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Abstract

We study the distributed allocation of tasks to cooperating
robots in real time, where each task has to be assigned to ex-
actly one robot so that the sum of the latencies of all tasks is as
small as possible. We propose a new auction-like algorithm,
called Sequential Incremental-Value (SIV) auction, which as-
signs tasks to robots in multiple rounds. The idea behind SIV
auctions is to assign as many tasks per round to robots as
possible as long as their individual costs for performing these
tasks are at most a given bound, which increases exponen-
tially from round to round. Our theoretical results show that
the team costs of SIV auctions are at most a constant factor
larger than minimal.

Introduction

We study the distributed allocation of tasks to cooperating
robots in real time, where each task has to be assigned to ex-
actly one robot so that the team cost is as small as possible.
We do this in the context of multi-robot routing, where the
robots have to visit targets in the plane so that each target
is visited by some robot (Dias et al. 2005). The terrain,
the locations of all robots and the locations of all targets
are known. The team cost is the sum of the latencies of
all targets, where the latency of a target is the time when
it gets visited. Auction-like algorithms (short: auctions)
promise to solve multi-robot routing problems with small
communication and computation costs since the robots com-
press information into a small number of bids, which they
compute in parallel and then exchange (Dias et al. 2005;
Lagoudakis et al. 2005; Koenig et al. 2008). Thus, auctions
promise to be able to control robots in real-time, which is
important to prevent robots from being idle each time they
allocate targets among themselves. Robotics researchers
have recently studied the use of Sequential Single-Item (SSI)
auctions for multi-robot routing (Tovey et al. 2005). SSI
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auctions proceed in multiple rounds, until all targets are as-
signed to robots. During each round, SSI auctions assign ex-
actly one additional (previously unassigned) target to some
robot so that the team cost increases least (= hill-climbing
principle). In this paper, we propose a new type of auc-
tion, called Sequential Incremental-Value (SIV) auction, that
makes use of the hill-climbing principle in a different way to
assign targets to robots in multiple rounds. The idea behind
SIV auctions is to assign as many tasks per round to robots
as possible as long as their individual costs for performing
these tasks are at most a given bound, which increases expo-
nentially from round to round. Our theoretical results show
that the team costs of SIV auctions are at most a constant
factor larger than minimal, which is better than the guaran-
tee on the team costs provided by SSI auctions.

Multi-Robot Routing

We now formalize multi-robot routing problems. A multi-
robot routing problem consists of a set of robots A =
{a1, . . . , an} and a set of targets T = {t1, . . . , tm}. The
initial locations of all robots can be different. Any tu-
ple (Ta1 , . . . , Tan

) of pairwise disjoint bundles of targets
Tai

⊆ T is a partial assignment of the multi-robot rout-
ing problem. We define the path cost cpath

a (Ta) to be the
smallest possible travel distance of robot a for visiting all
targets Ta from its initial location. We assume that all dis-
tances satisfy the triangle inequality. We define the robot
cost crobot

a (Ta) to be the smallest possible total latency (=
sum of the latencies) of all targets Ta on any path that vis-
its all targets Ta from the initial location of robot a, where
the latency of a target is the time when robot a visits it
(measured in the travel distance of robot a, which assumes
that the robot moves at unit speed). Finally, we define the
team cost of a partial assignment (Ta1 , . . . , Tan

) to be the
total latency

∑
a∈A crobot

a (Ta). Any partial assignment with
∪a∈ATa = T (that is, each target is visited by exactly one
robot) is a complete assignment of the multi-robot routing
problem. Our objective is to determine a complete assign-
ment of a given multi-robot routing problem and the order
in which each robot should visit the targets assigned to it so
that the resulting team cost is small. A variety of applica-
tions require a small total latency. An example is finding all
victims in search and rescue missions. Most existing work
is on minimizing the total latency for single robots, called
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1 function SSI-Auction (T , A)

2 inputs: T : the set of targets T
3 A: the set of robots A
4 outputs: {Ta}a∈A: a complete assignment

5 for each robot a ∈ A do

6 Ta ← ∅;
7 while (T 6= ∅) do

8 /* Annunciation Stage */

9 the auctioneer announces T to each robot a ∈ A;

10 /* Bidding Stage */

11 for each robot a ∈ A do

12 for each target t ∈ T do

13 bt
a ← crobot

a (Ta ∪ {t})− crobot
a (Ta);

14 robot a submits bt
a to the auctioneer;

15 /* Winner-Determination Stage */

16 (a, t)← arg min(a∈A,t∈T ) bt
a ;

17 Ta ← Ta ∪ {t};
18 T ← T \ {t};

Figure 1: Sequential Single-Item Auctions

the traveling repairman problem (Blum et al. 1994). The
first constant factor approximation algorithm (Blum et al.
1994) was later improved (Goemans and Kleinberg 1996).
There is much less work on minimizing the total latency for
multiple robots, called the k-traveling repairman problem.
A constant factor approximation algorithm for the special
case where the initial locations of all robots are identical
(Fakcharoenphol, Harrelson, and Rao 2003) was later ex-
tended to the case where each target has a given repair-time
(Jothi and Raghavachari 2007). Our SIV auctions generalize
the idea behind the former algorithm to the case where the
initial locations of all robots can be different.

Sequential Single-Item (SSI) Auctions

Sequential Single-Item (SSI) auctions (Tovey et al. 2005)
assign targets to robots in multiple rounds (which explains
the term ”sequential”) and, during each round, assign ex-
actly one additional (previously unassigned) target to some
robot (which explains the term ”single-item”) so that the
team cost increases least, see Figure 1. All targets are ini-
tially unassigned (Lines 5-6). The auctioneer starts a new
round as long as there are still unassigned targets (Line 7).
Each round consists of three stages (Line 8-18): First, the
auctioneer announces the unassigned targets to each robot
in the annunciation stage (Line 9). Second, each robot bids
on each unassigned target in the bidding stage the increase in
its robot cost in case it has to visit the target it bids on in ad-
dition to all targets already assigned to it in previous rounds
(Line 13), which is similar to previous work on marginal-
cost bidding in ContractNet (Sandholm 1996). The robot
can determine its bids in parallel with the other robots. In the
process, it needs to calculate the total latencies of given sets
of targets, which is called the traveling repairman problem
and is NP-hard (Blum et al. 1994). Thus, the robot needs
to approximate these calculations even though it can deter-
mine its bids in parallel with the other robots, which is often
done with the cheapest-insertion heuristic (Lagoudakis et al.
2005). Third, the auctioneer chooses a bid with the smallest
bid cost as the winning bid and assigns the winning target to
the winning robot in the winner-determination stage (Line
16-17), which terminates the round. Ties can be broken in
an arbitrary way. The following theorem provides the best

1 function SIV-Auction (T , A, b)

2 inputs: T : the set of targets T
3 A: the set of robots A
4 b: a constant in (1, 2)
5 outputs: {Ta}a∈A : a complete assignment

6 j ← 0;

7 for each robot a ∈ A do

8 Ta ← ∅;
9 while (T 6= ∅) do

10 j ← j + 1;

11 B ← bj+1;

12 A′ ← A;

13 while (A′ 6= ∅) do

14 /* Annunciation Stage */

15 the auctioneer announces T and B to each robot a ∈ A′;

16 /* Bidding Stage */

17 for each robot a ∈ A′ do

18 T ′
a ← arg max

T ′⊆T :c
path
a (T ′)≤B

|T ′|;

19 robot a submits T ′
a to the auctioneer;

20 /* Winner-Determination Stage */

21 a← arg maxa∈A′ |T ′
a|;

22 A′ ← A′ \ {a};
23 Ta ← Ta ∪ T ′

a;

24 T ← T \ T ′
a ;

Figure 2: Sequential Incremental-Value Auctions

known bounds on the team costs of SSI auctions.

Theorem 1 ((Lagoudakis et al. 2005)) The team costs of
SSI auctions can be at least a factor of Ω(|T |1/3) larger
than minimal, even if each robot calculates its robot costs
exactly. They are at most a factor of O(|T |2) larger than
minimal, whether each robot calculates its robot costs ex-
actly or uses the cheapest-insertion heuristic to determine
them approximately in polynomial time.

Sequential Incremental-Value (SIV) Auctions

Sequential Incremental-Value (SIV) auctions assign targets
to robots in multiple rounds (which explains the term ”se-
quential”) and, during each round, assign the largest number
of additional (previously unassigned) targets to each robot
with the constraint that the path cost of the set of targets
assigned to a robot in this round is at most a given bound,
which increases exponentially from round to round (which
explains the term ”incremental-value”), see Figure 2. All
targets are initially unassigned (Lines 7-8). The auction-
eer starts a new round as long as there are still unassigned
targets (Line 9). In the beginning of each round, the auc-
tioneer multiplies the bound with a given constant b (Line
10-11). Different from SSI auctions, each round of SIV auc-
tions consists of |A| iterations (Line 14-24). Each iteration
consists of three stages and assigns a number of unassigned
targets to some robot as follows: First, the auctioneer an-
nounces the unassigned targets and the bound to each eligi-
ble robot in the annunciation stage. A robot is eligible in a
round iff it has not been a winning robot in that round. Sec-
ond, each eligible robot bids as many unassigned targets as
possible in the bidding stage with the constraint that the path
cost of the set of these targets is at most the given bound
(Line 18-19). Note that the bids consist of sets of targets
without bid costs, that robots ignore the targets already as-
signed to them when determining their bids, and that eligible
robots can always submit a bid (which could be the empty
set). Third, the auctioneer chooses a bid with the largest
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number of targets as the winning bid and assigns the winning
targets to the winning robot in the winner-determination
stage (Line 21-23), which makes the robot ineligible in the
current round and terminates the iteration. The last robot be-
coming ineligible terminates the current round. Ties can be
broken in an arbitrary way.

Analysis of SIV Auctions

Each eligible robot a bids as many unassigned targets as pos-
sible in the bidding stage of an SIV auction with the con-
straint that the path cost cpath

a (T ′) of the set of these targets
T ′ is at most the given bound B. The problem of calcu-
lating its bids is NP-hard (which can be shown by reducing
Hamiltonian path problems to it). Thus, the robot needs to
approximate the calculations of its bids even though it can
determine its bids in parallel with the other robots. We as-
sume that the robot approximates the calculations of its bids
by changing Line 18 of SIV auctions to

18 T ′
a ← Bid(T, a, B);

The function Bid(T , a, B) determines, for k = 0, . . . , |T |,
a rooted k-MST (whose root is the initial location of robot
a) for the unassigned targets T and returns the targets T ′ in
the rooted k-MST with the largest k with the constraint that
the path cost cpath

a (T ′) is at most the given bound B.1 De-
termining rooted k-MSTs and determining the path costs of
given sets of targets are both NP-hard (Ravi et al. 1994).
We therefore assume that the function Bid(T , a, B) uses,

for k = 0, . . . , |T |, an (1/α)-approximation algorithm for
determining a rooted k-tree (whose root is the initial loca-
tion of robot a) for the unassigned targets T and returns the
targets T ′ in the rooted k-tree with the largest k with the
constraint that the travel distance for circumnavigating the
rooted k-tree (which is twice the cost of the rooted k-tree)
is at most the given bound B. The robot visits the targets
assigned to it at the end of the SIV auction by moving with
minimal travel distance from each target to the next. It visits
the targets it was assigned in earlier rounds before targets it
was assigned in later rounds and the targets it was assigned
in the same round in the order given by circumnavigating the
corresponding tree. We now analyze the team costs of SIV
auctions using the following notation:

• {T ∗a }a∈A: any complete assignment of the multi-robot
routing problem and the order in which each robot should
visit the targets assigned to it so that the resulting team
cost is minimal (short: the optimal assignment) - if there
is more than one, choose one arbitrarily;

• c∗ =
∑

a∈A crobot
a (T ∗a ): the team cost of the optimal as-

signment (short: minimal team cost);

• n∗j : the number of targets whose latencies are larger than

0.5 αbj+1 in the optimal assignment {T ∗a }a∈A;

1The cost of a tree is the sum of the costs of its edges. An un-
rooted k-tree is a tree that contains exactly k targets, while a rooted
k-tree is a tree that contains k targets plus the root, which is the
location of the robot. A rooted or unrooted k-Minimum Spanning
Tree (k-MST) is a rooted or unrooted (respectively) k-tree of min-
imal cost.

• nj: the number of unassigned targets in the beginning of
the jth round of an SIV auction; and

• Tj: the set of unassigned targets in the beginning of the
jth round of the SIV auction whose latencies are at most
0.5 αbj+1 in the optimal assignment.

The constant b influences the runtime and the resulting
team cost and can be chosen arbitrarily from the interval
(1, 2). We assume that the distance from the robot to any
target is larger than b, which implies that n∗0 and n1 are equal
to the number of targets. This relationship can be enforced
by eliminating all targets at the locations of the robots and
then sufficiently decreasing the units in which distances are
measured.

Lemma 1 Bid(T , a, B) returns at least |T ′| targets if there

exists a set of targets T ′ ⊆ T with cpath
a (T ′) ≤ 0.5 αB.

Proof: Consider 0 ≤ k = |T ′| ≤ |T |. There ex-
ists a rooted k-tree whose cost is at most 0.5 αB since
cpath
a (T ′) ≤ 0.5 αB. Thus, the cost of the rooted k-MST is

at most 0.5 αB. The (1/α)-approximation algorithm returns
a rooted k-tree whose cost is at most 0.5 B and the travel dis-
tance for circumnavigating the rooted k-tree (which is twice
the cost of the rooted k-tree) is at most the given bound B.
Thus, Bid(T, a, B) returns at least k targets.

The number of targets assigned to robots during the jth
round of the SIV auction is nj − nj+1. The following the-
orem shows that this number is at least half of the number
of the unassigned targets in the beginning of the jth round
whose latencies are at most 0.5 αbj+1 in the optimal assign-
ment.

Theorem 2 For all j ≥ 1, 0.5 |Tj| ≤ nj − nj+1.

Proof: Let Ta,j be the subset of targets in Tj that are

visited by robot a in the optimal assignment. Let T miss
a,j be

the subset of targets in Ta,j that are not assigned to any robot
during the jth round of the SIV auction. The set of targets
assigned to robot a during the jth round can be partitioned

into the following sets: T self
a,j is the subset of targets in Ta,j

that are assigned to robot a during the jth round; T in
a,j is the

subset of targets in ∪a′ 6=aTa′,j that are assigned to robot a

during the jth round; and T out
a,j is the subset of targets not in

Tj that are assigned to robot a during the jth round. There
are three important relationships among these sets:

1.
∑

a∈A(|T self
a,j | + |T in

a,j | + |T out
a,j |) = nj − nj+1 since the

sets T self
a,j , T in

a,j and T out
a,j for all a ∈ A partition the set of

targets assigned to robots during the jth round.

2.
∑

a∈A(|T self
a,j | + |T in

a,j | + |T miss
a,j |) = |Tj| since the sets

T self
a,j , T in

a,j and T miss
a,j for all a ∈ A partition the set Tj .

3.
∑

a∈A(|T self
a,j | + |T in

a,j | + |T out
a,j |) ≥

∑
a∈A(|T self

a,j | +

|T miss
a,j |). The left-hand side of the inequality is the num-

ber of targets assigned to robots during the jth round. In
the beginning of the iteration of the jth round where robot

a is the winning robot, the targets in T self
a,j and T miss

a,j are

unassigned with cpath
a (T self

a,j ∪ T miss
a,j ) ≤ cpath

a (Ta,j) ≤
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Figure 3: Example 1

0.5 αbj+1. Thus, robot a wins at least |T self
a,j | + |T miss

a,j |
targets by Lemma 1. Summing over all agents A yields
the relationship.

Solving Relationships (2) and (3) for
∑

a∈A |T in
a,j |,

adding the resulting inequalities and dividing by two yields∑
a∈A |T in

a,j | ≥ 0.5 (|Tj| −
∑

a∈A(|T self
a,j | + |T out

a,j |)). Sub-
stituting this inequality into Relationship (1) yields nj −

nj+1 ≥ 0.5 (|Tj| +
∑

a∈A(|T self
a,j | + |T out

a,j |)) ≥ 0.5 |Tj|.

Corollary 1 For all j ≥ 1, nj+1 ≤ 0.5 (n∗j + nj).

Proof: Let n′j be the number of assigned targets in the
beginning of the jth round of the SIV auction whose laten-
cies are at most 0.5 αbj+1 in the optimal assignment. First,
n′j ≤ |T | − nj since the right-hand side of the inequality
is the number of assigned targets in the beginning of the
jth round. Second, |T | = |Tj| + n∗j + n′j by definition.

Third, 0.5 |Tj| ≤ nj − nj+1 by Theorem 2. Putting it all

together, 0.5 (nj − n∗j ) = 0.5 (|T | − n∗j − (|T | − nj)) ≤

0.5 (|T | − n∗j − n′j) = 0.5 |Tj| ≤ nj − nj+1.

The inequality of Corollary 1 can be tight, as shown in
Figure 3. Assume that α = 1, b = 2 − ǫ (where ǫ is a
small positive constant so that b3 ≥ 6). Then, the optimal
assignment is T ∗a1

= {t1, t2}, T ∗a2
= {t3} and T ∗a3

= {t4}.
Thus, n∗0 = n1 = 4 (since b < 2), n∗1 = n2 = 4 (since
b2 < 4), and n∗2 = 0 (since cpath

a1
({t1, t2}) = 3 ≤ 0.5 b3 and

cpath
a2

({t3}) = cpath
a3

({t4}) = 2 ≤ 0.5 b3). If all three robots
bid {t3, t4} during the second round of the SIV auction and
robot a1 is the winning robot, then no targets are assigned
to robots a2 and a3 in the second round. Thus, n3 = 2
and n3 = 0.5 (n∗2 + n2). Corollary 1 allows us to follow
(Fakcharoenphol, Harrelson, and Rao 2003) to show that the
team costs of SIV auctions are at most a factor of O(1/α)
larger than minimal.

Lemma 2 The minimal team cost c∗ satisfies

0.5 α(b − 1)
∑

j≥0

bjn∗j ≤ c∗

Proof: Consider any target t whose latency is in the range
(0.5 αbj+1, 0.5 αbj+2] in the optimal assignment. First, tar-
get t contributes to n∗i for all 0 ≤ i ≤ j since n∗i is the
number of targets whose latencies are larger than 0.5 αbi+1

in the optimal assignment. Second, 0.5 α(b − 1)
∑j

i=0 bi =
0.5 α(bj+1 − 1) is at most the latency of target t in the op-
timal assignment. Summing over all targets T yields the
lemma.

Lemma 3 The team cost c of an SIV auction satisfies

c ≤ 2
∑

j≥0

bj+3nj+1

Proof: Consider any target t that is assigned during the
(j + 1)st round of the SIV auction. First, target t con-
tributes to ni+1 for all 0 ≤ i ≤ j since ni+1 is the num-
ber of unassigned targets in the beginning of the (i + 1)st
round of the SIV auction. Second, the latency of target t
in the assignment produced by the SIV auction is at most
2(bj+3 − b2)/(b − 1) because the path cost of the set of tar-
gets assigned a robot during the ith round is at most bi+1

and the robot could return to its initial location before vis-
iting the targets assigned to it in future rounds (but actu-
ally moves with minimal travel distance from each target
to the next), resulting in target t having latency at most∑j+1

i=1 2bi+1 = 2b2
∑j

i=0 bi = 2(bj+3 − b2)/(b − 1).

Third, 2
∑j

i=0 bi+3 = 2(bj+4 − b3)/(b − 1) is at least

2(bj+3 − b2)/(b − 1) for all b > 1 and j ≥ 0. Summing
over all targets T yields the lemma.

Theorem 3 The team costs of SIV auctions are at most a
factor of O(1/α) larger than minimal if each robot calcu-
lates its bids with a (1/α)-approximation algorithm for de-
termining rooted k-MSTs.

Proof: Continuing to follow (Fakcharoenphol, Harrelson,
and Rao 2003), let C = 2

∑
j≥0 bj+3nj+1 be the upper

bound on the team cost of an SIV auction from Lemma 3.
Then,

C = 2
∑

j≥0

bj+3nj+1

= 2b3n1 + 2
∑

j≥1

bj+3nj+1

(Corollary 1) ≤ 2b3n1 + 2
∑

j≥1

bj+3 0.5 (n∗j + nj)

= 2b3n∗0 +
∑

j≥1

bj+3n∗j +
∑

j≥1

bj+3nj

= b3n∗0 + b3
∑

j≥0

bjn∗j + b
∑

j≥0

bj+3nj+1

(n∗0 ≤
∑

j≥0

bjn∗j ) ≤ 2b3
∑

j≥0

bjn∗j + b
∑

j≥0

bj+3nj+1

(Lemma 2) ≤
4b3

(b − 1)

1

α
c∗ + 0.5 bC

Solving for C yields

C ≤
8b3

(b − 1)(2 − b)

1

α
c∗

for the given constant b ∈ (1, 2).

There exist constant-factor approximation algorithms for
determining unrooted k-MSTs for given sets of targets T ,
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Figure 4: Example 2

such as (Garg 1996; Arora and Karakostas 2000), which
can be transformed into constant-factor approximation al-
gorithms for determining rooted k-MSTs for given sets of
targets T as follows (Awerbuch et al. 1999): For x =
k, . . . , |T |, determine an unrooted k-tree for the x targets in

T closest to the root and then connect it to the root. Return
the resulting rooted k-tree with the smallest cost. Thus, one
can implement SIV auctions so that their team costs are at
most a constant factor larger than minimal.

Corollary 2 The team costs of SIV auctions are at most a
factor of O(1) larger than minimal if each robot calculates
its bids with a constant factor approximation algorithm for
determining rooted k-MSTs.

However, constant-factor approximation algorithms for
determining rooted k-MSTs are slow since they rely on
primal-dual algorithms with Lagrangean relaxation (Chu-
dak, Roughgarden, and Williamson 2004). We are not nec-
essarily interested providing the best possible approxima-
tions but a good trade-off between runtime and the resulting
team cost to prevent robots from being idle each time they
allocate targets among themselves. We now show that there
exist fast approximation algorithms for determining rooted
k-MSTs for given sets of targets T that still result in a better
guarantee on the team costs than the one currently known
for SSI auctions. Consider, for example, a simple nearest-
neighbor algorithm that determines a minimum spanning
tree for the root and the k targets in T closest to the root.

Theorem 4 The nearest-neighbor algorithm produces
rooted k-trees whose costs are at most a factor of k larger
than minimal.

Proof: Let T ′ be the targets in the rooted k-tree produced
by the nearest-neighbor algorithm and T ′′ be the targets in
the rooted k-MST. Let D′ be the largest distance from the
root to any target in T ′ and D′′ be the largest distance from
the root to any target in T ′′. First, D′ ≤ D′′ per construction
of T ′. Second, the cost of the rooted k-MST is at least D′′

by the triangle inequality. Finally, the cost of the rooted k-
tree produced by the nearest-neighbor algorithm is at most
kD′ ≤ kD′′ and thus at most a factor of k larger than mini-
mal.

The upper bound of Theorem 4 is tight, as shown in Figure
4. The rooted k-tree produced by the nearest-neighbor algo-
rithm contains the targets t1, . . . , t5 and has cost 5c, while

the rooted k-MST for k = 5 contains the targets t6, . . . , t10
and has cost c + 5e. The cost ratio approaches k as e ap-
proaches 0.

Corollary 3 The team costs of SIV auctions are at most a
factor of O(|T |) larger than minimal if each robot calculates
its bids with the nearest-neighbor algorithm for determining
rooted k-MSTs (since k ≤ |T |).

Conclusions

We proposed a new auction-like algorithm, called sequen-
tial incremental-value (SIV) auction, which assigns as many
tasks per round to robots as possible as long as their indi-
vidual costs for performing these tasks are at most a given
bound, which increases exponentially from round to round.
Our theoretical results showed that the resulting sum of the
latencies of all tasks is at most a constant factor larger than
minimal.

References

Arora, S., and Karakostas, G. 2000. A 2+ǫ approxima-
tion algorithm for the k-MST problem. In Proceedings of
the Annual ACM-SIAM Symposium on Discrete Algorithms,
754–759.

Awerbuch, B.; Azar, Y.; Blum, A.; and Vempala, S. 1999.
New approximation guarantees for minimum-weight k-trees
and prize-collecting salesmen. SIAM Journal on Computing
28(1):254–262.

Blum, A.; Chalasani, P.; Coppersmith, D.; Pulleyblank, B.;
Raghavan, P.; and Sudan, M. 1994. The minimum latency
problem. In Proceedings of the Annual ACM Symposium on
Theory of Computing, 163–171.

Chudak, F.; Roughgarden, T.; and Williamson, D. 2004. Ap-
proximate k-MSTs and k-Steiner trees via the primal-dual
method and Lagrangean relaxation. Mathematical Program-
ming: Series A and B 100(2):411–421.

Dias, M.; Zlot, R.; Kalra, N.; and Stentz, A. 2005.
Market-based multirobot coordination: A survey and anal-
ysis. Technical Report CMU-RI-TR-05-13, Robotics Insti-
tute, Carnegie Mellon University, Pittsburgh (Pennsylvania).

Fakcharoenphol, J.; Harrelson, C.; and Rao, S. 2003. The k-
traveling repairman problem. In Proceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms, 655–664.

Garg, N. 1996. A 3-approximation for the minimum tree
spanning k vertices. In Proceedings of the Annual Sympo-
sium on Foundations of Computer Science, 302–309.

Goemans, M., and Kleinberg, J. 1996. An improved ap-
proximation ratio for the minimum latency problem. In Pro-
ceedings of the Annual ACM-SIAM Symposium on Discrete
Algorithms, 152–158.

Jothi, R., and Raghavachari, B. 2007. Approximating the
k-traveling repairman problem with repairtimes. Journal of
Discrete Algorithms 5(2):293–303.

Koenig, S.; Zheng, X.; Tovey, C.; Borie, R.; Kilby, P.;
Markakis, V.; and Keskinocak, P. 2008. Agent coordination
with regret clearing. In Proceedings of the AAAI Conference
on Artificial Intelligence, 101–107.

945



Lagoudakis, M.; Markakis, E.; Kempe, D.; Keskinocak, P.;
Kleywegt, A.; Koenig, S.; Tovey, C.; Meyerson, A.; and
Jain, S. 2005. Auction-based multi-robot routing. In Pro-
ceedings of the International Conference on Robotics: Sci-
ence and Systems, 343–350.

Ravi, R.; Sundaram, R.; Marathe, M.; Rosenkrantz, D.; and
Ravi, S. 1994. Spanning trees short or small. In Proceed-
ings of the Annual ACM-SIAM Symposium on Discrete Al-
gorithms, 546–555.

Sandholm, T. 1996. Negotiation among self-interested
computationally limited agents. Ph.D. Dissertation, Depart-
ment of Computer Science, University of Massachusetts,
Amherst, MA.

Tovey, C.; Lagoudakis, M.; Jain, S.; and Koenig, S. 2005.
The generation of bidding rules for auction-based robot co-
ordination. In Parker, L.; Schneider, F.; and Schultz, A.,
eds., Multi-Robot Systems: From Swarms to Intelligent Au-
tomata. Springer. 3–14.

946




