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Abstract

The use of simple auction mechanisms like the GSP in on-
line advertising can lead to significant loss of efficiency and
revenue when advertisers have rich preferences—even sim-
ple forms of expressiveness like budget constraints can lead
to suboptimal outcomes. While the optimal allocation of in-
ventory can provide greater efficiency and revenue, natural
formulations of the underlying optimization problems grow
exponentially in the number of features of interest, present-
ing a key practical challenge. To address this problem, we
propose a means for automatically partitioning inventory into
abstract channels so that the least relevant features are ig-
nored. Our approach, based on LP/MIP column and con-
straint generation, dramatically reduces the size of the prob-
lem, thus rendering optimization computationally feasible at
practical scales. Our algorithms allow for principled trade-
offs between tractability and solution quality. Numerical ex-
periments demonstrate the computational practicality of our
approach as well as the quality of the resulting abstractions.

Introduction

Online advertising has radically changed the nature of ad-
vertising and the technology supporting the deployment of
ad campaigns. While ad targeting and campaign design is
inherently complex, the variety of online advertising ser-
vices has only increased this complexity. In particular, the
ability to target ads to specific individuals based on detailed,
personalized online information—information that is simply
not available in broadcast media—presents compelling op-
portunities and tremendous technical challenges for ad de-
livery. Sophisticated matching and bidding algorithms, such
as auctions using generalized second price (GSP) (Edelman,
Ostrovsky, & Schwarz 2007; Varian 2007), have been de-
veloped for sponsored search advertising. By contrast, the
selling of graphical display ads on web pages is still largely
managed via manual negotiation. Though much low-value
remnant inventory is sold in online exchanges, premium dis-
play advertising space (e.g., slots near the top, or “above
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the fold,” of high traffic, high profile websites) is sold al-
most exclusively by non-automated means. One reason for
this is a perception that auction/market mechanisms can-
not be made to work for the types of campaign-level ex-
pressiveness (e.g., impression targets, smoothness of de-
livery, temporal sequencing, complements, representative-
ness) required for display ads (Parkes & Sandholm 2005;
Boutilier et al. 2008).

While sophisticated bidding strategies (Borgs et al. 2006;
Feldmann et al. 2007; Rusmevichientong & Williamson
2006) can increase the value a bidder extracts from an in-
expressive auction (e.g., GSP) for some limited preference
types (e.g., long-term budgets), it is very difficult to bid ef-
fectively with more demanding types of preferences (e.g.,
requiring minimum quantities). Furthermore, with inexpres-
sive auctions, arbitrarily large inefficiencies can arise in gen-
eral (Benisch, Sadeh, & Sandholm 2009). Richer languages
that allow advertisers to express their true campaign pref-
erences directly, rather than forcing them into standard per-
event bidding models, are critical to the automated matching
and selling of display ads. It is just these forms of campaign-
level expressiveness that are developed in (Parkes & Sand-
holm 2005; Boutilier et al. 2008), where a variety of ex-
pressiveness forms are outlined. But a significant bottleneck
remains: the use of expressive bidding requires optimization
to match ad supply with advertisers’ demand.

In this paper we tackle a key impediment to the use of op-
timization in ad auctions: channel explosion. Online adver-
tisers can segment the target audience and ad impressions
using an enormous number of features. But the number
of ad channels, or feature instantiations, to which ads can
be assigned grows exponentially in the number of features.
Standard models that use linear programming (LP) (Abrams,
Mendelevitch, & Tomlin 2007) or mixed-integer program-
ming (MIP) (Boutilier et al. 2008; Parkes & Sandholm
2005) to assign ads to such channels simply cannot scale
directly to problems involving more than a few thousand
channels. We address this through the use of channel ab-
straction. Intuitively, an abstract channel is any aggrega-
tion of concrete channels (i.e., feature instantiations) into a
single channel. During allocation optimization, ads are as-
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signed to abstract channels rather than concrete channels. As
we show, a well-chosen abstraction, guided by its impact on
allocation value—as opposed to clustering based solely on
statistical properties of the features in question—can make
optimization practical with little sacrifice of revenue or effi-
ciency. We propose techniques for automatically generating
and using a set of abstract channels: a novel form of column
generation to generate an abstraction; and a new constraint
generation algorithm for improving the allocation of ads to
abstract channels.

In the next section we present the basic ad allocation
model and define abstract channels. We show that a small
number of channels is sufficient to implement an optimal
allocation. We then develop a novel and computationally
effective column generation technique to generate useful
abstractions—empirical results show that the algorithm ob-
tains near-optimal allocations with very few channels. We
extend the approach with a constraint generation algorithm
that makes more effective use of abstract channels, and
demonstrate how it significantly improves value when “MIP
expressiveness” is involved. We conclude with directions
for future research.

Allocation Model and Abstract Channels

We assume a finite attribute or feature set F , each F i ∈ F
having finite domain Dom(F i) = {f i

1, . . . , f
i
ni}. Features

describe attributes of an ad display such as web site, page lo-
cation, user demographic, day part, contextual features, etc.
The set of concrete channels (c-channels) C comprises the
instantiations of features F . Intuitively, a c-channel c ∈ C
is a finest-grained chunk of supply to which an ad can be
assigned. We often treat c as a model of the propositional
language over variables F (e.g., writing c |= ϕ for propo-
sitional formulae ϕ over F ). Let s(c, t) be the supply of
c-channel c available at time t ≤ T .

Advertisers express their campaign objectives using a set
of one or more bids, potentially linked by shared variables
and constraints. While we allow all forms of expressiveness
that can be represented as a MIP, we motivate our techniques
using a simple LP-based model. We assume a set B of item-
based, budget-constrained bids. Each bid i ∈ B has form
〈ϕi, vi, gi, wi〉, where ϕi is a logical formula over features
F , vi > 0 is i’s price per impression, gi > 0 is its budget,
and wi is a time window [si, ei] within which impressions
must occur (1 ≤ si ≤ ei ≤ T ). Bid i reflects adver-
tiser i’s interest in impressions satisfying the condition ϕi.
The allocation problem in this setting can be formulated as
a simple LP that maximizes revenue by allocating xi

c(t) im-
pressions of c-channel c ∈ C to bid i at time t. To simplify
notation, we formulate the optimization as if there were a
single time period. (The generalization to multiple periods
is obvious). Let vi

c be i’s value for a c-impression: vi
c = vi

if c |= ϕi; vi
c = 0 otherwise. Then we have (with xi

c ≥ 0):max
xi

c i c

v
i
cx

i
c (1)

s.t.

i

x
i
c ≤ s(c) ∀c ∈ C;

c

v
i
cx

i
c ≤ g

i ∀i ∈ B.

This LP can easily be extended to other forms of LP ex-
pressiveness, such as substitutes, complements, and time-
based smoothness. For example, if a campaign has (par-
tially) substitutable demands (e.g., it desires ϕ1 or ϕ2 with

values v1 and v2), two separate bids can be posted with a
joint budget constraint. If ϕ1 and ϕ2 are complements, we
can constrain the allocated impressions to meet some ap-
proximate ratio target (e.g, imp(ϕ1) ≤ (1 + ε)imp(ϕ2),
imp(ϕ2) ≤ (1 + ε)imp(ϕ1), where imp(ϕ) is the number
of impressions of ϕ). Smoothness constraints can also be
encoded linearly (e.g., requiring at least 10% of total impres-
sions to be allocated in each eligible time period). A bidder
may want to receive a “representative allocation” (Ghosh
et al. 2009), whereby the distribution of the attributes of
impressions received reflects that in the overall population
matching ϕi. Bidders may also want to cap the frequency
that an ad is shown to any given user. We can model all of
these forms of bid expressiveness within the LP.

Other forms of MIP expressiveness requires the use of bi-
nary variables, for example, threshold/bonus bids in which
an advertiser requires a certain minimum quantity of impres-
sions (Boutilier et al. 2008; Parkes & Sandholm 2005). Our
model also generalizes readily to per-click and per-action
valuation. For a deeper discussion of expressiveness forms,
see (Boutilier et al. 2008).

Abstract Channels The number of c-channels |C| grows
exponentially in the number of features. Thus we must con-
sider the use of abstract channels (a-channels). An ab-
stract channel is any aggregation of c-channels, and can be
represented as a logical formula α over F . An abstrac-
tion is a partitioning of c-channels C into a set A of a-
channels, i.e., a set of mutually exclusive and covering for-
mulae {α1, . . . , α|A|}. We treat an a-channel and its logical
representation α indistinguishably, writing both c ∈ α and
c |= α as appropriate. Lossless abstraction is one means of
creating a-channels: we group c-channels corresponding to
(logically consistent) formulae of the form ∧i∈B ± ϕi; i.e.,
conjunctions over all bid formulae or their negations. While
this allows for optimal allocation, it it will not generally lead
to a manageable number of channels; instead we consider
“approximation” using a-channels that are not necessarily
aligned with bid formulae.

Given an abstraction A, our optimization problem is one
of assigning bids to a-channels. Define the supply of a-
channel α to be s(α) =

∑
{s(c) : c ∈ C, c |= α}.

We formulate the optimization assuming a random dispatch
policy: if i is assigned to an abstract channel α, it’s ad
will be dispatched randomly to the c-channels that consti-
tute α. Under this assumption, the probability that an α-
impression is relevant for bid i is pi

α = Pr(ϕi|α), where
Pr(ϕi|α) = s(ϕi ∧α)/s(α). Thus, for channel α, the num-
ber of specific impressions out of xi

α that “count towards”
the satisfaction of a bid i’s conditions is pi

αxi
α. In particular,

for our simple LP, the value of a single α-impression to i
is vi

α = vipi
α. This reflects the (expected) value of a ran-

dom dispatch policy: if i is assigned to an abstract channel
α, it will be assigned randomly to the c-channels that consti-
tute α.1 The optimal allocation under the random dispatch

1The dispatch of ads can be handled more intelligently: no ad
for i will actually be assigned to a channel not satisfying ϕi; intel-
ligent dispatch (Parkes & Sandholm 2005) can be used to reassign
such wasted supply to ads that can exploit it. Thus, vi

α underesti-
mates true value. We discuss this below, and develop methods to
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assumption is given by the LP:

max
xi

α

∑

i

∑

α

vipi
αxi

α

s.t.
∑

i

xi
α ≤ s(α) ∀α ∈ A

∑

α

vi
αxi

α ≤ gi ∀i ∈ B.

With more general expressiveness, we may not associate
value directly with impressions, but with complex proper-
ties of the entire allocation, possibly involving multiple for-
mulae ϕi. In such a case, we discount the impressions that
count toward satisfaction of the any component formula ϕi

by Pr(ϕi|α). The value discount in the per-impression LP
is a special case of this.

We wish to obtain an abstraction that allows optimization
to tractably achieve a high-value allocation. Fortunately,
such an allocation always exists.

Theorem 1 For any abstraction A with an allocation Υ in
which W is the set of bids with positive allocation, there
exists an abstraction A′ with a corresponding allocation Υ′

such that |A′| ≤ 2|W | − 1 and each bid receives the same
number of relevant impressions in Υ′ as in Υ.

Proof sketch. Construct a bipartite graph G = {VB, VC , E}
with a bid vertex for each i ∈ W and a channel vertex for
each α ∈ A. An edge with weight xi

α exists between a
bid vertex i and a channel vertex α iff there is a positive
allocation from channel α to bid i in the allocation Υ.

If any cycles exist in G, choose one and consider the sub-
graph G′ = {V ′

B, V ′
C , E′} comprising the edges in this cy-

cle. Let k = |V ′
B | = |V ′

C |, and label the bid and channel
vertices from 1 to k, s.t. bid vertex 1 connects to channel
vertices 1 and 2, etc. We break this cycle by shifting the allo-
cation, holding each bid’s relevant impression total constant
and not exceeding the supply used in each channel. This cor-
responds to finding a new set of (non-negative) edge weights
x, with at least one xi

α = 0, satisfying:

x
1
1 + x

k
1 ≤ x

1
1 + x

k
1

· · ·

x
k−1
k + x

k
k ≤ x

k−1
k + x

k
k

p
1
1x

1
1 + p

1
2x

1
2 = p

1
1x

1
1 + p

1
2x

1
2

· · ·

p
k
kx

k
k + p

k
1x

k
1 = p

k
kx

k
k + p

k
1x

k
1

This system must have a solution with xi
α = 0 for some i, α.

We update the graph G by changing all edge weights x in
the cycle to these new weights x and remove the edge with
(new) weight 0. We repeat this process until G is acyclic.

Channel vertices with degree 1 in the new graph (single-
ton channels) are those in which only one bid receives pos-
itive allocation. Any two singleton channels α and β allo-
cated to the same bid i can be collapsed into a single chan-
nel α ∨ β, while preserving total relevant impressions, as
follows:

assign ads to abstract channels in a more refined fashion.

x
i
α∨β =

pi
αxi

α + pi
βxiβ

pi
α∨β

.

We then replace α and β by a single new channel vertex
α ∨ β with a single edge of weight xi

α∨β connected to the

bid vertex i. Channels not allocated to a bid can be collapsed
into any such singleton channel by the same process.

By maximal collapse of singletons, we have a bipartite
graph with at most |W | channel vertices of degree 1 (or 0).
Since the graph is now acyclic, there are at most |W | − 1
channel vertices with degree 2 or more. Hence there are at
most 2|W | − 1 channel vertices in the new graph. Construct
an abstraction A′ and allocation Υ′ corresponding to the fi-
nal graph. Each operation preserved the total of relevant
impressions awarded to each bid, and |A′| ≤ 2|W | − 1. �

It immediately follows that an optimal allocation requires
at most 2|W | − 1 channels. The proof is constructive given
the initial allocation, but does not provide any guidance for
how to come up with an optimal initial allocation. In the fol-
lowing sections we describe instead how to generate small,
high-quality abstractions based on column generation.

Creating Abstractions: Column Generation

The solution of an abstract LP or MIP (depending on the
form of expressiveness allowed in the market) provides us
with an optimal assignment of bids to a-channels. This
leaves the question of choosing a set of a-channels of
computationally-manageable size, yet whose solution pro-
vides a near-optimal solution to the original problem. We
develop a novel column generation method to do just this.
We first describe the method using LPs with only supply
constraints, then show how it applies more broadly to arbi-
trary LP and IP expressiveness.

The basic approach is as follows: we solve an abstract LP
using a trivial initial abstraction (e.g., aggregating all chan-
nels into a single a-channel ⊤). We refine the abstraction
by splitting an a-channel α by conjoining a formula β and

its negation, thus replacing α by α ∧ β and α ∧ β. A new
LP is solved with the new a-channels, and the process re-
peats until the improvement in LP objective value falls be-
low some threshold or the number of channels reaches a
specified limit. To illustrate, consider an LP to allocate a sin-
gle a-channel α to bids B = {1, 2} (with no bid constraints):

max v1
αx1

α +v2
αx2

α

s.t. x1
α +x2

α ≤ s(α).

and x1
α, x2

α ≥ 0. Refining α requires introducing the bid

columns (and supply rows) corresponding to α ∧ β, α ∧ β
for some β. We first discuss how to evaluate the quality of
candidate βs, and then how to search for the best split.

Scoring Abstract Channel Splits

The process of splitting α by β requires introducing
new columns (variables) to the LP. Column genera-
tion (Lübbecke & Desrosiers 2005) is widely used to solve
LPs with very large numbers of columns by first solving
a version of the LP with few columns, then adding new
columns at each iteration and resolving. New columns are
chosen by solving a pricing subproblem which identifies

889



columns that potentially improve the objective. We adopt
this approach, but require significant enhancements that ex-
ploit the special structure of our problem, and account for
the introduction of multiple columns at once (i.e., xi

α∧β and

xi

α∧β
for each bid i) while simultaneously removing other

columns (i.e., those for xi
α).

Assume we have the solution of the abstract LP above. We
determine the value, or score, of a potential split of α into

two a-channels α∧β, α∧β by: (a) scoring the new columns
introduced by the split using a form of column generation
scoring; and (b) combining the scores of these new columns
in a way that exploits the special structure of our problem.
Standard column generation methods solve the pricing sub-
problem to identify individual columns absent from an LP
with positive reduced cost and typically add one or more
such columns with high reduced cost, terminating when no
reduced costs are positive. We apply a similar technique.
Let πα be the value of the dual variable corresponding to the
supply constraint for a-channel α in the dual of the abstract
LP (i.e., the shadow price of the constraint). The reduced
cost of variable xi

α∧β is:

rc(xi
α∧β) = vi

α∧β − cπ,

where c is xi
α∧β’s column (i.e., the vector of coefficients for

xi
α∧β over the rows) and π is the vector of dual variables

over the rows. The reduced cost of xi

α∧β
is defined simi-

larly. Reduced cost measures the increase in objective value
per unit increase in the (nonbasic) variable, making maxi-
mum reduced cost a common, easily computable heuristic
for variable introduction. (It can also be used to prove opti-
mality when max reduced cost is nonpositive.) Although cπ
measures the marginal impact of constraints w.r.t. the vari-
able, reduced cost is a heuristic since it fails to consider how
far the target variable can be moved until constraints are met.

Unfortunately, the abstract LP does not include relevant

supply constraints for α∧β or α∧β, meaning shadow prices
cannot be directly obtained from the LP. If we add two rows
to the abstract LP reflecting split channel supply, we obtain:

Max v1
αx1

α +v2
αx2

α

s.t. x1
α +x2

α ≤ s(α)
Pr(β|α)x1

α + Pr(β|α)x2
α ≤ s(α ∧ β)

Pr(β|α)x1
α + Pr(β|α)x2

α ≤ s(α ∧ β).

Since s(α∧ β) = Pr(β|α)s(α) (similarly for β), the new
constraints are multiples of the s(α) constraint, leaving the
optimal solution unaffected. This allows us to price the two
new constraints: when we consider the dual of this LP, one
optimal solution sets the dual variable πα to its value in the
original abstract dual LP, and sets the two new dual vari-
ables πα∧β = πα∧β = 0. As a result, we can compute

the reduced costs of the split channel variables using terms
available from the solution of the original abstract LP:2

rc(xi
α∧β) = v

i
α∧β − cπ = v

i
α∧β − πα

rc(xi

α∧β
) = v

i

α∧β
− cπ = v

i

α∧β
− πα.

2For more general expressiveness, we would also subtract crπr ,
for any non-supply constraint r.

In contrast to typical column generation, we want to
model the impact of simultaneously introducing the entire
set of new columns created by a split, and removing the
entire set of columns corresponding to the original chan-
nel. Nevertheless, reduced cost forms the basis of an ef-
fective scoring function. With only supply constraints, we
can measure the exact change in objective value resulting
from a split. If bids have no budget constraints, all sup-
ply of the new split channel α ∧ β will be allocated to the
bid i that has maximum value vi

α∧β , giving objective value

improvement of rc(xi
α∧β)s(α ∧ β). Here the reduced cost

component reflects the precise difference in objective value
if an α-impression to a current winning bid is replaced by
an α ∧ β-impression to bid i, while the supply component
tells us exactly how much substitution is possible. Applying

the same argument to α∧β gives the following score for the

split of any α into two subchannels α ∧ β and α ∧ β:

score(α, β, β) = max
i∈B

{rc(xi
α∧β)s(α ∧ β)}

+ max
i∈B

{rc(xi

α∧β
)s(α ∧ β)}.

This scoring function has the desirable property that the
score of a split is exactly the induced improvement in ob-
jective value when only supply constraints are present. Of
course, almost all problems have other constraints (budget,
etc.), which would be accounted for appropriately in the re-
duced cost calculation. Still, the reduced cost calculation re-
mains straightforward for LP expressiveness, requiring only
one vector product (using dual values computed in the LP
solution). Moreover, the score provides an upper bound on
possible objective value improvement, and a guarantee of
optimality if the maximum score is nonpositive, even when
other constraints are present.3 A key advantage of our scor-
ing function is that no additional computation is required
apart from reduced cost calculations (using terms available
from the LP solve) and a trivial maximization. This is criti-
cal, since the number of potential splits is doubly exponen-
tial, as discussed next.

Searching for Suitable Splits

Scoring a split is straightforward, requiring at most 2|B| re-
duced cost calculations. However, the number of potential

splits of an a-channel is doubly exponential in n (i.e., 2kn

formulae over n features with domain size k). In addition,
we must evaluate splits of each α in the current abstraction
A. To manage the complexity of this search, we adopt a sim-
ple myopic approach to find the best split of an a-channel α.
We build up the formula βα on which α is split as follows.

Let f i
k = Dom(F i) \ {f i

k}. We first consider each β1
α con-

sisting of f i
k for some i, k; i.e., at the first “level” we con-

sider splits that exclude one attribute-value. We “commit”
to the single attribute-value exclusion with the best score

score(α, β1
α, β

1

α). We then consider refining β1
α by conjoin-

ing with some new f i
k or disjoining with some new f i

k (con-

joining tightens β1
α, disjoining relaxes it). Each resulting β2

α

3One could use more complex, computationally demanding
scoring to better estimate objective improvement, but folklore in
column generation suggests this is rarely worthwhile.
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is scored in a similar fashion, and we again commit to the
β2

α with the highest score. This continues for ℓ iterations,
where ℓ is either a fixed threshold or is determined dynam-
ically by requiring a minimum score improvement be met.

The best split of α is determined heuristically as 〈βα, βα〉,
where βα = βℓ

α.
Given abstraction A, the α ∈ A with the highest-scoring

best split is adopted, creating a new abstraction A′ with α
replaced by α∧βα and α∧βα. The LP for the new abstrac-
tion is solved and the search for a best split repeated until
the score of the best split of A falls below some threshold τ .

Using Abstractions in Ad Auction Optimization

A limitation of our column generation method as specified
is its focus on LP expressiveness. However, the abstraction
process is used to create the set of a-channels which are then
used in MIP optimization—the intended output is a set of
a-channels, not (necessarily) the allocation itself. With MIP
expressiveness, we apply column generation to a linear re-
laxation of the MIP to generate a-channels. We then solve
the original MIP using allocation to the a-channels created.
To evaluate column generation, we ran it on a collection of
random problems, some with LP expressiveness, others with
MIP expressiveness. All experiments were run on a machine
with a 3.8GHz Xeon CPU, 2BM cache, and 16GB RAM.

LP Expressiveness The first battery of problems involves
bids that use only LP expressiveness, each having per-
impression valuations for a set of attribute-values over a
given period, and a total budget. Optimization is performed
over a horizon of 30 periods. Problem instances are charac-
terized by parameter m: m binary attributes and 10m bid-
ders. We run sets of instances with m ∈ {10, 20, . . . , 100}.

Supply distribution. The probability of an impression
satisfying f i

1 is drawn from U [0, 1] and we set Pr(f i
2) =

1 − Pr(f i
1). Total supply of impressions, over all attribute-

values, is 1,000,000 per period.
Bids. Each bid j has form 〈ϕj , vj , gj , wj〉 and cares about

a set of attributes Aj with size |Aj | ∼ U [0, 10]. We assume
bidders tend to care about similar attributes, so bid attributes
are sampled from a Zipf distribution, with Pr(F i ∈ Aj) =
(1/i)/(

∑m

k=1 1/k), sampled without replacement. For any

F i ∈ Aj , bid j requires that impressions satisfy f i
zi

, with

zi ∈ {1, 2} chosen uniformly. The bid’s formula is the con-
junction of all required attributes, ϕj =

∧
F i∈Aj f i

zi
.

Our bid valuation model assumes that higher values are
more likely for specific bids (i.e., with more attributes) and
if the attributes in the bid formula are in greater demand. Bid
j’s per-impression value vj is determined thusly: we first
draw a base value v̂j from U [0.1, 1] then adjust it by setting
vj = v̂j(1 + 10

∑
F i∈Aj Pr(F i)) (e.g., if a bid cares about

no attributes, i.e., ϕj = ⊤, then vj = v̂j ; and if it cares about
all m attributes, then vj = 11v̂j). A bid’s time window
wj is determined by sampling t1 and t2 from U [−10, 40],
setting wj = [min(t1, t2), max(t1, t2)], then truncating wj

to lie in [1, 30]. This captures the fact that some bids have
windows that extend beyond the optimization horizon. Bid
j’s budget is set to a fraction τ j ∼ U [0.1, 1] of its value
for the total supply σj in window wj of the formula ϕj it
desires: gj = τ jσjvj .

In addition to these bids, we include a “market” bid with
value 0.1, unlimited budget, and no attribute preferences
(i.e., ϕ = ⊤), reflecting value that could be obtained from
other sources (e.g., future bids or a spot market).
Optimization parameters. During an iteration of column
generation, we continue searching for a suitable split as long
as we can find a channel refinement whose score offers a
minimum relative improvement MI over the previous ab-
straction’s LP value. If such an improvement is found, we
solve the new abstract LP and iterate, otherwise we termi-
nate column generation.4

Estimating an upper bound on the optimal value. To mea-
sure how good an allocation is, we need to estimate the
true optimum value achievable if we generated all relevant
columns. We compute an upper bound on the optimum as
follows. When column generation is complete, we run an-
other optimization using undiscounted values. That is, we
remove all Pr(ϕi|α) terms. This is clearly an upper bound
on the optimum because it assumes that bids could actually
make use of the entire amount of a channel it is allocated
(rather than just the fraction Pr(ϕi|α) it actually cares about
for channel j). However, this is a very loose upper bound.
We can tighten it significantly by ensuring that a bid’s al-
location does not exceed the supply that it actually cares
about. That is, we add additional constraints of the form
xi

α ≤ s(ϕi ∧ α) for all bids i and channels α. This is still
an overestimate because it does not account for interactions
between multiple bids. However, empirically, this bound is
quite close to an even tighter upper bound that we generate
via constraint generation (see below).
Experimental results. Table 1 shows results from runs with
parameters MI = 0.01 and MI = 0.001, averaged over
20 instances for each 〈m, n〉 pair. The table shows several
key measures including the number of a-channels generated.
The fraction of the upper bound on the optimal value ob-
tained by the abstract LP when column generation termi-
nates (“Frac UB”) is also shown (giving us a lower bound
on the quality of the abstract allocation relative to the true
optimal allocation). An estimate of the improvement in the
degree of optimality is shown (“Improve”). This is reported
as the average of (Final − Initial)/UB, where Final is the
final LP value, Initial is the LP value at the start of column
generation (when a single abstract channel is used), and UB
is the upper bound on the optimal value. Finally, the average
and range of runtimes is presented.

We see that, with LP expressiveness, column generation
can obtain a significant fraction of the upper bound value
for problems in which it would be impossible to even enu-
merate the full unabstracted LP. Furthermore, the number of
generated channels is comparable across all problem sizes
tested. Setting a lower value for the minimum improvement

4Lack of improvement does not imply allocation value is within
MI of optimal, only that no myopic split that offers this improve-
ment within our restricted space of splits: some sequence of splits
could give more improvement. Even without this restriction (i.e.,
if splitting into arbitrary subsets is allowed), one can show that
myopic splitting is insufficient under IP expressiveness. But for
certain forms of LP expressiveness we can show that, unless the
allocation is optimal, there exists a two-way split of some channel
that improves value (in which case myopic splitting is sufficient).
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# Frac Runtime (sec)
m channels UB Improve µ range

MI = 0.01
10 12.0 0.893 0.447 12 [4, 24]
20 11.0 0.828 0.364 40 [8, 74]
30 10.2 0.841 0.380 75 [35, 150]
40 9.8 0.803 0.334 153 [28, 556]
50 10.0 0.816 0.396 212 [23, 418]
60 8.6 0.827 0.343 245 [33, 470]
70 8.3 0.824 0.304 314 [26, 656]
80 9.2 0.824 0.345 461 [101, 940]
90 8.6 0.806 0.333 566 [75, 1211]
100 9.3 0.804 0.344 811 [203, 1438]

MI = 0.001
10 32.4 0.965 0.515 53 [10, 112]
20 33.8 0.905 0.439 317 [21, 758]
30 27.1 0.899 0.438 538 [112, 1384]
40 28.6 0.871 0.399 1247 [211, 4159]
50 26.8 0.871 0.450 1543 [153, 4027]
60 22.7 0.877 0.392 1775 [88, 4798]
70 19.3 0.867 0.346 1959 [66, 5878]
80 24.2 0.873 0.393 3746 [469, 8670]
90 24.0 0.858 0.374 4956 [807, 14534]
100 25.7 0.853 0.392 6687 [1677, 17047]

Table 1: Average results for column generation with LP ex-
pressiveness m attributes, and n = 10m bidders.

Figure 1: Fraction of upper bound vs number of channels
for 10 attributes and 100 per-unit bidders.

parameter MI allows us to obtain a greater fraction of the
upper bound, but with a fairly significant increase in run
time. We note that, on average, much of the improvement
is obtained early in the procedure. Fig. 1 shows the fraction
of the upper bound obtained after a given number of chan-
nels has been generated, averaged over 20 instances, with
10 features, 100 bidders, and MI = 0.001. We obtain a
high fraction of the upper bound from the first few channels
generated, with additional channel splitting providing more
modest improvement.

MIP Expressiveness The second problem set adds all-or-
nothing bonus bids to the per-impression bids above. Since
these require binary variables, column generation on the
LP relaxation only provides an approximation to the opti-
mal abstract allocation. All problems have 100 attributes,
n bonus bidders, and 4n per-impression bidders, with n ∈
{10, 20, . . . , 60}. The preferences of per-impression bidders
are as before. Each bonus bidder has ϕj and wj chosen
similarly; but its per-impression value is vj = 0, and in-

# Frac Runtime (sec)
n channels UB Improve µ range

10 6.6 0.847 0.248 41 [5, 82]
20 6.6 0.815 0.252 66 [15, 129]
30 7.0 0.769 0.264 91 [14, 205]
40 8.5 0.790 0.296 153 [31, 282]
50 8.8 0.823 0.325 188 [39, 613]
60 6.8 0.814 0.289 92 [5, 325]

Table 2: Average results for column generation with MIP
expressiveness, MI = 0.01, 100 attributes, n bonus bidders,
and 4n per-impression bidders.

stead it pays bj if it receives at least qj impressions satis-
fying ϕj , and nothing otherwise. We set qj = τ jσj where
τ j ∼ U [0.1, 1] is the fraction of the supply σj of ϕj in win-

dow wj . We then set bj = b̂jqj where b̂j is chosen as vj

for a flat bidder, but then multiplied by a factor chosen from
U [1.1, 1.5]. We also include a “market” bid as above.

Table 2 shows results with MI = 0.01, averaged over
20 instances for each n. Shown are the number of channels
generated, the fraction of the upper bound (on the optimum)
obtained when column generation terminates (“Frac UB”),
the improvement over the fraction of the upper bound ob-
tained before column generation (“Improve”), and the mean
and range of runtimes. Although we use the LP relaxation to
determine channel splits, the feasible allocation and the up-
per bound are computed by solving the corresponding MIP
(discounted or not) on the set of channels produced.

Although column generation operates on a relaxation of
the true MIP, our scoring function finds very good chan-
nel splits. Indeed, the performance with MIP expressiveness
compares favorably to that with LP expressiveness. We em-
phasize that these campaign-level optimizations are run of-
fline, and used to parametrize dispatch policies that are then
implemented in real time. Thus the times reported here al-
low frequent, multiple optimizations (and reoptimization) of
offline allocations (Boutilier et al. 2008).

Constraint Generation

The column generation approach converges to an optimal
allocation with LP expressiveness (though we may not run it
to optimality). It is not guaranteed to converge to optimality
for MIPs since it is run on the LP relaxation at the root of the
search tree. We develop a constraint generation algorithm
that can be used to refine any abstract allocation, and will
converge to optimality for MIPs, as well as for LPs.

The Constraint Generation Process

The optimization above, using the abstraction generated by
our column generation process, assumes that any ad allo-
cated to an a-channel α will be randomly dispatched to the
component c-channels that make up α. This is reflected
in the MIP (or LP) objective, where we replace the per-
impression value vi of bid i by vi

α = vi Pr(ϕi|α). With
a well-crafted abstraction, this may produce an optimal allo-
cation. However, if the number of a-channels is limited for
computational reasons, the “pessimism” of random dispatch
may leave revenue or efficiency on the table.

Alternatively, given an abstraction A, we can run an opti-
mistic MIP assigning bids to a-channels assuming each im-
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pression to bid i satisfies its formula ϕi (i.e., do not discount
the impressions by pi

α). This optimistic assumption may not
be valid—there may be no allocation of α to bids that per-
mits feasible “packing” of their promised supply so that each
i gets only ϕi-impressions. But we can test this assumption
with a simple LP that determines whether there is enough
supply to do so. Let ẋ = {ẋi

α} be the solution of the opti-
mistic MIP with a-channels {α}. Let W (α) = {i : ẋi

α > 0}
denote the the “winners” of a-channel α. We solve the fol-
lowing LP for each α (with xi

c ≥ 0):

min 1 (2)

s.t.

c∈α,c|=ϕi

x
i
c = ẋ

i
α ∀i ∈ W (α)

i∈W (α)

x
i
c ≤ s(c) ∀c ∈ α.

This LP determines a feasible allocation to the c-channels
that constitute α, thus guaranteeing that every impression
given to i satisfies its bid condition ϕi. The first set of con-
straints ensures there is enough ϕi supply for each bid i,
while the second establishes that no c-channel is overallo-
cated. If LP (α) is feasible for each α, then it provides an
optimal dispatch policy that extracts the full objective value
of the optimistic MIP.

If LP (α) is infeasible, then there must be some minimal
set of constraints that are jointly infeasible. Let S = Sa∪Ss

be such a minimal set, where Sa are constraints of the first
type, and Ss are constraints of the second type. We can show
that the MIP solution violates the inequality

∑

i∈Sa

xi
α ≤

∑

c∈Ss

s(c).

We add this constraint to ensure that overallocation of the
channels in Ss does not occur from bids in Sa. A tighter
version of this constraint can be employed: we can add to
the sum on the lefthand side any bid i all of whose relevant
channels are included in Ss, i.e., any i s.t. {c ∈ α : c |=
ϕi} ⊆ Ss. At each iteration, sets S leading to violated con-

straints are identified for each a-channel and posted.5 At
each iteration, constraints are generated using a search pro-
cedure for identifying such sets Ss, and the MIP is resolved.
This continues until feasibility is attained (in which case the
optimistic objective value is actually obtained), or computa-
tional or time bounds are reached.

While LP (α) could require an exponential number of
variables (i.e., the xi

c corresponding to all c-channels c ∈ α)
and constraints, we use simple lossless channel abstraction
(i.e., ∧i∈W (α) ± ϕi) to collapse this number. As such, the
number of winners for each channel (and the interaction of
their bids) determines the true complexity of the required LP
solves. Even with lossless channel abstraction, the feasibil-
ity LP could require an exponential number of variables. In
practice, we find that if W (α) is no greater than around 20,
the size of the LP is reasonable (and much smaller than 220).
If the MIP gives W (α) > 20, we split channel α to mini-
mize the maximum number of bids interested in a channel.

5These can be identified using the facilities of standard solvers,
such as the CPLEX IIS (irreducible inconsistent set) routine. We
use our own special purpose algorithm to identify such sets.

# Frac Add’l. Runtime (sec)
n constraints UB improve µ range

10 221 0.954 0.104 154 [14, 615]
20 557 0.939 0.118 636 [118, 1178]
30 750 0.965 0.190 850 [317, 1750]
40 787 0.954 0.157 1434 [648, 6609]
50 721 0.967 0.139 1419 [679, 6235]
60 803 0.964 0.143 1029 [635, 2269]

Table 3: Average results from adopting the constraint gen-
eration phase following column generation, with IP expres-
siveness, MI = 0.01, 100 attributes, n bonus bidders, and
4n per-impression bidders.

Using this approach, we are able to generate LPs of reason-
able size which solve very quickly (within a second).

The constraint generation algorithm can be used directly
to solve the ad allocation MIP without relying on column
generation. For example, it can be applied directly to the
fully abstract MIP with a single a-channel (⊤), or could be
used to optimize w.r.t. any heuristically chosen abstraction.

Empirical Results

To evaluate the effectiveness of constraint generation we ex-
periment with problems with bonus and per-impression bid-
ders presented in the previous section. We first perform col-
umn generation using MI = 0.01, then extend the solution
using constraint generation. To avoid generating an unrea-
sonable number of constraints, we use a tolerance ǫ (set to
0.01) that permits MIP allocations to decrease by as much
as ǫ, solving the following LP:

min ǫ (3)

s.t.

c∈α,c|=ϕi

x
i
c ≤ ẋ

i
α ∀i ∈ W (α)

c∈αj,c|=ϕi

x
i
c ≥ ẋ

i
α − ǫ ∀i ∈ W (α)

i∈W (α)

x
i
c ≤ s(c) ∀c ∈ α.

If constraint generation does not terminate within 600s., we
stop the process and produce a feasible allocation that min-
imizes the maximum difference from the MIP allocation.
Thus, when constraint generation terminates, the allocation
may be suboptimal, but is guaranteed to be feasible.

When constraint generation is complete, we compute the
value of the allocation based on the final feasible allocation
generated by the LP (which might be different than that of
the final MIP allocation, due to ǫ), but use the final (infeasi-
ble) MIP allocation as an upper bound on the true optimum
value. This bound is close to, but somewhat tighter than the
bound shown earlier.

Table 3 shows the results of our experiments: number of
constraints generated; fraction of the upper bound on opti-
mal value obtained by the MIP when constraint generation
terminates (“Frac UB”); an estimate of additional improve-
ment in the degree of optimality over the final column gen-
eration value (“Add’l improve”); and average and range of
constraint generation runtimes. The additional solve phase
increases value to a high degree of optimality, finding so-
lutions that are roughly within 94-97% of the upper bound
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(compared with 77-85% for column generation alone). Ob-
taining this improvement can be time consuming for larger
problems. We emphasize, however, that abstraction genera-
tion is typically an offline process.

Other Uses of Constraint Generation

One bottleneck in the effective use of constraint generation
is its poor scaling in the number of “winners.” Specifi-
cally, if an a-channel, time-period pair has a large number
of bids that are allocated to it in the initial abstract MIP
solve, the procedure can generate hundreds of thousands of
constraints, causing the MIP to slow down significantly and
dominate runtime. The number of winners in the MIP can
be used to suggest further channel refinements. The devel-
opment of effective channel splitting heuristics that attempt
to “separate” bids into different channels could make con-
straint generation much more effective. The quick identifi-
cation of problematic a-channels during constraint genera-
tion is critical as well: whenever a channel is split, all con-
straints on the split channel must be discarded, and new ones
must be generated on the new channels, further “wasting”
computational effort. Thus problematic a-channels should
be identified before significant constraint generation occurs.

Constraint generation can also be used selectively. The
MIP can be solved by using the “optimistic” values on some
channel-time pairs—requiring constraint generation to ef-
fectively carve up supply with those segments—while the
random dispatch policy can be assumed in others (e.g., those
where constraint generation cannot scale effectively). This
offers a tractable means for improving on the abstract alloca-
tion problem without necessarily accounting for intelligent
dispatch across the entire space.

Concluding Remarks

We developed a suite of techniques based on column and
constraint generation that effectively tackle the channel ex-
plosion problem in the optimal allocation of display ads.
Our techniques apply to both simple, current forms of ex-
pressiveness (e.g., simple budget constraints) and other,
richer forms of campaign-level expressiveness that require
the solution of large-scale integer programs (Boutilier et al.
2008; Parkes & Sandholm 2005). Our experiments demon-
strate that high-quality allocations can be determined using
very few abstract channels, indicating a desirable sensitivity
of our methods to those distinctions that have the greatest
impact on value (e.g., revenue or efficiency), and the ability
to scale to problems with hundreds of attributes and bidders.
Given the offline nature of the optimization problem we pro-
pose, our computational results suggest that our procedures
can be run and rerun frequently to determine, say, (approxi-
mately) optimal allocations in stochastic models that require
sampling (Boutilier et al. 2008).

Our method considers complex splits to generate a
tractable number of channels. Though more sophisticated
methods might further reduce the number of channels, our
goal is not to minimize the number of channels per se, but
to identify an abstraction with high value while maintaining
LP/MIP tractability. Currently, channel split search domi-
nates runtime: a focus of future research is accelerating this
search, e.g., via heuristics for variable/literal ordering. Im-

provements to our constraint generation procedure are of in-
terest as is the exploration of branch-and-price techniques.
Finally, assessing the impact of approximate channel ab-
straction and optimization on incentives in ad markets would
be of significant interest and value.
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