultaneously select an
action from their available set, and the joint action of the
players determines their payoffs according to their payoff
matrices. If the row player and the column player select ac-
tion i, j ∈ {1, 2}, respectively, then the row player receives
a payoff rij and the column player receives the payoff cij .

The players can choose actions stochastically based on
some probability distribution over their available actions.
This distribution is said to be a mixed strategy. Let α ∈ [0, 1]
and β ∈ [0, 1] denote the probability of choosing the first ac-
tion by the row and column player, respectively. With a joint
strategy (α, β), the row player’s expected payoff is

Vr(α, β) = r11(αβ) + r12(α(1 − β)) + r21((1− α)β)

+ r22((1 − α)(1 − β)) (1)

and the column player’s expected payoff is

Vc(α, β) = c11(αβ) + c12(α(1 − β)) + c21((1− α)β)

+ c22((1 − α)(1 − β)). (2)

A joint strategy (α∗, β∗) is said to be a Nash equilib-
rium if (i) for any mixed strategy α of the row player,
Vr(α

∗, β∗) ≥ Vr(α, β∗), and (ii) for any mixed strategy β of
the column player, Vc(α

∗, β∗) ≥ Vc(α
∗, β). In other words,

no player can increase its expected payoff by changing its
equilibrium strategy unilaterally. It is well-known that every
game has at least one Nash equilibrium.

Learning using Gradient Ascent in Iterated Games

In an iterated normal-form game, players repeatedly play the
same game. Each player seeks to maximize it own expected
payoff in response to the strategy of the other player. Using
the gradient ascent algorithm, a player can increase its ex-
pected payoff by moving its strategy in the direction of the
current gradient with some step size. The gradient is com-
puted as the partial derivative of the agent’s expected payoff
with respect to its strategy:

∂αVr(α, β) =
∂Vr(α, β)

∂α
= urβ + br

∂βVc(α, β) =
∂Vc(α, β)

∂β
= ucα + bc (3)

where ur = r11 + r22 − r12 − r21, br = r12 − r22, uc =
c11 + c22 − c12 − c21, and bc = c21 − c22.

If (αk, βk) are the strategies on the kth iteration and both
players use gradient ascent, then the new strategies will be:

αk+1 = Π∆[αk + η∂αVr(αk, βk)]

βk+1 = Π∆[βk + η∂βVc(αk, βk)] (4)

where η is the gradient step size. If the gradient moves the
strategy out of the valid probability space, then the function
Π∆ will project it back. This will only occur on the bound-
aries (i.e., 0 and 1) of the probability space.

Singh, Kearns, and Mansour (2000) analyzed the gradient
ascent algorithm by examining the dynamics of the strate-
gies in the case of an infinitesimal step size (limη→0). This
algorithm is called Infinitesimal Gradient Ascent (IGA). Its
main conclusion is that, if both players use IGA, their aver-
age payoffs will converge in the limit to the expected payoffs
for some Nash equilibrium.

Note that the convergence result of IGA focuses on the av-
erage payoffs of the two players. This notion of convergence
is still weak, because, although the players’ average pay-
offs converge, their strategies may not converge to a Nash
equilibrium (e.g., in zero-sum games). In the next section,
we will describe a new gradient ascent algorithm with pol-
icy prediction that allows players’ strategies to converge to
a Nash equilibrium.

Gradient Ascent With Policy Prediction
As shown in Equation 4, the gradient used by IGA to adjust
the strategy is based on current strategies. Suppose that one
player knows its change direction of the opponent’s strategy,
i.e., strategy derivative, in addition to its current strategy.
Then the player can forecast the opponent’s strategy and ad-
just its strategy in response to the forecasted strategy. Thus
the strategy update rules is changed to:

αk+1 = Π∆[αk + η∂αVr(αk, βk + γ∂βVc(αk, βk))]

βk+1 = Π∆[βk + η∂βVc(αk + γ∂αVr(αk, βk), βk)] (5)

The new derivative terms with γ serve as a short-term pre-
diction (i.e., with length γ) of the opponent’s strategy. Each
player computes its strategy gradient based on the forecasted
strategy of the opponent. If the prediction length γ = 0, the
algorithm is actually IGA. Because of using policy predic-
tion (i.e., γ > 0), we call this algorithm IGA-PP (for theo-
retical analysis, we also consider the case of an infinitesimal
step size (limη→0)). As will be shown in the next section, if
one player uses IGA-PP and the other uses IGA-PP or IGA,
their strategies will converge to a Nash equilibrium.

The prediction length γ will affect the convergence of the
IGA-PP algorithm. With a too large prediction length, a
player may not predict the opponent strategy in a right way.
Then the gradient based on the wrong opponent strategy de-
viates too much from the gradient based on the current strat-
egy, and the player adjusts its strategy in a wrong direction.
As a result, in some cases (e.g., uruc > 0), players’ strate-
gies converge to a point that is not a Nash equilibrium. The
following conditions restrict γ to be appropriate.

Condition 1: γ > 0,

Condition 2: γ2uruc 6= 1,

Condition 3: for any x ∈ {br, ur + br} and y ∈ {bc, uc +
bc}, if x 6= 0, then x(x + γury) > 0, and if y 6= 0, then
y(y + γucx) > 0.

Condition 3 basically says the term with γ will not change
the sign of the x or y, and a sufficiently small γ > 0 will
always satisfy them.
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Analysis of IGA-PP

In this section, we will prove the following main result.

Theorem 1. If, in a two-person, two-action, iterated
general-sum game, both players follow the IGA-PP algo-
rithm (with sufficiently small γ > 0), then their strategies
will asymptotically converge to a Nash equilibrium.

Similar to the analysis in (Singh, Kearns, and Mansour
2000; Bowling and Veloso 2002), our proof of this theorem
is accomplished by examining the possible cases of the dy-
namics of players’ strategies following IGA-PP, as done by
Lemma 3, 4, and 5. To facilitate the proof, we first prove that
if players’ strategies converge by following IGA-PP, then
they must converge to a Nash equilibrium, i.e., Lemma 2.

For brevity, let ∂αk
denote ∂αVr(αk, βk), and ∂βk

denote
∂βVc(αk+, βk). We reformulate the update rules of IGA-PP
from Equation 5 using Equation 3:

αk+1 = Π∆[αk + η(∂αk
+ γur∂βk

)]

βk+1 = Π∆[βk + η(∂βk
+ γuc∂αk

)] (6)

Lemma 1. If the projected partial derivatives at a strat-
egy pair (α∗, β∗) are zero, that is, P∆(α∗, ∂α∗) = 0 and
P∆(β∗, ∂β∗) = 0, then (α∗, β∗) is a Nash equilibrium.

Proof. Assume that (α∗, β∗) is not a Nash equilibrium.
Then at least one player, say the column player, can increase
its expected payoff by changing its strategy unilaterally. Let
the improved point be (α∗, β). Because the strategy space
∆ is convex and the linear dependence of Vc(α, β) on β,
then, for any ǫ > 0, (α∗, (1 − ǫ)β∗ + ǫβ) must also be an
improved point, which implies the projected gradient of β
at (α∗, β∗) is not zero. By contradiction, (α∗, β∗) is a Nash
equilibrium.

Lemma 2. If, in following IGA-PP with sufficiently small
γ > 0, limk→∞(αk, βk) = (α∗, β∗), then (α∗, β∗) is a
Nash equilibrium.

Proof. The strategy pair trajectory converges at (α∗, β∗) if
and only if the projected gradients used by IGA-PP are zero,
that is, P∆(α∗, ∂α∗ + γur∂β∗) = 0 and P∆(β∗, ∂β∗ +
γuc∂α∗) = 0. Now we are showing that P∆(α∗, ∂α∗ +
γur∂β∗) = 0 and P∆(β∗, ∂β∗ + γuc∂α∗) = 0 will imply
P∆(α∗, ∂α∗) = 0 and P∆(β∗, ∂β∗) = 0, which, according
to Lemma 1, will finish the proof and indicates (α∗, β∗) is a
Nash equilibrium. Assume γ > 0 is sufficiently small that
satisfies Condition 2 and 3. Consider three possible cases
when the projected gradients used by IGA-PP are zero.

Case 1: both gradients are zero, that is, ∂α∗ + γur∂β∗ = 0
and ∂β∗ + γuc∂α∗ = 0. By solving them, we get (1 −
γ2uruc)∂α∗ = 0 and ∂β∗ = −γuc∂α∗ , which implies

∂α∗ = 0 and ∂β∗ = 0, due to Condition 2 (i.e., γ2uruc 6=
1). Therefore, P∆(α∗, ∂α∗) = 0 and P∆(β∗, ∂β∗) = 0.

Case 2: at least one gradient is greater than zero. Without
loss of generality, assume ∂α∗ +γur∂β∗ > 0. Because its
projected gradient is zero, its strategy is on the boundary
of the strategy space ∆, which implies α∗ = 1. Now
we consider three possible cases of the column player’s
partial strategy derivative ∂β∗ = ucα

∗ + bc = uc + bc.

1. ∂β∗ = 0, which implies P∆(β∗, ∂β∗) = 0. ∂α∗ +
γur∂β∗ > 0 and α∗ = 1 implies P∆(α∗, ∂α∗) = 0.

2. ∂β∗ = uc + bc > 0, due to Condition 3, implies ∂β∗ +
γuc∂α∗ > 0. Because the projected gradient of β∗ is
zero, then β∗ = 1, which implies P∆(β∗, ∂β∗) = 0.

∂α∗ +γur∂β∗ = ur + br +γur(uc + bc) > 0 and Con-
dition 3 implies ∂α∗ = ur + br > 0, which, combined
with α∗ = 1, implies P∆(α∗, ∂α∗) = 0.

3. ∂β∗ = uc + bc < 0. The analysis of this case is similar
to the case above with ∂β∗ > 0, except β∗ = 0 .

Case 3: at least one gradient is less than zero. The proof
of this case is similar to Case 2. Without loss of general-
ity, assume ∂α∗ + γur∂β∗ < 0, which implies α∗ = 0.
Then using Condition 3 and analyzing three cases of
∂β∗ = ucα

∗ + bc = bc will also get P∆(α∗, ∂α∗) = 0
and P∆(β∗, ∂β∗) = 0.

To prove IGA-PP’s Nash convergence, we now will ex-
amine the dynamics of the strategy pair following IGA-PP.
The strategy pair (α, β) can be viewed as a point in ℜ2 con-
strained to lie in the unit square. Using Equation 3, 6, and
an infinitesimal step size, it is easy to show that the uncon-
strained dynamics of the strategy pair is defined by the fol-
lowing differential equation

[

α̇

β̇

]

=

[

γuruc ur

uc γucur

] [

α
β

]

+

[

γurbc + br

γucbr + bc

]

(7)

We denote the 2× 2 matrix in Equation 7 as U .

In the unconstrained dynamics, there exists at most one
point of zero-gradient, which is called the center (or origin)
and denoted (αc, βc). If the matrix U is invertible, by setting
the left hand side of Equation 7 to zero, using Condition 2
(i.e., γ2uruc < 1), and solving for the center, we get

(αc, βc) = (
−br

ur

,
−bc

uc

). (8)

Note that the center is in general not at (0, 0) and may not
even be in the unit square.

Figure 1: The phase portraits of the IGA-PP dynamics: a)
when U has real eigenvalues and b) when U has imaginary
eigenvalues with negative real part
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From dynamical systems theory (Perko 1991), if the ma-
trix U is invertible, qualitative forms of the dynamical sys-
tem specified by Equation 7 depend on eigenvalues of U ,
which are given by

λ1 = γuruc +
√

uruc and λ2 = γuruc −
√

uruc. (9)

If U is invertible, uruc 6= 0. If uruc > 0, then U has two
real eigenvalues; otherwise, U has two imaginary conjugate
eigenvalues with negative real part (because γ > 0). There-
fore, based on linear dynamical systems theory, if U is in-
vertible, Equation 7 has two possible phase portraits shown
in Figure 1. In each diagram, there are two axes across
the center. Each axis is corresponding to one player, whose
strategy gradient on this axis are zero. Because ur, uc 6= 0
in Equation 7, two axes are off the horizonal or the verti-
cal line and not orthogonal to each other. These two axes
produce four quadrants.

To prove Theorem 1, we only need to show that IGA-PP
always leads the strategy pair to converge a Nash equilib-
rium in three mutually exclusive and exhaustive cases:
• uruc = 0, i.e., U is not invertible,
• uruc < 0, i.e., having a saddle at the center,
• uruc > 0, i.e., having a stable focus at the center.

Lemma 3. If U is not invertible, for any initial strategy pair,
IGA-PP (with sufficiently small γ) leads the strategy pair
trajectory to converge to a Nash equilibrium.

Proof. If U is not invertible, det(U) = (γ2uruc−1)uruc =
0. A sufficiently small γ will always satisfy Condition 2,
i.e., γ2uruc 6= 1. Therefore, ur or uc is zero. Without
loss of generality, assume ur is zero. Then the gradient for
the row player is constant (See Equation 7), i.e., br. As a
result, if br = 0, then its strategy α keeps on its initial value;
otherwise, its strategy will converge to α = 0 (if br < 0)
or α = 1 (if br > 0). After the row player’s strategy α
becomes a constant, due to ur = 0, the column player’s
strategy gradient also becomes a constant. Then its strategy
β stays on a value (if the gradient is zero) or converges to one
or zero, depending on the sign of the gradient. According to
Lemma 2, the joint strategy converges to a Nash equilibrium.

Lemma 4. If U has real eigenvalues, for any initial strategy
pair, IGA-PP leads the strategy pair trajectory to converge
to a point on the boundary that is a Nash equilibrium.

Proof. From Equation 9, real eigenvalues implies uruc > 0.
Assume ur > 0 and uc > 0 (the analysis for the case with
ur < 0 and uc < 0 is analogous and omitted). In this case,
the dynamics of the strategy pair has the qualitative form
shown in Figure 1a.

Consider the case when the center is inside the unit
square. If the initial point is at the center where the gra-
dient is zero, it converges immediately. For an initial point
in quadrant B or D, if it is on the dashed line, the trajectory
will asymptotically converge to the center; otherwise, the
trajectory will eventually enter either quadrant A or C. Any
trajectory in quadrant A (or C) will converge to the top-right
corner (or the bottom-left corner) of the unit square. There-
fore, by Lemma 2, any trajectory always converges a Nash

equilibrium. Cases when the center on the boundary or out-
side the unit square can be shown similarly to converge, and
are discussed in (Singh, Kearns, and Mansour 2000).

Lemma 5. If U has two imaginary conjugate eigenvalues
with negative real part, for any initial strategy pair, the IGA-
PP algorithm leads the strategy pair trajectory to asymptot-
ically converge to a point that is a Nash equilibrium.

Proof. From dynamical systems theory (Perko 1991), if U
has two imaginary conjugate eigenvalues with negative real
part, the unconstrained dynamics of Equation 7 has a sta-
ble focus at the center, which means, starting from any
point, the trajectory will asymptotically converge to the cen-
ter (αc, βc) in a spiral way. From Equation 9, the imaginary
eigenvalues implies uruc < 0. Assume ur > 0 and uc < 0
(the case with ur < 0 and uc > 0 is analogous), whose gen-
eral phase portrait is shown in Figure 1b. One observation is
that the direction of the gradient of the strategy pair changes
in a clockwise way through the quadrants.

Figure 2: Example dynamics when U has imaginary eigen-
values with negative real part

By Lemma 2, we only need to show the strategy pair tra-
jectory will converge a point in the constrained dynamics.
We analyze three possible cases to consider depending on
the location of the center (αc, βc).

1. Center in the interior of the unit square. First, we ob-
serve that all boundaries of the unit square are tangent to
some spiral trajectory, and at least one boundary is tan-
gent to a spiral trajectory, whose remaining part after the
tangent point lies entirely within the unit square, e.g., two
dashed trajectories in Figure 2a.
If the initial strategy pair coincidentally is the center, it
will always stay because its gradient is zero. Otherwise,
the trajectory starting from the initial point either does not
intersect any boundary, which will asymptotically con-
verge to the center, or intersects with a boundary. In the
latter case, when the trajectory hits a boundary, it then
travels along the boundary until it reaches the point at
which the boundary is tangent to some spiral, whose re-
maining part after the tangent point may or may not lie
entirely within the unit square. If it does, then the trajec-
tory will converge to the center along that spiral. If it does
not, the trajectory will follow the tangent spiral to the next
boundary in the clockwise direction. This process repeats

930



until the boundary is reached that is tangent to a spiral,
whose remaining part after the tangent point lies entirely
within the unit square. Therefore, the trajectory will even-
tually asymptotically converge to the center.

2. Center on the boundary. Consider the case where the
center is on the left-side boundary of the unit square, as
shown in Figure 2b. For convenience, assume the top left
corner only belongs to the left boundary and the bottom
left corner only belongs to the bottom boundary. If the ini-
tial strategy pair coincidentally is the center, it will always
stay because of its gradient is zero. Otherwise, because of
clockwise directions of the gradient, no matter where the
trajectory starts, it will always finally hit the left boundary
below the center, and then travels up along the left bound-
ary and asymptotically converge to the center. A similar
argument can be constructed when the center is on some
other boundary of the unit square.

3. Center outside the unit square. In this case, the strategy
trajectory will converge to some corner of the unit square
depending on the location of the unit square, as discussed
in (Singh, Kearns, and Mansour 2000).

Theorem 2. If, in a two-person, two-action, iterated
general-sum game, one player uses IGA-PP (with a suffi-
ciently small γ) and the other player uses IGA, then their
strategies will converge to a Nash equilibrium.

The proof of this theorem is omitted, which is similar to
that of Theorem 1.

A Practical Algorithm

Based on the idea of IGA-PP, we now present a new prac-
tical MARL algorithm, called Policy Gradient Ascent with
approximate policy prediction (PGA-APP), shown in Algo-
rithm 1. The PGA-APP algorithm only requires the obser-
vation of the reward of the selected action. To drop the as-
sumptions of IGA-PP, PGA-APP needs to address the key
question: how can an agent estimate its policy gradient with
respect to the opponent’s forecasted strategy without know-
ing the current strategy and the gradient of the opponent?

For clarity, let us consider the policy update rule of IGA-
PP for the row player, shown by Equation 6. IGA-PP’s pol-
icy gradient of the row player (i.e., ∂αk

+ γur∂βk
) contains

two components: its own partial derivative (i.e., ∂αk
) and the

product of a constant and the column player’s partial deriva-
tive (i.e., γur∂βk

) with respect to the current joint strategies.
PGA-APP estimates these two components, respectively.

To estimate the partial derivative with respect to the cur-
rent strategies, PGA-APP uses Q-learning to learn the ex-
pected value of each action in each state. The value func-
tion Q(s, a) returns the expected reward (or payoff) of ex-
ecuting action a in state s. The policy π(s, a) returns the
probability of taking action a in state s. As shown by Line
5 in Algorithm 1, Q-learning only uses the immediate re-
ward to update the expected value. With the value func-
tion Q and the current policy π, PGA-APP then can cal-
culate the partial derivative, as shown by Line 8. To illus-
trate that the calculation works properly, let us consider a

Algorithm 1: PGA-APP Algorithm

Let θ and η be the learning rates, ξ be the discount1

factor, γ be the derivative prediction length;
Initialize value function Q and policy π;2

repeat3

Select an action a in current state s according to4

policy π(s, a) with suitable exploration ;
Observing reward r and next state s′, update5

Q(s, a)← (1−θ)Q(s, a)+θ(r+ξ maxa′ Q(s′, a′));
Average reward V (s)←

∑

a∈A π(s, a)Q(s, a);6

foreach action a ∈ A do7

if π(s, a) = 1 then δ̂(s, a)← Q(s, a)− V (s)8

else δ̂(s, a)← (Q(s, a)−V (s))/(1− π(s, a)) ;

δ(s, a)← δ̂(s, a)− γ|δ̂(s, a)|π(s, a) ;9

π(s, a)← π(s, a) + ηδ(s, a) ;10

end11

π(s)← Π∆[π(s)];12

until the process is terminated ;13

two-person, two-action repeated game, where each agent
has a single state. Let α = πr(s, 1) and β = πc(s, 1)
be the probability of the first action of the row player and
the column player, respectively. Then Qr(s, 1) is the ex-
pected value of the row player playing the first action, which
will converge to β ∗ r11 + (1 − β) ∗ r12 by using Q-
learning. It is easy to show that, when Q-learning converges,

(Qr(s, 1)− V (s))/(1 − πr(s, 1)) = urβ + br = ∂Vr(α,β)
∂α

,
which is the partial derivative of the row player (as shown
by Equation 3).

Using Equation 3, we can expand the second component,
γur∂βk

= γurucα + γurbc. So it is actually a linear func-
tion of the row player’s own strategy. PGA-APP approxi-
mates the second component by the term−γ|δ(s, a)|π(s, a),
as shown in Line 9. This approximation has two advantages.
First, when players’ strategies converge to a Nash equilib-
rium, this approximated derivative will be zero and will not
cause them to deviate from the equilibrium. Second, the
negative sign of this approximation term is intended to sim-
ulate the partial derivative well for the case with uruc < 0
(where IGA does not converge) and allows the algorithm to
converge in all cases (properly small γ will allow conver-
gence in other cases, i.e., uruc ≥ 0). Line 12 projects the
adjusted policy to the valid space.

In some sense, PGA-APP extends Q-learning and is capa-
ble of learning mixed strategies. A player following PGA-
APP with γ < 1 will learn an optimal policy if the other
players are playing stationary policies. It is because, with a
stationary environment, using Q-learning, the value function
Q will converge to the optimal one, denoted by Q∗, with a
suitable exploration strategy. With γ < 1, the approximate
derivative term in Line 9 will never change the sign of the
gradient, and policy π converges to a policy that is greedy
with respect to Q. So when Q is converging to Q∗, π con-
verges to a best response.

Learning parameters will affect the convergence of PGA-
APP. For competitive games (with uruc < 0), the larger the
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Figure 3: Convergence of PGA-APP (on the top row) and WPL (on the bottom row) in games. Plot (a), (c), (d) and (f) shows the dynamics
of the probability of the first action of each player, and plot (b) and (e) shows the dynamics of the probability of each action of the first player.
Parameters: θ = 0.8, ξ = 0, γ = 3, η = 5/(5000+ t) for PGA-APP (η is tuned and decayed slower for WPL), where t is the current number
of iterations, and a fixed exploration rate = 0.05. Value function Q is initialized with zero. For two-action games, players’ initial policies are
(0.1, 0.9) or (0.9, 0.1), respectively, and, for three-action games, their initial policies are (0.1, 0.8, 0.1) and (0.8, 0.1, 0.1).

derivative prediction length γ, the faster the convergence.
But for non-competitive games (with uruc ≥ 0), too large γ
will violate Condition 3 and cause players’ strategies to con-
verge to a point that is not a Nash equilibrium. With higher
learning rates θ and η, PGA-APP learns a policy faster at
the early stage but the policy may oscillate at late stages.
Properly decaying θ and η makes PGA-APP converge bet-
ter. However, the initial value and the decay of learning rate
η need to be set appropriately for the value of the learning
rate θ, because we do not want to take larger policy update
steps than steps with which values are updated.

Experiments: Normal-Form Games

Figure 4: Normal-form games.

We have evaluated PGA-APP, WoLF-PHC (Bowling and
Veloso 2002), GIGA-WoLF (Bowling 2005), and WPL (Ab-
dallah and Lesser 2008) on a variety of normal-form games.
Due to space limitation, we only show results of PGA-APP
and WPL in three representative benchmark games: match-
ing pennies, Shapley’s game, and three-player matching
pennies, as defined in Figure 4. The results of WoLF-PHC
and GIGA-WoLF have been shown and discussed in (Bowl-
ing 2005; Abdallah and Lesser 2008). As shown in Fig-
ure 3, using PGA-APP, players’ strategies converge to a
Nash equilibrium in all cases, including games with three
players or three actions that are not covered by our formal
analysis. Therefore, PGA-APP empirically has a stronger
convergence property than WPL, WoLF-PHC and GIGA-
WoLF, each of which does not converge in one of two
games: Shapley’s game and three-player matching pennies.
Through experimenting with various parameter settings, we
also observe that PGA-APP generally converges faster than
WPL, WoLF-PHC and GIGA-WoLF. One possible reason is
that, as shown in Figure 1b, the strategy trajectory following
IGA-PP spirals directly into the center, while the trajectory
following IGA-WoLF moves along an elliptical orbit in each
quadrant and slowly approaches to the center, as discussed
in (Bowling and Veloso 2002).

Experiments: Distributed Task Allocation

We used our own implementation of the distributed task al-
location problem (DTAP) that was described in (Abdallah
and Lesser 2008). Agents are organized in a network. Each
agent may receive tasks from either the environment or its
neighbors. At each time unit, an agent makes a decision
for each task received during this time unit whether to ex-
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ecute the task locally or send it to a neighbor for process-
ing. A task to be executed locally will be added to the local
first-come-first-serve queue. The main goal of DTAP is to
minimize the average total service time (ATST) of all tasks,
including routing time, queuing time, and execution time.

Figure 5: Performance in distributed task allocation

We applied WPL, GIGA-WoLF, and PGA-APP, respec-
tively, to learn the policy of deciding where to send a task:
the local queue or one of its neighbors. The agent’s state
is defined by the size of the local queue, which is different
from the experiments in (Abdallah and Lesser 2008) (where
each agents has a single state). All algorithms use value-
learning rate θ = 1 and policy-learning rate η = 0.0001.
PGA-APP used prediction length γ = 1.

Experiments were conducted using uniform two-
dimension grid networks of agents with different sizes: 6x6,
10x10, and 18x18, and with different task arrival patterns,
all of which show similar comparison results. For brevity,
we only present here the results for the 10x10 grid (with 100
agents), where tasks arrive at the 4x4 sub-grid at the center
at an average rate 0.5 tasks/time unit. Communication delay
between two adjacent agents is one time unit. All agents
can execute a task at a rate of 0.1 task/time unit.

Figure 5 shows the results of these three algorithms, all of
which converge. PGA-APP converges faster and to a better
ATST: WPL converges to 34.25± 1.46 and GIGA-WoLF to
30.30 ± 1.64, while PGA-APP converges to 24.89 ± 0.82
(results are averaged over 20 runs).

Experiments: Network Routing

We also evaluated PGA-APP in network routing. A network
consists of a set of agents and links between them. Packets
are periodically introduced into the network under a Poisson
distribution with a random origin and destination. When a
packet arrives at an agent, the agent puts it into the local
queue. At each time step, an agent makes its routing deci-
sion of choosing which neighbor to forward the top packet
in the queue. Once a packet reaches its destination, it is re-
moved from the network. The main goal in this problem is to
minimize the Average Delivery Time (ADT) of all packets.

We used the experimental setting that was described in
(Zhang, Abdallah, and Lesser 2009). The network is a
10x10 irregular grid with some removed edges. The time
cost of sending a packet down a link is a unit cost. The
packet arrival rate to the network is 4. Each agent uses the
learning algorithm to learn its routing policy.

Figure 6: Performance in network routing

Figure 6 shows the results of applying WPL, GIGA-
WoLF, and PGA-APP to this problem. All three algorithms
demonstrate convergence, but PGA-APP converges faster
and to a better ADT: WPL converges to 11.60 ± 0.29 and
GIGA-WoLF to 10.22±0.24, while PGA-APP converges to
9.86± 0.29 (results are averaged over 20 runs).

Conclusion

We first introduced IGA-PP, a new gradient-based algo-
rithm, augmenting the basic gradient ascent algorithm with
policy prediction. We proved that, in two-player, two-action,
general-sum matrix games, IGA-PP in self-play or against
IGA would lead players’ strategies to converge to a Nash
equilibrium. Inspired by IGA-PP, we then proposed PGA-
APP, a new practical MARL algorithm, only requiring the
observation of an agent’s local reward for selecting an spe-
cific action. Empirical results in normal-form games, dis-
tributed task allocation problem and network routing showed
that PGA-APP converged faster and in a wider variety of sit-
uations than state-of-the-art MARL algorithms.
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